## Molecules, Dust and Ices in Brown Dwarf Atmospheres

## S. K. Leggett<sup>1</sup>, P. Tremblin<sup>2</sup>, D. Saumon<sup>3</sup>, M. S. Marley<sup>4</sup>, C. V. Morley<sup>5</sup>, D. S. Amundsen<sup>2</sup>, I. Baraffe<sup>2,6</sup> and G. Chabrier<sup>6,2</sup>

<sup>1</sup>Gemini Observatory, HI USA; <sup>2</sup>Univ. of Exeter, UK; <sup>3</sup>Los Alamos National Laboratory, NM USA; <sup>4</sup>NASA Ames Research Center, CA USA; <sup>5</sup>UC Santa Cruz, CA USA; <sup>6</sup>Ens-Lyon, France

Jupiter-sized brown dwarfs are found in the solar neighborhood with effective temperature  $T_{\rm eff}$  as low as 250 K [1]. Iron, silicates, chlorides and sulfides condense in the atmospheres of the  $T_{\rm eff} \approx 2000$  K L-type and  $T_{\rm eff} \approx 1000$  K T-type dwarfs [2]. At the T-/Y-type boundary,  $T_{\rm eff} \approx 500$  K and atmospheres are clear [3]. The next species to condense are H<sub>2</sub>O at  $T_{\rm eff} \approx 350$  K and NH<sub>3</sub> at  $T_{\rm eff} \approx 200$  K [4]. We have obtained near-infrared spectra of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2 using Gemini Observatory. We compare these to models with updated H<sub>2</sub>, NH<sub>3</sub> and CH<sub>4</sub> opacities, which include disequilibrium chemistry driven by vertical transport [5, 6]. Figure 1 shows the Y0 spectrum and the best fitting model. Mixing is important in Y dwarf atmospheres as it is for the warmer brown dwarfs and the cooler Jupiter [7], although remaining discrepancies show that the CH<sub>4</sub>/CO and NH<sub>3</sub>/N<sub>2</sub> balance needs further work. The new data are best fit by cloud-free models with a mixing diffusion coefficient log  $K_{zz} = 10^6$  cm<sup>2</sup>s<sup>-1</sup> and gravity log g = 4.0 cm s<sup>-2</sup>; the Y0 has  $T_{\rm eff} = 425$  K and the Y1  $T_{\rm eff} = 350$  K. Evolutionary models [8] then give a mass of  $5^{+4}_{-2} M_{\rm Jupiter}$  for both, and ages 0.15 – 1 Gyr and 0.3 – 3 Gyr for the warmer and cooler dwarf respectively.

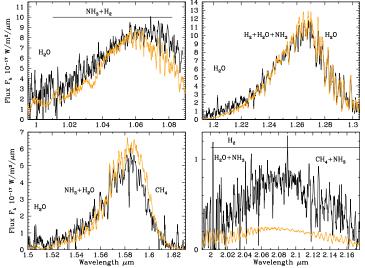



Figure 1. Spectrum of the Y0 WISEP J173835.52+273258.9 (black) and best fit model with  $T_{\rm eff} = 425$  K, log g = 4.0, log  $K_{zz} = 6$  (orange), scaled to the target distance and radius [8].

| 1        | Luhman, K. L. et al  | L 2011, ApJ, 730, L9 | 5 | Saumon, D. et al. 2012, ApJ, 750, 74    |  |
|----------|----------------------|----------------------|---|-----------------------------------------|--|
| <b>2</b> | Morley, C. V. et al. | 2012, ApJ, 756, 172  | 6 | Tremblin, P. et al. 2015, ApJ, 804, L17 |  |
| 0        | T U O TZ U L         | 0015 A T 500 05      | - |                                         |  |

- 3 Leggett, S. K. *et al.* 2015, ApJ, 799, 37
- 7 Noll, K. S. et al. 1997, ApJ, 489, L87
- 4 Burrows, A. et al. 2003, ApJ, 596, 587 8 S
- 7 Noll, K. S. *et al.* 1997, ApJ, 489, L87
  8 Saumon, D. & Marley, M. S. 2008, ApJ, 689, 1327