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Abstract. A coassociative Lie algebra is a Lie algebra equipped with a
coassociative coalgebra structure satisfying a compatibility condition. The enveloping
algebra of a coassociative Lie algebra can be viewed as a coalgebraic deformation
of the usual universal enveloping algebra of a Lie algebra. This new enveloping
algebra provides interesting examples of non-commutative and non-cocommutative
Hopf algebras and leads to the classification of connected Hopf algebras of Gelfand–
Kirillov dimension four in Wang et al. (Trans. Amer. Math. Soc., to appear).
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1. Introduction. We introduce the notion of a coassociative Lie algebra which
generalizes in an obvious way both a Lie algebra and a coassociative coalgebra
without counit. The enveloping algebra of a coassociative Lie algebra is a bialgebra
that is a generalization of the usual universal enveloping algebra of a Lie algebra. The
enveloping algebra of a coassociative Lie algebra should be considered as a coalgebraic
deformation of the usual universal enveloping algebra on the one hand, and potentially
as an algebraic deformation of the co-ordinate ring (regular functions) of certain
algebraic groups or semi-groups on the other.

Let k be a base field that is algebraically closed and everything is over k.
Let g denote an ordinary Lie algebra and L a coassociative Lie algebra. Let U(g)

(respectively, U(L)) denote the enveloping algebra of g (respectively, L). It is well known
that U(g) is a Hopf algebra. In contrast, U(L) is not a Hopf algebra in general.

THEOREM 1.1 (Theorem 3.5). The enveloping algebra U(L) of a coassociative Lie
algebra L is a Hopf algebra if and only if L is locally conilpotent.

Most of the unexplained terms will be defined in Sections 1 and 2.
Starting with conilpotent coalgebras or nilpotnent Lie algebras, one can construct

families of nontrivial coassociative Lie algebras based on them. For instance, we give
explicit examples in Example 5.4 (based on strictly upper triangular matrix coalgebras)
and Example 5.3 (based on Heisenberg Lie algebras). However, it is quite unsatisfactory
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that there is no nontrivial Lie structure based on cosemi-simple coalgebras (Proposition
4.6) and no nontrivial coalgebra structure based on the semi-simple Lie algebra sl2
(Theorem 4.9). It would be interesting if a generalized version of coassociative Lie
structure can be constructed on cosemi-simple coalgebras and/or semi-simple Lie
algebras.

Coassociative Lie algebras are helpful in the classification of connected Hopf
algebras of low Gelfand–Kirillov dimension (denoted by GKdim). Definitions and
basic properties of GKdim can be found in the first three chapters of [4]. Our reference
book for Hopf algebras is [6]. Let P(H) be the subspace of all primitive elements in
H, and p(H) denote the dimension of P(H). If GKdim H ≤ 2, then it is well known
that H ∼= U(g) for a Lie algebra g of dimension p(H). If GKdim H = 3, then it follows
from the result of the third author [10] that H is isomorphic to either

(i) U(g) for a Lie algebra g of dimension 3, or
(ii) U(L) for a coassociative Lie algebra L of dimension 3.

In [7], we give a classification in GKdim 4.

THEOREM 1.2. [7, Theorem 0.3 and Remark 0.4]. Suppose that k is of characteristic
zero. Let H be a connected Hopf algebra of GKdim 4. Then one of the following occurs:

(a) If p(H) = 4, then H ∼= U(g) for a Lie algebra g of dimension 4.
(b) If p(H) = 3, then H ∼= U(L) for an anti-cocommutative coassociative Lie

algebra L of dimension 4.
(c) If p(H) = 2, then H is not isomorphic to either U(g) or U(L) as Hopf algebras,

for any Lie algebra g or any coassociative Lie algebra L. Such a Hopf algebra is
isomorphic to one of the four families of Hopf algebras explicitly constructed in
[7, Section 4].

The Hopf algebras in Theorem 1.2(b) and (c) are completely classified in [7]. The
proof of Theorem 1.2 is heavily dependent on the study of coassociative Lie algebras.
A result of the Milnor–Moore–Cartier–Kostant Theorem [6, Theorem 5.6.5] states
that any cocommutative connected Hopf algebra over a field of characteristic zero
is isomorphic to U(g) for some Lie algebra g. This applies to case (a) of Theorem
1.2. However, the Hopf algebras in Theorem 1.2(b) and (c) are not cocommutative,
hence not isomorphic to U(g) for a usual Lie algebra g. A generalization of Theorem
1.2(b) states that if p(H) = GKdim H − 1, then H is isomorphic to U(L) for some
coassociative Lie algebra L [7, Theorem 0.5].

The Hopf algebra U(g) is always involutory. In general, U(L) is not involutory. By
using the Calabi–Yau property of the enveloping algebra of unimodular Lie algebras,
we prove the following result.

THEOREM 1.3 (Theorem 3.7). Let g be a finite dimensional unimodular Lie algebra.
Suppose that L := (g, δ) is a conilpotent coassociative Lie algebra. Then U(L) is
involutory.

