It follows by induction that
$x_{2 n}=\frac{2^{2 n}+2}{3}, \quad x_{2 n+1}=\frac{2^{2 n+1}+1}{3}, \quad y_{2 n}=\frac{2^{2 n}-1}{3}, \quad y_{2 n+1}=\frac{2^{2 n+1}-2}{3}$,
and for all n,

$$
x_{n}-y_{n}=1
$$

On: Two remarks about Sudoku squares: The author regrets to say that Figure 5 on page 426 is strongly (not weakly) completable. In the top right subsquare, the cell $(3,9)$ must contain 5 because 5 cannot occur in the 2nd row or 8th column. In the bottom right subsquare, the entry in the cell $(8,9)$ is forced to be 1 because 1 cannot go elsewhere in the 8th row.

Correspondence
 DEAR EDITOR,

Just a coincidence?

Is any significance to be ascribed to the fact that an equilateral triangle with sides of length π has medians of length e, to within an accuracy of better than 1 part in 1000 ? $[(\sqrt{3} \pi) /(2 e) \approx 1.00089]$.

STUART SIMONS
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS

