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Three-dimensionality of hypersonic laminar flow
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Hypersonic laminar flow over a canonical 25°–55° double cone is studied using
computational fluid dynamics and global stability analysis (GSA) with a free-stream Mach
number of 11.5 and various unit Reynolds numbers. Axisymmetric simulations reveal
that secondary separation occurs beneath the primary separation bubble beyond a critical
Reynolds number. The numerical results agree well with existing experiments and the
triple-deck theory with the axisymmetric effect on the incoming boundary layer treated by
the Mangler transformation. The GSA identifies a three-dimensional global instability that
is azimuthally periodic immediately prior to the emergence of secondary separation. The
criterion of the onset of global instability in terms of a scaled deflection angle established
for supersonic compression corner flows (Hao et al., J. Fluid Mech., vol. 919, 2021,
A4) can be directly applied to double-cone flows. As the Reynolds number is further
increased, the flow is strongly destabilized with the coexistence of multiple stationary
and low-frequency oscillating unstable modes. Direct numerical simulations confirm that
the supercritical double-cone flow is intrinsically three-dimensional, unsteady and exhibits
strong azimuthal variations in the peak heating.

Key words: high-speed flow, boundary layer separation, hypersonic flow

1. Introduction

Hypersonic flow over a double cone represents a canonical case of shock-wave–boundary-
layer interaction (Babinsky & Harvey 2011). A double cone can sustain a strong interaction
phenomenon and obviate the finite-span effects of its two-dimensional counterpart (i.e. a
double wedge). Therefore, hypersonic double-cone flows have been extensively studied
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to understand shock-induced separation and validate computational fluid dynamics (CFD)
tools.

A series of 25°–55° double-cone experiments has been conducted at Calspan–University
of Buffalo Research Center over the past two decades with a wide range of free-stream
Mach numbers, Reynolds numbers and total enthalpies in the LENS I reflected shock
tunnel and LENS XX expansion tunnel (Holden & Wadhams 2003; Holden et al.
2003; Holden et al. 2015). Surface pressure and heat flux distributions were measured.
Various numerical simulations have been performed and compared with the experiments
(Gaitonde, Canupp & Holden 2002; Nompelis, Candler & Holden 2003; Druguet,
Candler & Nompelis 2005; Knight et al. 2012; Hao & Wen 2018a,b). However, these
CFD validation campaigns were only a partial success. Under high-enthalpy conditions
with evident vibrational excitation and chemical reactions, the CFD significantly
underestimated the size of the separation region. In contrast, good agreement was
usually obtained at low enthalpies. However, the axisymmetric simulations predicted a
dramatically unsteady flow in some circumstances, whereas the experiments suggested the
opposite (Knight et al. 2012). Currently, these discrepancies are still not understood.

Historically, flow unsteadiness in shock-wave–laminar boundary-layer interactions has
received much less attention than turbulent ones. In hypersonic laminar flow over a
double cone, unsteadiness may occur due to different physical mechanisms. Hornung,
Gollan & Jacobs (2021) numerically studied axisymmetric double-cone flows with
varying flow parameters. Pulsating unsteadiness was found to be an inviscid phenomenon
consistent with the pulsation mode in supersonic spiked-body flows. In particular, the
parameter space of the first and second cone angles was explored to determine the
unsteadiness boundary. The lower boundary decreased to approach the shock detachment
angle of the second cone as the first cone angle was decreased. Tumuklu, Theofilis
& Levin (2018) performed time-accurate direct Monte Carlo simulations of Mach 16
flows over the 25°–55° double cone with different unit Reynolds numbers. For the
highest-Reynolds-number case, the Kelvin–Helmholtz instability arising in the shear layer
and a bow-shock oscillation were captured with dominant frequencies of 45–70 and
2 kHz, respectively. Interestingly, the residuals algorithm identified a temporally stable
axisymmetric global mode, highlighting a strong coupling between the separation region
and shock system. Compared with the well-known pulsation mode and Kelvin–Helmholtz
instability of an inviscid nature, the onset of global instability intrinsic to double-cone
flows merits further investigation.

Nominally two-dimensional/axisymmetric laminar separation bubbles can sustain
three-dimensional instabilities (Theofilis, Hein & Dallmann 2000; Theofilis 2011) with
no upstream disturbances, which have been studied by the global stability analysis (GSA)
approach. In the supersonic flow regime, global instabilities are further complicated by
compressibility and complex shock structures. Robinet (2007) observed low-frequency
unsteady characteristics of shock impingement on a Mach 2.15 laminar boundary layer
using direct numerical simulations (DNS), which stemmed from a supercritical Hopf
bifurcation of the separated flow. Global stability analysis confirmed that the flow became
globally unstable beyond a critical angle of the incident shock. Similarly, Hildebrand et al.
(2018) studied shock impingement on a Mach 5.92 laminar boundary layer. They found a
stationary global mode at a supercritical shock angle, which can lead to the formation of
streamwise streaks downstream of reattachment.

For a Mach 5 double-wedge flow, Sidharth et al. (2018) found a stationary unstable mode
beyond a critical deflection angle, which was attributed to the streamwise deceleration of
the separated flow. At a supercritical deflection angle, multiple stationary and oscillating
unstable modes were captured. Cao et al. (2021) observed streamwise streaks in heat flux
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Three-dimensionality of hypersonic laminar flow
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Figure 1. Schematic of the double-cone configuration.

on the ramp surface in hypersonic flow over a 15° compression corner with low-frequency
unsteadiness using DNS. The two-dimensional base flow was found to be globally unstable
by GSA, which identified one stationary and two oscillating modes. Good agreement was
obtained between DNS and GSA in terms of the spanwise wavelengths of the streaks
and dominant frequencies. More recently, the global stability of a Mach 7.7 compression
corner flow was parametrically studied by Hao et al. (2021) with different ramp angles and
wall temperatures, which was closely linked with the emergence of secondary separation
beneath the primary bubble. As the ramp angle was increased beyond a certain value, a
long-wavelength stationary unstable mode first occurred, followed by a short-wavelength
stationary mode and additional oscillating modes. Furthermore, it was found that the
stability boundary can be well correlated in terms of a scaled ramp angle according to
the triple-deck theory (Neiland 1969; Stewartson & Williams 1969).

In previous GSA studies, only two-dimensional flow problems were considered,
except that of Tumuklu et al. (2018). However, their residuals analysis was restricted
to axisymmetric scenarios with only temporally stable modes. The bifurcation of
axisymmetric double-cone flows into three-dimensionality remains to be understood. To
this end, hypersonic flow over the 25°–55° double-cone configuration is investigated
numerically and theoretically in this study. Axisymmetric CFD and GSA are performed
over a range of unit Reynolds numbers. The base flows are compared with existing
experimental data and interpreted using the triple-deck theory. The corresponding linear
stability spectra are then explored by assuming periodic perturbations in the azimuthal
direction. Finally, DNS are performed to verify the GSA results and reveal the evolution
of three-dimensional flow structures.

2. Geometric configuration and flow conditions

The experimental model tested in the LENS I and LENS XX tunnels is considered here,
as shown in figure 1. The 25°–55° double cone has a sharp nose with two equal-length
conical sections (L = 0.1016 m). A cylindrical coordinate system is constructed with the
origin at the nose, the x direction along the cone axis, the r direction perpendicular to the
axis and the φ direction satisfying the right-hand rule.

The baseline flow conditions are taken from run 35 (Holden et al. 2003) with free-stream
conditions M∞ = 11.5, ρ∞ = 5.515 × 10−4 kg m−3, T∞ = 138.9 K, u∞ = 2713 m s−1 and
Re∞ = 1.6 × 105 m−1. Due to the low total enthalpy, the air is assumed to be calorically
perfect with a constant specific heat ratio of 1.4. In fact, a certain amount of vibrational
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energy was frozen in the nozzle exit of the LENS I reflected shock tunnel. However, as
shown by Nompelis et al. (2003), the inclusion of the vibrational energy and its weak
accommodation at the wall only improved the predictive accuracy of the heat flux on
the first cone. Therefore, no vibrational energy is considered in this study. The flow-field
variables are non-dimensionalized using the free-stream parameters. The length of the
conical section L is used as the characteristic length of the flow.

Three additional flow conditions are considered, with the free-stream density ρ∞
decreased from the baseline value by a factor of 0.75, 0.5 and 0.33, while the other
free-stream quantities remain unchanged. For convenience, these cases are labelled 0.75Re,
0.5Re and 0.33Re.

According to Hornung et al. (2021), the pulsation mode is enclosed in the lower and
upper boundaries of the second cone angle (θ2) for a given first cone angle (θ1). The lower
boundary is located above the shock detachment angle (θd) of the second cone with respect
to M∞. For the current flow conditions, θd is approximately 57° as determined from the
Taylor-Maccoll equations, which indicates that the considered 25°–55° double-cone flows
sustain no inviscid unsteadiness.

3. Computational details

3.1. Governing equations
The governing equations are the compressible Navier–Stokes equations for a calorically
perfect gas written in the following conservation form:

∂U
∂t

+ ∂F
∂x

+ 1
r

∂(rG)

∂r
+ 1

r
∂H
∂φ

= 1
r

Q, (3.1)

where U = [ρ, ρu, ρv, ρw, ρE]T is the vector of conservative variables and the vectors of
fluxes and source terms are given by

F =

⎡
⎢⎢⎢⎣

ρu
ρu2 + p

ρvu
ρwu

(ρE + p)u

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
τxx
τrx
τφx

uτxx + vτrx + wτφx + qx

⎤
⎥⎥⎥⎦ , (3.2)

G =

⎡
⎢⎢⎢⎣

ρv

ρuv

ρv2 + p
ρwv

(ρE + p)v

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
τxr
τrr
τφr

uτxr + vτrr + wτφr + qr

⎤
⎥⎥⎥⎦ , (3.3)

H =

⎡
⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
(ρE + p)w

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
τxφ
τrφ
τφφ

uτxφ + vτrφ + wτφφ + qφ

⎤
⎥⎥⎥⎦ , (3.4)

Q =

⎡
⎢⎢⎢⎣

0
0

p + ρw2 + τφφ

−ρvw − τrφ
0

⎤
⎥⎥⎥⎦ . (3.5)
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Three-dimensionality of hypersonic laminar flow

In these expressions, ρ is the density, u, v and w are the flow velocities in the x, r and φ

directions, respectively, p is the pressure and E is the total energy per unit mass. The shear
stresses are calculated according to a Newtonian fluid and the Stokes hypothesis as

τxx = −μ

[
2
∂u
∂x

− 2
3

(
∂u
∂x

+ ∂v

∂r
+ 1

r
∂w
∂φ

+ v

r

)]
, (3.6)

τrr = −μ

[
2
∂v

∂r
− 2

3

(
∂u
∂x

+ ∂v

∂r
+ 1

r
∂w
∂φ

+ v

r

)]
, (3.7)

τφφ = −μ

[
2

(
1
r

∂w
∂φ

+ v

r

)
− 2

3

(
∂u
∂x

+ ∂v

∂r
+ 1

r
∂w
∂φ

+ v

r

)]
, (3.8)

τxr = τrx = −μ

(
∂u
∂r

+ ∂v

∂x

)
, (3.9)

τxφ = τφx = −μ

(
1
r

∂u
∂φ

+ ∂w
∂x

)
, (3.10)

τrφ = τφr = −μ

(
1
r

∂v

∂φ
+ ∂w

∂r
− w

r

)
, (3.11)

where μ is the dynamic viscosity evaluated using Sutherland’s law. The vector of heat
conduction is modelled according to Fourier’s law as

qx = −k
∂T
∂x

, qr = −k
∂T
∂r

, qφ = −k
1
r

∂T
∂φ

, (3.12a–c)

where k is the coefficient of thermal conductivity evaluated using a constant Prandtl
number of 0.72.

It is assumed that U can be decomposed into an axisymmetric steady solution and a
three-dimensional small-amplitude perturbation as

U(x, r, φ, t) = Ū(x, r) + U ′(x, r, φ, t). (3.13)

Hereafter, the overbar and prime denote base-flow and perturbation variables, respectively.

3.2. Base-flow solver
The governing equations of the base flow can be readily obtained from (3.1) by assuming

w̄ = 0,
∂

∂φ
= 0. (3.14a,b)

The integral form of the axisymmetric governing equations can then be obtained by
applying the divergence theorem to a finite-volume cell of unit radian in the azimuthal
direction as ∮

S
(F̄ nx + Ḡnr) dS =

∫
V

1
r

Q̄ dV, (3.15)

where nx and nr are the components of the unit normal vector of the control surface, S is
the area of the cell surface and V is the cell volume. The discrete form of (3.15) can be
expressed as

1
V

∑
f

(F̄nx + Ḡnr)f Sf = 1
rc

Q̄c, (3.16)

where the subscripts f and c denote face- and cell-averaged values, respectively.
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The base-flow solutions are obtained using an in-house multiblock parallel finite-volume
solver called PHAROS (Hao, Wang & Lee 2016; Hao & Wen 2020). The modified
Steger–Warming scheme (MacCormack 2014) is used to calculate the inviscid fluxes,
which is extended to a second order by the monotone upstream-centred schemes for
conservation law reconstruction (van Leer 1979). The viscous fluxes are computed using
the second-order central difference. An implicit line relaxation method (Wright, Candler
& Bose 1998) is used for pseudo time stepping.

The boundary conditions are given as follows. Free-stream conditions are applied to the
far-field boundary, whereas the outflow boundary conditions are determined using a simple
extrapolation. The model surface is assumed to have no slip with a fixed wall temperature
Tw = 300 K corresponding to a wall temperature ratio Tw/T0 = 0.079, where T0 is the
free-stream total temperature.

Numerical simulations are run with a constant Courant–Friedrichs–Lewy number of
103 until iterative convergence. For all cases, the Euclidean norm of the density residual is
reduced by at least ten orders of magnitude, and the distributions of surface quantities no
longer change in successive iterations. No self-sustained instabilities are supported by the
considered axisymmetric double-cone flows.

3.3. Global stability analysis
The governing equations of U’ can be obtained by substituting (3.13) into the governing
equations (3.1) and neglecting higher-order terms as

∂U ′

∂t
+ ∂F ′

∂x
+ 1

r
∂(rG′)

∂r
+ 1

r
∂H ′

∂φ
= 1

r
Q′. (3.17)

The equations are then integrated and discretized on a finite-volume cell of unit radian in
the azimuthal direction as

∂U ′
c

∂t
+ 1

V

∑
f

(F ′nx + G′nr)f Sf + 1
rc

∂H ′
c

∂φ
= 1

rc
Q′

c. (3.18)

As with PHAROS, the inviscid fluxes are calculated using the modified Steger–Warming
scheme. A central scheme is activated in smooth regions away from discontinuities
detected by an improved Ducros shock sensor to reduce numerical dissipation
(Hendrickson, Kartha & Candler 2018). The viscous fluxes are calculated using the
second-order central difference.

Vector U ′ is further assumed to be in the following modal form:

U ′(x, r, φ, t) = Û(x, r) exp[−i(ωr + iωi)t + imφ], (3.19)

where Û is the axisymmetric eigenfunction, ωr is the angular frequency, ωi is the growth
rate and m is the azimuthal wavenumber. Note that m must be an integer, with m = 0
representing an axisymmetric mode. Substituting (3.19) into (3.18) results in an eigenvalue
problem as

ĀÛ = (ωr + iωi)Û, (3.20)

where Ā is the global matrix composed of Jacobians of the inviscid and viscous fluxes
and source terms. The eigenvalue problem is solved using the implicitly restarted Arnoldi
method implemented in ARPACK (Sorensen et al. 1996) for a given m.
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Figure 2. Distributions of (a) skin friction coefficient, (b) surface pressure coefficient and (c) surface Stanton
number obtained on three different grids for the baseline case.

At the far-field boundary, all the perturbations are set to zero, which indicates no
upstream disturbances. Simple extrapolation is used at the supersonic outflow boundary.
The boundary conditions at the solid wall are given by

û = v̂ = ŵ = T̂ = ∂ p̂
∂n

= 0. (3.21)

Furthermore, sponge layers are placed near the far-field and outflow boundaries of the
computational domain to ensure no reflection of perturbations (Mani 2012).

3.4. Grid independence study
Computational grids are constructed with three levels of resolution, namely 500 × 250
(coarse), 750 × 350 (medium) and 1000 × 450 (fine), in the streamwise and wall-normal
directions. The normal spacing at the wall is set to 1 × 10−7 m to ensure that the grid
Reynolds number has an order of magnitude of one. Axisymmetric CFD and GSA are
performed on these grids to verify grid independence.

Figure 2 compares the distributions of the skin friction coefficient Cf , surface pressure
coefficient Cp and surface Stanton number St obtained on different grids for the baseline
case. Herein, Cf , Cp and St are defined by

Cf = τw

0.5ρ∞u2∞
, Cp = pw

0.5ρ∞u2∞
, St = qw

0.5ρ∞u3∞
, (3.22a–c)

where τw, pw and qw are the surface shear stress, pressure and heat flux, respectively.
Given that the distributions on the medium and fine grids almost overlap, the medium grid
should be adequate for CFD.