Coassociative Lie algebras are not understood fully, and a lot of basic questions
remain unsolved. For example, the following:

QUESTION 1.4. Let n(L) be the nilpotency of L and con(L) be the conilpotency of L.
If n(L) + con(L) < ∞, then is there the bound for the number n(L) + con(L) − dim L?

Preliminary analysis of known examples shows that if n(L) + con(L) < ∞, then

n(L) + con(L) − dim L ≤ 1.
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As one may guess, this paper grows out of the study of connected Hopf
algebras [7]. By Theorem 1.2(b), certain classes of connected Hopf algebras are the
enveloping algebras of coassociative Lie algebras, which are non-commutative and
non-cocommutative. This construction is very different from the various classical
constructions of quantum groups which we are familiar with. One way of thinking
of a coassociative Lie algebra is that it has an additional coalgebra structure on a
Lie algebra. Our work [7] suggests that certain ‘nilpotent’ quantum groups could be
represented by a Lie algebra with an extra coalgebra structure. This idea might be
worth pursuing further.

2. Definitions. In this section, we start with some definitions and give some easy
examples of coassociative Lie algebras.

DEFINITION 2.1. A Lie algebra (L, [ , ]) together with a coproduct δ : L → L ⊗ L
is called a coassociative Lie algebra if

(a) (L, δ) is a coassociative coalgebra without counit, and
(b) two operations δ and [ , ] satisfy the following compatibility condition

δ([a, b]) = b1 ⊗ [a, b2] + [a, b1] ⊗ b2 + [a1, b] ⊗ a2 + a1 ⊗ [a2, b] + [δ(a), δ(b)]
(E2.1.1)

for all a, b ∈ L.
Here δ(x) = x1 ⊗ x2, which is basically Sweedler’s notation with the
summation indicator omitted.

Definition 2.1 is not complete without the following remark.

REMARK 2.2. For a general Lie algebra L, the product L ⊗ L is not a Lie algebra
in any natural way. To make sense of [δ(a), δ(b)] in (E2.1.1), we need to embed L into
the usual universal enveloping algebra U(L). Then L ⊗ L can be naturally identified
with a subspace of U(L) ⊗ U(L). Under this identification, [f, g] is defined as the
commutator of f and g in the associative algebra U(L) ⊗ U(L) for all elements f, g ∈
L ⊗ L. Equation (E2.1.1) implies that the element [δ(a), δ(b)] ∈ U(L) ⊗ U(L) is actually
in the subspace L ⊗ L, namely

[δ(a), δ(b)] ∈ L ⊗ L. (E2.2.1)

Inside U(L) ⊗ U(L), equation (E2.1.1) can be written as

δ([a, b]) = [a ⊗ 1 + 1 ⊗ a, δ(b)] + [δ(a), b ⊗ 1 + 1 ⊗ b] + [δ(a), δ(b)] (E2.2.2)

for all a, b ∈ L. Let L1 denote the Lie algebra extension L ⊕ k1, where 1 is in the centre
(i.e. [1, L1] = 0). Define � : L1 → L1 ⊗ L1 by

�(1) = 1 ⊗ 1, �(a) = a ⊗ 1 + 1 ⊗ a + δ(a) (E2.2.3)

for all a ∈ L. By embedding L1 = L ⊕ k1 into U(L) naturally, we can define [f, g] for
all elements in f, g ∈ L1. For any k-space V , let V⊗2 denote V ⊗ V .

LEMMA 2.3. Let L be a Lie algebra, and let δ : L → L⊗2 be any linear map. Then
L is a coassociative Lie algebra if and only if (L1,�) is a counital coalgebra and the
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equation

�([a, b]) = [�(a),�(b)] (E2.3.1)

holds in U(L)⊗2 for all a, b ∈ L1.

Proof. A direct calculation shows that � is coassociative if and only if δ is
coassociative. It is also easy to see that (E2.1.1) is equivalent to (E2.3.1). �

It follows from (E2.2.2) that the kernel ker δ is a Lie subalgebra of L. Let

�(a, b) := δ([a, b]) − (b1 ⊗ [a, b2] + [a, b1] ⊗ b2 + [a1, b] ⊗ a2 + a1 ⊗ [a2, b]).

Then (E2.1.1) becomes

�(a, b) = [δ(a), δ(b)]. (E2.3.2)

Let L be a coassociative Lie algebra. If δ = 0, it is an ordinary Lie algebra. If [ , ] =
0, then L is simply a coassociative coalgebra without counit. Let CoLieAlg denote the
category of coassociative Lie algebras, LieAlg denote the category of Lie algebras and
CoAlg denote the category of coalgebras without counit. Then both LieAlg and CoAlg
are full subcategories of CoLieAlg. Now we give some simple examples of coassociative
Lie algebras with nontrivial Lie bracket [ , ] and nontrivial coproduct δ, in which both
sides of (E2.1.1) are trivially zero. More complicated examples will be given in the later
sections.

EXAMPLE 2.4. Let L = kx ⊕ ky with [x, y] = y and δ(x) = λy ⊗ y for any λ ∈ k
and δ(y) = 0. Then L is a coassociative Lie algebra. It is clear that (L, [ , ]) is a Lie
algebra and (L, δ) is a coalgebra. Note that (E2.1.1) is trivial when a = b. So it suffices
to check (E2.1.1) for a = x and b = y, in which case both sides of (E2.1.1) are zero.
It can be verified that, up to isomorphism, this is the unique coassociative Lie algebra
with an underlying non-abelian Lie algebra of dimension 2.

Here is a slightly different situation.

LEMMA 2.5. Let (L, [ , ]) be a Lie algebra and (L, δ) be a coalgebra. Suppose that
δ(L) ⊂ Z ⊗ Z, where Z is the centre of (L, [ , ]) and that δ([L, L]) = 0. Then L is a
coassociative Lie algebra.

Proof. The hypotheses imply that both sides of (E2.1.1) are zero. �
EXAMPLE 2.6. Suppose that L is a Lie algebra containing a Lie ideal W such

that both W and L/W are abelian. For example, L is a Lie algebra of nilpotency 2.
Let δ : L

π−→ L/W → W⊗2 be a k-linear map where π is the quotient map. A direct
calculation shows that (δ ⊗ 1)δ = (1 ⊗ δ)δ = 0. Thus, (L, δ) is coassociative. By the
definition of δ, the hypotheses of Lemma 2.5 hold; whence L is a coassociative Lie
algebra. Below are two special cases.

(a) Let L be the 3-dimensional Heisenberg Lie algebra with a basis {x, y, z} such
that [x, y] = z and z is central. Define δ(x) = z ⊗ z and δ(y) = λz ⊗ z, for some
λ ∈ k, and δ(z) = 0. By the above paragraph, L is a coassociative Lie algebra.

(b) Let W1 be any Lie algebra and W be a vector space. Let φ : W1 → W be any
k-linear map. Define a Lie bracket on L := W1 ⊕ W by

[w1 + w, t1 + t] = φ([w1, t1]W1 )
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for all w1, t1 ∈ W1 and w, t ∈ W . Then W is a Lie ideal of L such that both
L/W and W are abelian. Then every k-linear map δ : L

π−→ W1 → W ⊗ W
defines a coassociative Lie algebra L.

Next, we give an example of ‘almost coassociative Lie algebra’, which is dependent
on the embedding of L into an associative algebra. If A is any associative algebra, define
[ , ]A to be the commutator of A.

EXAMPLE 2.7. Let H be a bialgebra and let H+ := ker ε, where ε is the counit of H.
Let L be a Lie subalgebra of (H+, [ , ]H) (for example, L = H+). Define δ(a) = �(a) −
1 ⊗ a − a ⊗ 1 for all a ∈ H. Then (H+, δ) is a coalgebra. Suppose that δ(L) ⊂ L⊗2.
Then (L, δ) is a coalgebra. However, (L, [ , ]H, δ) is generally not a coassociative Lie
algebra.

Let H be the 4-dimensional Taft Hopf algebra:

k〈g, x〉/(xg + gx = 0, g2 = 1, x2 = 0)

with �(g) = g ⊗ g, �(x) = x ⊗ 1 + g ⊗ x, and ε(g) = 1, ε(x) = 0. Let L be H+ = kx ⊕
k(g − 1) ⊕ k(gx). Let y = g − 1 and z = gx. Then [x, y]H = −2z, [x, z]H = 0, [y, z]H =
2x, δ(x) = y ⊗ x, δ(y) = y ⊗ y, and δ(z) = z ⊗ y. Hence,

[δ(x), δ(z)]H⊗2 = [y ⊗ x, z ⊗ y]H⊗2 = yz ⊗ xy − zy ⊗ yx =: (∗).

Using the facts [x, y]H = −2z and [y, z]H = 2x, we have

(∗) = yz ⊗ xy − (yz − 2x) ⊗ (xy + 2z) = 2yz ⊗ z + 2x ⊗ xy + 4x ⊗ z,

which is not in L ⊗ L if we embed L into U(L). Hence, (E2.1.1) does not hold for
(L, [ , ]H, δ), and consequently L is not a coassociative Lie algebra. After identifying
yz with −z, and xy with −x − z in H, (E2.1.1) does hold in H ⊗ H.

The enveloping algebra of a coassociative Lie algebra is defined as follows.

DEFINITION 2.8. Let L be a coassociative Lie algebra. The enveloping algebra of
L, denoted by U(L), is defined to be a bialgebra, whose algebra structure equals that
of the enveloping algebra of the underlying Lie algebra L, namely,

U(L) = k〈L〉/(ab − ba = [a, b],∀ a, b ∈ L),

and whose coalgebra structure is determined by

�(a) = a ⊗ 1 + 1 ⊗ a + δ(a), ε(a) = 0

for all a ∈ L. By (E2.3.1) it is easy to see that U(L) is a bialgebra. We will also use
U(L, δ) to denote U(L) if we want to emphasize the coproduct δ.