Figure 3 compares the eigenvalue spectra obtained at different grids for the baseline case
corresponding to the most unstable azimuthal wavenumber m = 33 (discussed in § 4.3).
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Figure 3. Eigenvalue spectra obtained on three different grids for the baseline case corresponding to the most
unstable azimuthal wavenumber m = 33. Squares, coarse grid; diamonds, medium grid; circles, fine grid.

A stationary and an oscillating unstable mode are captured. Their growth rates increase as
the grid is refined. It is indicated that the medium grid is also adequate for GSA.

4. Results

4.1. Base flows
Figure 4 shows the contours of the density gradient magnitude for different Reynolds
numbers superimposed with the sonic lines and streamlines in the separation region. The
basic flow structure is largely unaffected by the Reynolds number. An oblique shock is
generated by the first cone. If the flow is inviscid, the supersonic flow behind the oblique
shock is controlled by the Taylor-Maccoll equations and is deflected into itself again at the
corner by the second cone to form another oblique shock. However, due to the complexity
of the shock interaction, the oblique shock induced by the second cone is curved such that
the postshock flow is locally subsonic (Olejniczak, Wright & Candler 1997).

If viscosity is accounted for, the adverse pressure gradient at the corner causes the
incoming boundary layer to separate. A separation shock and a reattachment shock are
further generated by the separation region. The separation shock interacts with the curved
shock to form a triple point, a slip line and a transmitted shock. The transmitted and
reattachment shocks intersect to form Edney’s type I shock interaction (Edney 1968).
Downstream of the interaction, the transmitted shock impinges on the second cone,
whereas the reattachment shock hits the slip line. As a result, the slip line is deflected
to become nearly parallel to the second cone. An underexpanded supersonic jet develops
between the slip line and second cone, where the transmitted shock is reflected back and
forth to form a series of compression and expansion waves. The streamwise scale of the
wave reflection extends downstream as the Reynolds number is increased.

Interestingly, the separation region is always terminated by the impingement of the
transmitted shock, which may suggest that the separation region and shock system are
strongly coupled. The size of the separation region increases with increasing Reynolds
number. For the 0.75Re case, secondary separation occurs and distorts the primary bubble.
For the baseline case, the secondary bubble grows, and the primary bubble fragments into
two vortices.

Figure 5 displays the distributions of the skin friction coefficient for different Reynolds
numbers with enlarged views near the corner. Flow separation and reattachment can be
readily determined at the most upstream and downstream locations where the curve of
Cf crosses zero. Upstream of separation, Cf decreases as the laminar boundary layer
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Figure 4. Contours of the density gradient magnitude superimposed with streamlines and sonic lines: (a)
0.33Re, (b) 0.5Re, (c) 0.75Re and (d) baseline.

develops along the first cone. Near the separation point, Cf experiences a sudden decrease
to a local minimum and then increases gradually. Downstream of the corner, Cf drops
again to two successive local minima. The one closer to the reattachment point cannot
be seen in supersonic compression corner flows, which is caused by the impingement of
the transmitted shock. Downstream of reattachment, the skin friction rises to the peak and
decreases with oscillations due to the wave reflection in the supersonic jet. At x/L ≈ 1.5,
the local peak is caused by the expansion corner at the end of the second cone. For the
0.33Re and 0.5Re cases, Cf remains negative inside the separation region. In contrast, Cf
becomes positive near the corner at larger Reynolds numbers, which indicates the presence
of secondary separation.

The distributions of the surface pressure coefficient and Stanton number are plotted for
different Reynolds numbers in figure 6. Open circles mark the separation and reattachment
points. From bottom to top, the horizontal lines represent inviscid pressure coefficients
on the first and second cones, respectively. Upstream of separation, Cp remains constant.
Near the separation point, Cp begins to rise and enters a plateau region. Then, the
pressure rises dramatically to its peak value near flow reattachment and decreases to
approach the cone value determined by inviscid theory for the second cone. The peak
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Figure 5. (a) Distributions of the skin friction coefficient for different Reynolds numbers with (b) an
enlarged view near the corner. Horizontal line, zero skin friction; vertical line, corner.
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Figure 6. Distributions of (a) the surface pressure coefficient and (b) the surface Stanton number for different
Reynolds numbers. Open circles, separation and reattachment points; horizontal lines, inviscid theory for the
first and second cones; vertical line, corner.

value of Cp increases with increasing Reynolds number. For all cases, a slight pressure
‘dip’ can be observed at the end of the pressure plateau. Such behaviour has been
reported extensively for shock-wave–boundary-layer interactions over many canonical
configurations (Shvedchenko 2009; Khraibut et al. 2017; Gai & Khraibut 2019). In fact,
the pressure ‘dip’ is the footprint of the low pressure in the vortex core of the primary
bubble. For the highest Reynolds number, a second pressure plateau is seen near the corner
corresponding to the secondary bubble (Korolev, Gajjar & Ruban 2002). The surface heat
flux behaves similarly to the skin friction in the incoming boundary layer. Stanton number
St enters a valley region downstream of separation and increases to the peak value near the
reattachment point, which decreases with increasing Reynolds number.

The behaviour of the pressure ‘dip’ is demonstrated in figure 7, which plots the
distributions of the streamwise gradient of the surface pressure coefficient along the model
surface for different Reynolds numbers. The figure also shows an enlarged view near
the corner. Here, s* is the non-dimensional distance along the model surface measured
from the vertex. The separation and reattachment points of the primary and secondary
bubbles are indicated by open and filled circles, respectively. Downstream of the separation
point, there is a nearly zero-pressure-gradient region corresponding to the pressure
plateau. Downstream of the corner, there is a local minimum of the streamwise pressure
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Figure 7. (a) Distributions of the streamwise gradient of the surface pressure coefficient along the model
surface for different Reynolds numbers with (b) an enlarged view near the corner. Open circles, separation
and reattachment points of primary separation; filled circles, separation and reattachment points of secondary
separation; vertical line, corner.

gradient induced by the pressure ‘dip’. Its magnitude increases with increasing Reynolds
number. Beyond a certain value, the reverse flow boundary layer developing from the
primary reattachment point cannot resist the adverse pressure gradient and separates into a
secondary bubble. Inside the secondary separation region, another zero-pressure-gradient
region can be observed for the baseline case.

Figure 8 compares the distributions of the surface pressure coefficient and Stanton
number with the experimental data of Holden et al. (2003) for the 0.33Re, 0.5Re and
baseline cases. Good agreement is obtained in terms of the size of the separation region
and the peak values and locations of Cp and St, except that the heat flux on the first cone is
slightly overestimated. As previously mentioned, this is caused by the frozen vibrational
energy in the free stream and its weak accommodation at the wall.

4.2. Comparison with triple-deck theory
Shock-induced separation is essentially a viscous-inviscid interaction problem. Neiland
(1969) and Stewartson & Williams (1969) proposed that the interaction region consisted
of three tiers: an inviscid, irrotational upper deck, an inviscid, rotational middle deck and
a viscous lower deck and found that the flow in the lower deck was governed by the
incompressible boundary-layer equations after scaling.

The classical triple-deck theory has been applied to supersonic flow over a
two-dimensional compression corner with moderate to high wall temperatures (Rizzetta,
Burggraf & Jenson 1978; Smith & Khorrami 1991; Korolev et al. 2002). Its classical
triple-deck solution depends on a scaled ramp angle α* only. As α* is increased from
a small value to approximately 1.57, incipient separation occurs (Ruban 1976; Rizzetta
et al. 1978; Ruban 1978). The length of the separation region continuously increases with
α* accompanied by the formation of a pressure plateau. Beyond a critical value of 4.5,
secondary separation is formed beneath the primary bubble (Smith & Khorrami 1991;
Korolev et al. 2002). Further increasing α* leads to fragmentation of the primary bubble
and eventually unsteadiness. Similar behaviours have been reported from two-dimensional
CFD simulations (Shvedchenko 2009; Gai & Khraibut 2019); however, the values of
α* for incipient and secondary separation moderately depend on the wall temperature
ratio. A cold wall postpones incipient separation and facilitates secondary separation, as
shown by Egorov, Neiland & Shvedchenko (2011) and Hao et al. (2021). For supersonic
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Figure 8. Comparison between the numerical and experimental distributions of the surface pressure
coefficient and Stanton number: (a) 0.33Re, (b) 0.5Re and (c) baseline. Symbols, experimental data; solid
line, pressure coefficient; dash-dotted line, Stanton number.

compression corner flows, the critical α* for secondary separation ranges from 3.5 to 5
(Gai & Khraibut 2019; Hao et al. 2021). The lower and upper boundaries correspond to
the cold- and adiabatic-wall conditions, respectively. Note that the classical triple-deck
theory implicitly requires that the wall temperature should be of the same order as the
recovery temperature (Cheng 1993). The influence of wall cooling was considered by
Neiland (1973), Neiland & Sokolov (1975), Brown, Cheng & Lee (1990), Kerimbekov,
Ruban & Walker (1994) and Cassel, Ruban & Walker (1996). In the extended triple-deck
formulation of Kerimbekov et al. (1994), the solution of a compression corner flow
also depends on the level of wall cooling and the Mach number distribution across the
boundary layer upstream of interaction. In this study, the double-cone flows are examined
using the classical triple-deck scaling for supersonic flow. Comparison with the strong
wall cooling theories will be made in a future study. Also note that hypersonic viscous
interaction (Neiland 1970; Brown, Stewartson & Williams, 1975; Brown et al. 1990; Smith
& Khorrami 1994) is not considered here.

Here, a new coordinate system is constructed with the x1 axis along the first cone and the
origin at the vertex, as shown in figure 1. Obviously, the body radius at the corner is of the
same order of magnitude as L. According to Huang & Inger (1983), the only axisymmetric
effect is that on the incoming boundary layer as considered by the Mangler transformation,
and the triple-deck equations remain the same as those for two-dimensional flows. If the
angle of the first cone is small enough, the three-dimensional relieving effect enters the
upper deck and reduces the pressure rise due to flow deflection, which can significantly
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Three-dimensionality of hypersonic laminar flow

postpone both incipient and secondary separation (Gittler & Kluwick 1987). In addition, as
pointed out by Kluwick, Gittler & Bodonyi (1984), Huang & Inger (1983) only considered
a linearized solution of the triple-deck equations, which resulted in a non-smooth pressure
distribution at the corner.

The scaled lower-deck variables relevant to this study are given as follows:

x∗ = Re3/8C−3/8λ5/4(M2
e − 1)3/8

(
Tw

Te

)−3/2 x1 − L
L

, (4.1)

p∗ = Re1/4C−1/4λ−1/2(M2
e − 1)1/4 p − pe

ρeu2
e

, (4.2)

α∗ = Re1/4C−1/4λ−1/2(M2
e − 1)−1/4α, (4.3)

Re = ρeueL
μe

, C = μwTe

μeTw
, (4.4)

where x* is the scaled distance measured from the corner, Re is the Reynolds number
based on the flow properties at the edge of the incoming boundary layer (denoted by the
subscript e) and L, C is the Chapman–Rubesin parameter, λ is a value determined by the
slope of the velocity profile at the wall in the incoming boundary layer, α is the deflection
angle in radians and p* is the scaled pressure.