It is clear that the assignment L → U(L) defines a functor from CoLieAlg to BiAlg,

where BiAlg is the category of bialgebras.

EXAMPLE 2.9. If dim L = 1, then there are exactly two coassociative Lie algebra
structures on L up to isomorphism. One is determined by δ = 0. In this case the
enveloping algebra is U(L) = k[x] with x being a primitive element. Consequently,
U(L) is a Hopf algebra. The other is determined by δ(x) = x ⊗ x. Here U(L) = k[g],
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where g = 1 + x and g is a group-like element in U(L). In this case U(L) is not a Hopf
algebra because the group-like element g is not invertible in U(L).

Let (g, δ) be a coassociative Lie algebra with underlying Lie algebra g. Then the
Poincaré–Birkhoff–Witt (PBW) theorem holds for U(g, δ), since algebraically it is
the usual enveloping algebra U(g). The difference between U(g, δ) and U(g) is their
coalgebra structures. For many examples of (g, δ), one can construct explicitly a family
of bialgebras B(q) dependent on (g, δ), where q ∈ k, such that B(1) = U(g, δ) and
B(0) = U(g). Hence, U(g, δ) can be considered as a coalgebraic deformation of U(g).
However, we will not pursue this topic further.

Since U(L) is generated by L as an algebra, U(L) is cocommutative if and only if
the underlying coalgebra L is cocommutative. Similarly, U(L) is commutative if and
only if the underlying Lie algebra L is abelian.

Let δn = (δ ⊗ 1⊗n−1)(δ ⊗ 1⊗n−2) · · · (δ ⊗ 1)δ. Here is a list of definitions.

DEFINITION 2.10. Let L1, L2, L be coassociative Lie algebras.
(a) We say that L1 and L2 are quasi-equivalent if U(L1) is isomorphic to U(L2) as

bialgebras.
(b) A Lie algebra g is called rigid if every compatible δ-structure on g is zero.
(c) A coalgebra C is called rigid if every compatible Lie-structure on C is trivial.
(d) A coalgebra (C, δ) is called anti-cocommutative if τδ = −δ, where the flip

τ : C⊗2 → C⊗2 is defined by τ (a ⊗ b) = b ⊗ a.
(e) The nilpotency of L, denoted by n(L), is defined to be the nilpotency of the

underlying Lie algebra L.
(f) An element x ∈ L is called conilpotent if δn(x) = 0 for some n > 0. We say L is

locally conilpotent if every element in L is conilpotent.
(g) We call L n-conilpotent if δn(L) = 0. The smallest such n, denoted by con(L),

is called conilpotency of L.

3. Results on enveloping algebras. In this section we study some properties of the
enveloping algebras U(L). Let B be a bialgebra with coproduct �. Define δB : B → B⊗2

by

δB(x) = �(x) − x ⊗ 1 − 1 ⊗ x

for all x ∈ B.

DEFINITION 3.1. A subspace V in a bialgebra B is called a δ-space of B if
(a) V is a Lie subalgebra of (B, [ , ]B),
(b) ε(V ) = 0,
(c) δB(V ) ⊂ V⊗2 inside B⊗2 and
(d) B is an �-filtered algebra with an exhaustive filtration defined by Fn(B) :=

(k1 + V )n, for n ≥ 0, such that the associated graded ring grF B is isomorphic
to the commutative polynomial ring k[V ].

REMARK 3.2. If L is coassociative Lie algebra, then L is δ-space of U(L). In general,
a δ-space of U(L) is not unique. See Corollary 3.6.

LEMMA 3.3. If V is a δ-space of B, then (V, [ , ]B, δB) is a coassociative Lie algebra
and B ∼= U(V ) as bialgebras.
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Proof. Let U be the usual enveloping algebra of the Lie algebra (V, [ , ]B). Then
there is an algebra homomorphism φ : U → B such that φ |V= IdV . It follows from
Definition 3.1(c) that B is generated by V and that the set {vn1

1 · · · vnd
d | ni ≥ 0} is a k-

linear basis of B where {v1, · · · , vj, · · · } is a k-linear basis of V . Since {vn1
1 · · · vnd

d | ni ≥
0} is also a k-linear basis of U by the PBW theorem, φ is an isomorphism of algebras.
Note that B is a bialgebra and generated by V as an algebra, one can define a canonical
bialgebra structure �U on U via φ such that φ is an isomorphism of bialgebras.
Let δU (v) = �U (v) − v ⊗ 1 − 1 ⊗ v for v ∈ V . Since δB(x) = �B(x) − x ⊗ 1 − 1 ⊗ x,
δU (v) = δB(v) for all v ∈ V (we are identifying the subspace V ⊂ B with the subspace
V ⊂ U via the map φ |V= IdV ). By Definition 3.1(b), one sees easily that δU (v) ∈ V⊗2

for all v ∈ V . Since U is a bialgebra (via the map φ), (E2.3.1) holds. Now by Lemma 2.3
and Definition 2.8, (V, [ , ]U , δU ) is a coassociative Lie algebra with enveloping algebra
U . Since (V, [ , ]B, δB) = (V, [ , ]U , δU ) by construction and U ∼= B as bialgebras, the
results follow. �

Let (L, δ) be a coalgebra (without counit). Let L1 = k1 ⊕ L, and � : L1 → (L1)⊗2

be defined as (E2.2.3). Moreover, let ε : L1 → k be defined by ε(1) = 1, ε(x) = 0 for
all x ∈ L. Then the assignment (L, δ) → (L1,�, ε) defines a functor from CoAlg
to CouAlg, where CouAlg is the category of counital coassociative coalgebras. The
following lemma is easy.

LEMMA 3.4. Let (L, δ) be a coalgebra. Then (L, δ) is locally conilpotent if and only
if (L1,�, ε) is a connected counital coalgebra.

Proof. Since L is a sum of its finite dimensional subcoalgebras, we can assume
without loss of generality that L is finite dimensional. Note that L can be identified with
the quotient coalgebra L1/k1. By taking the k-linear dual, L∗ becomes a subalgebra
(without a unit) of (L1)∗. In fact, L∗ is a maximal ideal of (L1)∗ of co-dimension 1.
Now the lemma is equivalent to the statement that L∗ is a nilpotent ideal if and only
if L∗ is the unique maximal ideal of (L1)∗, which is an easy ring-theoretical fact. �

Now we are ready to prove Theorem 1.1.

THEOREM 3.5. Let L be a coassociative Lie algebra. Then the following are equivalent:
(a) L is locally conilpotent;
(b) U(L) is a connected Hopf algebra and
(c) U(L) is a Hopf algebra.

Proof. (a) ⇒ (b). Since (L, δ) is locally conilpotent, (L1,�, ε) is a connected
coalgebra by Lemma 3.4. Since U(L) is generated by L1 as an algebra, U(L) is
connected as a coalgebra. It follows from [6, Lemma 5.2.10] that a connected bialgebra
is automatically a Hopf algebra.

(b) ⇒ (c). This is clear.
(c) ⇒ (a). We proceed by contradiction. Suppose that U(L) is a Hopf algebra, but

(L, δ) is not locally conilpotent. Then (L1,�) is not connected, whence its co-radical
is strictly larger than k1. Pick a simple subcoalgebra with counit of L1, say C, which is
not equal to k1. Since k is algebraically closed, C is isomorphic to a matrix coalgebra⊕

i,j=1,...,n kxij with

�(xij) =
n∑

s=1

xis ⊗ xsj, and ε(xij) = δij

https://doi.org/10.1017/S001708951300058X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951300058X


202 D.-G. WANG, J. J. ZHANG AND G. ZHUANG

for all 1 ≤ i, j ≤ n. Here δij is the Kronecker delta. Let yij = xij − δij, for all i, j. Note
that L = ker(ε : L1 → k). Then

⊕
i,j=1,...,n kyij ⊂ L is a simple subcoalgebra of L such

that δ(yij) = ∑n
s=1 yis ⊗ ysj for all 1 ≤ i, j ≤ n. Let zij = S(xij) for all 1 ≤ i, j ≤ n. Let X

be the matrix (xij)n×n and Z be the matrix (zij)n×n. Then the antipode axiom implies that
XZ = ZX = In, where In is the identity n × n-matrix. Note that L is a δ-space of U(L),
and hence U(L) has a filtration defined by Fn = (L1)n such that grF U(L) is isomorphic
to the commutative polynomial ring k[L]. One can extend this filtration naturally
from U(L) to the matrix algebra Mn(U(L)) such that grF (Mn(U(L)) ∼= Mn(k[L]). Let
gr also denote the leading terms of elements in grF (Mn(U(L)). Then the equation
XZ = In implies that gr(X) gr(Z) = 0. Note that gr(X) = (yij) ∈ Mn(k[L]) and thus
det gr(X) = det(yij), which is non-zero in the commutative polynomial subring k[yij] ⊂
k[L]. Consequently, equation gr(X) gr(Z) = 0 implies that gr(Z) = 0. Hence, Z = 0,
yielding a contradiction. The assertion follows. �

COROLLARY 3.6. If char k = 0, then every locally conilpotent cocommutative
coassociative Lie algebra is quasi-equivalent to a Lie algebra.