The flow properties at the edge of the incoming boundary layer are determined by
solving the Taylor–Maccoll equations. For the Blasius boundary layer over a flat plate,
λ equals 0.3322. Here, λ should be multiplied by a factor of

√
3 according to the Mangler

transformation for the boundary layer over the first cone.
For the four flow conditions under consideration, the values of α* are 2.872, 3.178, 3.518

and 3.780. From the base-flow solutions (see figures 4 and 5), secondary separation occurs
when α* is between 3.178 and 3.518. The critical value is approximately 3.327 determined
by additional simulations. As expected, this is close to the lower boundary of the critical α*
for secondary separation in supersonic compression corner flows because of the relatively
low wall temperature ratio. Secondary separation in the double-cone flows considered by
Tumuklu et al. (2018) occurs when α* is between 3.696 and 4.090. Note that their wall
temperature ratio (0.142) is greater than the current value (0.079), resulting in a slightly
larger critical α*.

Figure 9 shows the scaled pressure distributions as a function of x* for different
Reynolds numbers. The separation and reattachment points are also marked. Upstream of
separation, p* is zero according to its definition. Near the separation point, the behaviour
of p* is unaffected by the increase in α*, which is ruled by the free-interaction process
(Chapman et al. 1958). Downstream of separation, the pressure plateau is approximately
1.8, which agrees well with the classical triple-deck scaling (Korolev et al. 2002). Near
the reattachment point, the pressure increases dramatically. Note that the peak value is
much larger than the corresponding α*. This is because the linearized theory used in
the triple-deck theory to obtain the pressure–deflection relation in the upper deck no
longer holds for the relatively high Mach number and deflection angle considered in
this study. In fact, the linearized theory tends to underestimate the postshock pressure.
The impingement of the transmitted shock further increases the pressure peak. As an
outcome of the cold-wall effect, the extent of the separation region significantly exceeds
the triple-deck result obtained for the same α* (Rizzetta et al. 1978; Korolev et al. 2002).
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Figure 9. Distributions of scaled surface pressure for different Reynolds numbers. Open circles, separation
and reattachment points.
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Figure 10. Variations in the growth rates of the least stable modes as a function of azimuthal wavenumber for
different Reynolds numbers.

4.3. Onset of global instability
To determine the global stability of hypersonic double-cone flows with respect to
azimuthally periodic perturbations, GSA is performed using the axisymmetric base flows
over a wide range of azimuthal wavenumbers.

Figure 10 shows the growth rates of the least stable modes captured by the GSA for
the 0.33Re, 0.5Re and 0.75Re cases. For the lowest Reynolds number (α* = 2.872), the
flow is stable with the least stable azimuthal wavenumber of 12. For the 0.5Re case
(α* = 3.178), an unstable mode can be observed with m = 10. As the Reynolds number is
further increased, the maximum growth rate increases as the corresponding wavenumber
shifts to m = 6. For these cases, the least stable modes are stationary. In other words, the
magnitude of the perturbation added to the base flow grows monotonically with time until
nonlinear effects set in. The flow becomes unstable immediately prior to the emergence
of secondary separation, which is consistent with the behaviour of global instability in
supersonic compression corner flows (Hao et al. 2021). Therefore, the criterion of the
stability boundary in terms of α* established for supersonic compression corner and
double-wedge flows (Hao et al. 2021) can be directly applied to double-cone flows.

Figure 11 shows the contours of the azimuthal velocity perturbation w′ and pressure
perturbation p′ corresponding to the least stable modes for the 0.33Re, 0.5Re and 0.75Re
cases. The shock locations and dividing streamlines are superimposed. It is confirmed
that these modes are of the same nature. In contrast to supersonic compression corner
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Figure 11. Contours of (a) the azimuthal velocity perturbation and (b) the pressure perturbation for different
Reynolds numbers superimposed with shock locations and dividing streamlines. The contour levels are evenly
spaced between ±0.5 of the maximum |w′| and between ±0.1 of the maximum |p′|.

and double-wedge flows (Sidharth et al. 2018; Cao et al. 2021; Hao et al. 2021), w′ is
not confined in the separation region but also distributed in the inviscid regions behind
the separation and curved shocks and in the supersonic jet. This may be attributed to the
complexity of the shock interaction in the double-cone flows. The pressure perturbations
further highlight the strong coupling between the separation region, separation and curved
shocks and wave reflection in the supersonic jet. Similar observations were made by
Tumuklu et al. (2018). However, they only conducted axisymmetric GSA and thus found
no unstable modes. As the Reynolds number is increased, the pressure perturbation in the
supersonic jet penetrates the subsonic region bounded by the curved shock and slip line.

For the highest Reynolds number, the flow is strongly destabilized. The growth rates
and angular frequencies of the most unstable modes are plotted in figure 12 as a function
of m. Note that mode 3 belongs to the same family as those shown in figure 10. The most
unstable azimuthal wavenumber of mode 3 further decreases to 5. Meanwhile, a stationary
mode (mode 1) and an oscillating mode (mode 2) occur with the growth rates peaking at
m = 33 and 30, respectively. The frequency of mode 2 at m = 30 is approximately f =
4.8 kHz ( fL/u∞ = 0.18), which belongs to the low-frequency regime. Modes 4 and 5 are
also oscillating modes with even lower frequencies; however, these modes should be trivial
due to the low growth rates.

The azimuthal velocity perturbation and pressure perturbation contours are shown
in figure 13 for modes 1-3 at m = 33, 30 and 5. Modes 1-3 structurally resemble the
dominant stationary and oscillating unstable modes found in supersonic double-wedge
and compression corner flows (Sidharth et al. 2018; Hao et al. 2021), especially in the
separation region. These unstable modes also originate from the separated flow; however,
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Figure 12. Variations in (a) the growth rates and (b) the angular frequencies of the most unstable modes as a
function of azimuthal wavenumber for the baseline case.

they can be decorated by a particular type of shock interaction. Note that only Edney’s
type VI interaction was considered by Sidharth et al. (2018) and Hao et al. (2021). Here,
w′ and p′ are also distributed in the supersonic jet with alternating signs in accordance
with the wave reflection therein. The eigenfunctions of mode 3 are similar to those shown
in figure 11 but characterized by a closer link between the supersonic jet and curved shock.
Interestingly, modes 1 and 3 are absent in the secondary bubble in contrast to mode 2.