Proof. Let L be any locally conilpotent cocommutative coassociative Lie algebra.
Then U(L) is a connected cocommutative Hopf algebra by Theorem 3.5. By the
Milnor–Moore–Cartier–Kostant Theorem [6, Theorem 5.6.5], U(L) is isomorphic to
U(g) for some Lie algebra g. The assertion follows. �

Recall that a Lie algebra g is called unimodular if ad(x) has zero trace for all x ∈ g,
where ad(x) ∈ Endk(g) is the k-linear map sending y ∈ g to [x, y]. Combining results of
Koszul [3] and Yekutieli [8, Theorem A] (also see [1, Proposition 6.3] and [2, Theorem
5.3 and Lemma 4.1]), g is unimodular if and only if U(g)[d] is the rigid dualizing
complex over U(g) if d := dim g is finite. By [1, Proposition 6.3] and [2, Theorem 5.3],
g is unimodular if and only if the Hopf algebra U(g) is unimodular in the sense of
[5], if and only if U(g) is Calabi–Yau and if and only if the homological integral of
U(g) (as defined in [5]) is trivial. It is well known that all Heisenberg Lie algebras are
unimodular, and that the 2-dimensional non-abelian Lie algebra is not. Next we verify
Theorem 1.3.

THEOREM 3.7. Let g be a finite-dimensional unimodular Lie algebra. Suppose (g, δ)
is a coassociative Lie algebra such that δ is conilpotent. Then the Hopf algebra U(g, δ) is
involutory.

Proof. Let H (respectively K) denote the Hopf algebra U(g, δ) (respectively, U(g)).
Let μH and μK denote the Nakayama automorphisms of H and K respectively. Since
the Nakayama automorphism is defined uniquely up to an inner automorphism, and
the units in H are those elements in k×, the Nakayama automorphism of H (and of
K) is unique. Since H = K as algebras by Definition 2.8, we have μH = μK . Since g is
unimodular, μK = IdK by [1, Proposition 6.3(c)]. As a consequence μH = IdH .

Since g is unimodular, the homological integral of K , denoted by
∫ l

K , is trivial.

Consequently,
∫ l

K equals the trivial module K/(g), where (g) is the ideal of K generated
by subspace g. The homological integral is only dependent on the algebra structure of
the Hopf algebra, so we have

∫ l
H = H/(g). This implies that

∫ l
H is trivial. Therefore, the

left winding automorphism associated to
∫ l

H , denoted by 
l∫ l , is the identity map of H.
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Combining the above with [1, Theorem 0.3], we have

IdH = μH = S2
H ◦ 
l∫ l = S2

H ◦ IdH = S2
H,

where SH is the antipode of H. Hence, S2
H = IdH , and H is involutory. �

Example 5.2 shows that U(g, δ) may not be involutory if g is not unimodular. This
is another way of showing that U(g, δ) is not isomorphic to U(g′) for any Lie algebra
g′. For the rest of this section we assume that char k �= 2.

LEMMA 3.8. Let L be an anti-cocommutative coalgebra. Then
(a) con(L) ≤ 2, and as a consequence, L is conilpotent; and
(b) δ(L) ⊂ (ker δ)⊗2.

Proof. (a) A standard calculation by using Sweedler’s notation shows that

(1 ⊗ δ)τδ = (τ ⊗ 1)(1 ⊗ τ )(1 ⊗ δ)δ.

Since τδ = −δ by assumption, the left-hand side of the equation becomes −(1 ⊗ δ)δ,
while the right-hand side is (1 ⊗ δ)δ. As a consequence, (1 ⊗ δ)δ = 0.

(b) For any x ∈ L, write δ(x) = ∑n
i=1 xi ⊗ yi for a minimal integer n. Then {xi}n

i=1
is linearly independent. Since con(L) ≤ 2,

0 = (1 ⊗ δ)δ(x) =
n∑

i=1

xi ⊗ δ(yi).

Since {xi}n
i=1 is linearly independent, δ(yi) = 0 for all i. This means that δ(L) ⊂ L ⊗

ker δ. Similarly, δ(L) ⊂ ker δ ⊗ L. The assertion follows. �
Lemma 3.8 also implies a nice fact about the form of the antipode.

PROPOSITION 3.9. Suppose that L is anti-cocommutative and U(L) is involutory.
Then S(x) = −x for all x ∈ L.

Proof. It follows from Definition 2.1 that the kernel of δ, denoted by K , is a Lie
subalgebra of L. If x ∈ K , then �(x) = x ⊗ 1 + 1 ⊗ x. The antipode axiom implies
that S(x) = −x. If x ∈ L \ K , it follows from Lemma 3.8(b) that

δ(x) =
∑
i<j

aij(xi ⊗ xj − xj ⊗ xi)

for some xi ∈ K and some aij ∈ k. Hence,

�(x) = x ⊗ 1 + 1 ⊗ x +
∑
i<j

aij(xi ⊗ xj − xj ⊗ xi).

Applying the antipode axiom, and using the fact that S(xi) = −xi, we have that

0 = S(x) + x +
∑
i<j

aij(S(xi)xj − S(xj)xi) = S(x) + x +
∑
i<j

aij(−xixj + xjxi).

So S(x) = −x − Y, where Y = ∑
i<j aij(−xixj + xjxi) ∈ K . Applying S to S(x) = −x −

Y , and using the hypothesis that S2 = Id, we have x = −S(x) + Y . Thus, Y = 0, and
S(x) = −x. �
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4. Elementary properties of coassociative Lie algebras. In this section some
elementary properties of coassociative Lie algebras are discussed. First we need some
lemmas that will simplify computations.

LEMMA 4.1. Let L be a coassociative Lie algebra. Let {xi}i∈I be a totally ordered
k-linear basis of L. For any a, b ∈ L, write δ(a) = ∑

i xi ⊗ ai and δ(b) = ∑
i xi ⊗ bi. Then

(a) [ai, bi] = 0 for all i; and
(b) [ai, bj] + [aj, bi] = 0 for all i, j.

If δ(L) ⊂ L′ ⊗ L′′ for some subspaces L′ and L′′ of L, then
(c) [δ(a), δ(b)] ∈ [L′, L′] ⊗ [L′′, L′′];
(d) �(a, b) ∈ [L′, L′] ⊗ [L′′, L′′] and
(e) δ([L, L]) ⊂ [L′, L] ⊗ L′′ + L′ ⊗ [L′′, L] + [L′, L′] ⊗ [L′′, L′′].

Proof. We compute [δ(a), δ(b)] in U(L)⊗2 as follows:

[δ(a), δ(b)] =
∑

i,j

xixj ⊗ aibj −
∑

i,j

xixj ⊗ biaj

=
∑
i<j

xixj ⊗ aibj +
∑
j>i

xjxi ⊗ ajbi +
∑

i

x2
i ⊗ aibi

−
∑
i<j

xixj ⊗ biaj −
∑
j>i

xjxi ⊗ bjai −
∑

i

x2
i ⊗ biai

=
∑
i<j

xixj ⊗ (aibj − biaj) +
∑

i

x2
i ⊗ [ai, bi]

+
∑
j>i

(xixj + [xj, xi]) ⊗ ajbi −
∑
j>i

(xixj + [xj, xi]) ⊗ bjai

=
∑
i<j

xixj ⊗ ([ai, bj] + [aj, bi]) +
∑

i

x2
i ⊗ [ai, bi]

+
∑
i<j

[xi, xj] ⊗ (bjai − ajbi).

Since {xixj}i≤j are linearly independent in U(L)/L and [xi, xj] ∈ L for all i, j, we have
[ai, bj] + [aj, bi] = 0, [ai, bi] = 0. Parts (a) and (b) follow.

Now assume that δ(L) ⊂ L′ ⊗ L′′. By the above computation and parts (a) and (b),
[δ(a), δ(b)] = ∑

i<j[xi, xj] ⊗ (bjai − ajbi), which is in [L′, L′] ⊗ U(L), as we can assume
xi ∈ L′ whenever ai (or bi) is non-zero. By symmetry, [δ(a), δ(b)] ∈ U(L) ⊗ [L′′, L′′].
Hence, [δ(a), δ(b)] ∈ [L′, L′] ⊗ [L′′, L′′]. This is part (c). Part (d) follows from the
equation �(a, b) = [δ(a), δ(b)].

Part (e) follows from part (c) and (E2.1.1). �
If V and W are subspaces of a vector space A, let V/W denote V/(V ∩ W ).

DEFINITION 4.2.
(a) A subspace V of a Lie algebra L is said to have small centralizer if (ker ad(x)) ∩

V has dimension 1 for all x ∈ V \ {0}.
(b) Let Z be a Lie ideal of L. A subspace V ⊂ L is said to have small centralizer

modulo Z if the quotient space V/Z in L/Z has small centralizer.

PROPOSITION 4.3. Let L be a coassociative Lie algebra and Z be a Lie ideal of L.
Suppose that L′ and L′′ are two subspaces of L such that
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(a) [L′, Z] = [L′′, Z] = 0,
(b) L′ and L′′ have small centralizers modulo Z and
(c) δ(L) ⊂ L′′ ⊗ L′ + (Z ⊗ L + L ⊗ Z).

Then dim δ(L)/(Z ⊗ L + L ⊗ Z) ≤ 1.

REMARK 4.4. Since Z is a Lie ideal of L, we have that L/Z is a quotient Lie algebra,
but L/Z may not be a quotient of the coassociative Lie algebra L.

Proof of Proposition 4.3 Let W = (Z ⊗ L + L ⊗ Z) ∩ δ(L). Without loss of
generality we may assume that δ(L) �= W . Let a and b be any two elements in L.
The assertion is equivalent to

Claim: δ(a) and δ(b) are linearly dependent in δ(L)/W.
Proof of the Claim: If δ(a) or δ(b) is in W , the claim is obvious, so we assume during
the proof that δ(a) and δ(b) are not in W .