4.4. Direct numerical simulations
In this section, DNS are performed to verify the GSA results and reveal the
three-dimensional flow structures by solving the complete Navier–Stokes equations (3.1).
Here, only the supercritical baseline case (i.e. run 35) is considered, which supports two
stationary and three oscillating unstable modes.

The computational grid is generated by rotating the medium grid (750 × 350) around the
axis over an angle of 72° to make the DNS affordable. Hence, the azimuthal wavenumbers
that can be numerically resolved must be integer multiples of 5. This azimuthal domain
extent is chosen because the growth rates of mode 1 at m = 30 and 35 are close to
the maximum value (see figure 12a). In addition, the growth rates of modes 2 and 3
peak at m = 30 and 5, respectively. Two hundred grid cells are used in the azimuthal
direction, which achieves a grid size comparable to that in the streamwise direction
near the peak heating. Part of the grid upstream of separation is cut off to remove the
axial singularity. The inlet boundary conditions are specified using the axisymmetric
profile at the same streamwise location. Periodic boundary conditions are applied to the
azimuthal boundaries. The initial flow field is constructed by duplicating the base flow
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Figure 13. Contours of (a) the azimuthal velocity perturbation and (b) the pressure perturbation for modes
1-3 at m = 33, 30 and 5 for the baseline case superimposed with shock locations and dividing streamlines. The
contour levels are evenly spaced between ±0.5 of the maximum |w′| and between ±0.1 of the maximum |p′|.

in the azimuthal direction. Note that no external or internal disturbances are introduced.
Therefore, global instability is expected to arise from the numerical round-off error.

The three-dimensional simulation is performed using PHAROS with the same
numerical schemes as described in § 3.2, except that a second-order implicit scheme
(Peterson 2011) is utilized for time marching. The physical time step is set to 20 ns. An
independence study verified that a smaller time step did not change the flow evolution.
The simulation is run for a total physical time t = 14 ms (tu∞/L = 373.8) to ensure a
quasi-steady state and to fully resolve the low-frequency unsteadiness. The sampling
frequency is 0.5 MHz for spectral analysis.

To quantitatively characterize the evolution of global instability, the root mean square of
the azimuthal velocity at a given streamwise station is defined by

σw =

√√√√√ 1
NrNφ

Nr∑
j=1

Nφ∑
k=1

(
w

u∞

)2

, (4.5)

where Nr and Nφ are the numbers of grid cells in the radial and azimuthal directions,
respectively. The temporal history of σw at x/L = 0.98 near the corner is shown in figure 14.
After the initialization, σw experiences exponential growth until tu∞/L ≈ 70 and nonlinear
saturation. After tu∞/L ≈ 240, a quasi-steady state is established. The growth rate of σw in
the linear stage agrees well with that of mode 1 at m = 30 represented by the dashed-dotted
line.
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Figure 14. Temporal history of the root mean square of the azimuthal velocity at x/L = 0.98. The slope of the
dashed-dotted line equals the growth rate of mode 1 at m = 30.
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Figure 15. Contours of the azimuthal velocity in (a) the x–r plane at φ = 42.5° and (b) two wall-normal
slices extracted at x/L = 0.98 and 1.20 at tu∞/L = 53.4.

Figure 15(a) shows the contour of the azimuthal velocity in a certain x–r plane
(φ = 42.5°) at tu∞/L = 53.4 in the mid-linear stage. The spatial structure is almost identical
to that of mode 1 captured by the GSA (see figure 13a), which confirms that mode 1
dominates the linear growth of the three-dimensional perturbations. The contours of the
azimuthal velocity are also plotted in two wall-normal slices extracted at x/L = 0.98 and
1.20 in figure 15(b). Note that slices 1 and 2 are located in the separation bubble and
downstream of reattachment, respectively. An azimuthal periodicity with m = 30 can be
seen.

Figure 16 shows the temporal history of the azimuthally averaged surface Stanton
number at x/L = 1.10 near flow reattachment. The heat flux remains constant at the
beginning and oscillates in the late linear stage, which marks the emergence of mode 2.
As will be seen later, the steep increase in St at tu∞/L ≈ 170 is caused by the enlargement
of the separation region. A fast Fourier transformation is carried out from tu∞/L = 0 to
80.1 with the resulting power spectral density (PSD) plotted in figure 17(a). The dominant
non-dimensional frequency is consistent with that of mode 2 at m = 30. The PSD of the
surface Stanton number signal in the quasi-steady stage from tu∞/L = 240.3 to 373.8 is
presented in figure 17(b), which exhibits a broad-band feature also centred at fL/u∞ ≈ 0.18.
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Figure 16. Temporal history of the azimuthally averaged surface Stanton number at x/L = 1.10.
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Figure 17. Power spectral density of the azimuthally averaged surface Stanton number signal at x/L = 1.10 in
two time intervals: (a) from tu∞/L = 0 to 80.1 and (b) from tu∞/L = 240.3 to 373.8.

Figure 18 presents the contours of the surface Stanton number at different time
instants. Isolines of Cf = 0 are also plotted to indicate the separation regions. The
separation and reattachment points obtained from the base-flow solution are marked by
arrows. At tu∞/L = 0, the contour is axisymmetric. At tu∞/L = 77.4, the reattachment
line of the primary bubble and the separation and reattachment lines of the secondary
bubble become corrugated, accompanied by slight azimuthal variations in the heat
flux. After tu∞/L = 154.9, the secondary bubble is strongly distorted and eventually
breaks up into several small bubbles. The separation line of the primary bubble remains
largely unaffected by the three-dimensionality of the flow field downstream, whereas the
reattachment line exhibits a zigzag pattern. Similar features were reported by Cao et al.
(2021) in their DNS of hypersonic compression corner flows.

In contrast to the compression corner flows, no streamwise streaks that can persist
for some distance are found downstream of reattachment. Instead, the narrow annular
region of the maximum heat flux fragments into azimuthally periodic peaks and
valleys. Meanwhile, the size of the separation region slightly increases compared to the
axisymmetric value between tu∞/L = 154.9 and 240.3, which explains the sudden increase
in St shown in figure 16.

To closely examine the three-dimensional flow structures near flow reattachment,
figure 19(a) shows an enlarged view of the surface Stanton number contour superimposed
with skin friction lines at tu∞/L = 293.7. Two wall-normal slices are extracted at x/L = 1.06
and 1.16. The contours of the streamwise velocity in the two slices superimposed with
in-plane streamlines are shown in figure 19(b). Note that the white lines indicate the
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tu∞/L = 240.3
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tu∞/L = 293.7 tu∞/L = 347.1
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(e)(d ) ( f )

Figure 18. Contours of the surface Stanton number at (a) tu∞/L = 0, (b) tu∞/L = 77.4, (c) tu∞/L = 154.9, (d)
tu∞/L = 240.3, (e) tu∞/L = 293.7 and ( f ) tu∞/L = 347.1. Black solid lines, isolines of Cf = 0; arrows, locations
of the separation and reattachment points of the primary bubble obtained from the base-flow solution.
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Figure 19. (a) Enlarged view of the contour of the surface Stanton number superimposed with skin friction
lines. (b) Contours of the streamwise velocity in two wall-normal slices extracted at x/L = 1.06 and 1.16
superimposed with in-plane streamlines at tu∞/L = 293.7.

locations of the slices and zero streamwise velocity. In slice 1 located upstream of
reattachment and downstream of the corner, the shear layer of the separation region
is distorted by the counter-rotating streamwise vortical structures that are confined in
the reversed flow region. The corrugated shear layer reattaches on the second cone to
form a zigzag reattachment line with a series of nodes and saddle points shifted in the
streamwise direction. The heat flux peaks are located downstream of the nodes, whereas
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Figure 20. Comparison between the azimuthally averaged distributions of (a) the surface pressure coefficient
and (b) the Stanton number at tu∞/L = 293.7 and the experimental and base-flow data. The grey-shaded
envelope represents the range of azimuthal variations.

the heat flux valleys are associated with the saddle points. In slice 2 located downstream
of reattachment, another corrugated shear layer can be seen, emanating from the triple
point (see figure 4). There are no streamwise vortices in the supersonic jet and reattaching
boundary layer, which explains the absence of streamwise heat flux streaks downstream of
reattachment.

The azimuthally averaged distributions of the surface pressure coefficient and Stanton
number at tu∞/L = 293.7 are plotted in figure 20 with the grey-shaded envelope bounded
by the maximum and minimum values in the azimuthal direction. In general, the averaged
DNS results agree well with the experimental and base-flow data. However, strong
azimuthal variations in the heat flux exist, especially near flow reattachment, where the
relative difference can be as high as 50% compared with the mean value.

5. Conclusions

The hypersonic laminar flow over a canonical 25°–55° double cone is investigated using
CFD and GSA with varying unit Reynolds numbers. For all cases, no self-sustained
inviscid unsteadiness is found, which is consistent with the unsteadiness boundary
proposed by Hornung et al. (2021). The axisymmetric CFD reveals that the separation
region is always terminated by the transmitted shock emanating from the interaction
between the oblique and curved shocks induced by the first and second cones. The
behaviours of skin friction, surface pressure and surface heat flux within the separation
region are similar to those found in supersonic shock-induced separated flow over many
canonical configurations. Secondary separation occurs beneath the primary bubble when
the Reynolds number is greater than a critical value. The numerical predictions of
the surface pressure and heat flux agree well with the experimental measurements.
The numerical data are interpreted using the classical triple-deck scaling with the
axisymmetric effect accounted for by the Mangler transformation. The universal values of
the scaled separation and plateau pressures and the critical value of the scaled deflection
angle for the emergence of the secondary separation also hold for double-cone flows. Note
that the free-stream Mach number and wall temperature ratio are fixed in this study. The
entire parameter space remains to be explored.

At relatively low Reynolds numbers, a stationary mode is captured by the GSA, whose
growth rate increases as the Reynolds number is increased. Beyond a critical value, the
mode becomes unstable with respect to azimuthally periodic perturbations. Meanwhile,
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the azimuthal wavenumber corresponding to the peak growth rate decreases. This mode is
confined in the separation region and widely distributed behind the separation and curved
shocks and within the supersonic jet. The onset of global instability occurs immediately
prior to the emergence of secondary separation, which indicates that the instability
criterion established for supersonic double-wedge and compression corner flows can be
directly applied to double-cone flows. As the Reynolds number is further increased, the
unstable mode continues to be destabilized. Meanwhile, an additional stationary and a
low-frequency oscillating mode appear and become dominant at much larger azimuthal
wavenumbers. Although generally resembling those found in supersonic double-wedge
and compression corner flows, the structures of these modes are further complicated by
the strong shock interaction in the double-cone flows.

The GSA results are verified by DNS initialized from the base-flow solution for
the baseline case with no external or internal disturbances. The DNS reveal that the
double-cone flow is highly three-dimensional and unsteady with strong variations in
the surface heat flux near flow reattachment. It is indicated that axisymmetric laminar
simulations would be questionable under flow conditions that are far beyond the
global stability boundary. However, the GSA provides little information on convective
instabilities that may happen locally in the flow field, e.g. the first and second modes
(Mack 1975; Smith 1989; Smith & Brown 1990; Fedorov 2011; Butler & Laurence 2021)
and vortical disturbances (Paredes, Choudhari & Li 2016; Dwivedi et al. 2019). Potential
laminar–turbulent transition induced by global and convective instabilities in hypersonic
double-cone flows will be addressed in a future study.
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