In the rest of the proof, we will pick a k-linear basis {zj}j≥1 of Z, extend it to a
basis {xi}i≥1 ∪ {zj}j≥1 of L′′ + Z where xi ∈ L′′ \ Z, then extend it to a basis {xi}i≥1 ∪
{zj}j≥1 ∪ {ls}s≥1 of the whole space L where ls ∈ L \ (L′′ + Z). For simplicity, we use
integers to index the basis elements. Since δ(L) ⊂ L′′ ⊗ L′ + (Z ⊗ L + L ⊗ Z), for any
a ∈ L,

δ(a) =
∑
i≥1

xi ⊗ ai +
∑
j≥1

zj ⊗ a′
j +

∑
s≥1

ls ⊗ a′′
s ,

where ai ∈ L′ + Z, a′
j ∈ L and a′′

s ∈ Z.
Case 1: Suppose that δ(a), δ(b) ∈ u ⊗ L′ + (Z ⊗ L + L ⊗ Z) for some u ∈ L′′ \ Z.

In this case we can choose x1 = u. By the choice of the k-linear basis, we can write

δ(a) = u ⊗ a1 +
∑
i≥2

xi ⊗ ai +
∑
j≥1

zj ⊗ a′
j +

∑
s≥1

ls ⊗ a′′
s ,

where a1 ∈ L′ + Z, ai ∈ Z for all i ≥ 2, a′
j ∈ L and a′′

s ∈ Z for all j, s. Similarly,

δ(b) = u ⊗ b1 +
∑
i≥2

xi ⊗ bi +
∑
j≥1

zj ⊗ b′
j +

∑
k≥1

ls ⊗ b′′
s ,

where b1 ∈ L′ + Z, bi ∈ Z for all i ≥ 2, and b′
j ∈ L and b′′

s ∈ Z for all j, s. By Lemma
4.1(a), [a1, b1] = 0. Since L′ has small centralizer modulo Z, b1 ∈ ka1 + Z. Thus, δ(a)
and δ(b) are linearly dependent in δ(L)/W .

Case 2: Suppose that δ(a), δ(b) ∈ L′′ ⊗ u + (Z ⊗ L + L ⊗ Z) for some u ∈ L′ \ Z.
Case 2 is equivalent to Case 1 by symmetry. Hence, the claim follows by Case 1.

Case 3: Suppose that δ(a) ∈ u ⊗ L′ + (Z ⊗ L + L ⊗ Z) for some u ∈ L′′ \ Z. In
this case, we can choose x1 = u, and δ(a) can be written as in Case 1. In particular,
δ(a) ∈ L′′ ⊗ a1 + (Z ⊗ L + L ⊗ Z). Write

δ(b) = u ⊗ b1 +
∑
i≥2

xi ⊗ bi +
∑
j≥1

zj ⊗ b′
j +

∑
s≥1

ls ⊗ b′′
s ,

where bi ∈ L′ + Z for all i ≥ 1, and b′
j ∈ L, b′′

s ∈ Z for all j, s. By Lemma 4.1(a),
[a1, b1] = 0. Since L′ has small centralizer modulo Z, b1 = λa1 + z for some λ ∈ k
and z ∈ Z. Replacing b1 by b1 − λa1, we may assume that b1 ∈ Z. By Lemma 4.1(b),
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for every i ≥ 2, [a1, bi] = −[ai, b1] ∈ Z since b1 is in Z. Since L′′ has small centralizer
modulo Z, bi = λia1 + zi, for λi ∈ k and zi ∈ Z for all i ≥ 2. Thus,

δ(b) = u ⊗ b1 +
∑
i≥2

xi ⊗ (λia1 + zi) +
∑
j≥1

zj ⊗ b′
j +

∑
s≥1

ls ⊗ b′′
s ,

which is in L′′ ⊗ a1 + (Z ⊗ L + L ⊗ Z). Therefore, both δ(a) and δ(b) are in L′′ ⊗ a1 +
(Z ⊗ L + L ⊗ Z). The claim follows from Case 2.

Case 4: Suppose that either δ(a) or δ(b) is in L′′ ⊗ u + (Z ⊗ L + L ⊗ Z) for some
u ∈ L′ \ Z. The claim follows by symmetry and Case 3.

Case 5 (the general case): By the choice of k-linear basis, we can write

δ(a) =
∑
i≥1

xi ⊗ ai +
∑
j≥1

zj ⊗ a′
j +

∑
s≥1

ls ⊗ a′′
s ,

δ(b) =
∑
i≥1

xi ⊗ bi +
∑
j≥1

zj ⊗ b′
j +

∑
s≥1

ls ⊗ b′′
s ,

where ai, bi ∈ L′ + Z, a′
j, b′

j ∈ L and a′′
s , b′′

s ∈ Z for all i, j, s. Without loss of generality,
we may assume that a1 ∈ L′ \ Z. By Lemma 4.1(a), [a1, b1] = 0. Since L′ has small
centralizer modulo Z, b1 = λa1 + z for some λ ∈ k and where z ∈ Z. Replacing b1 by
b1 − λa1, we may assume that b1 ∈ Z. By Lemma 4.1(b), for every i ≥ 2, [a1, bi] =
−[ai, b1] ∈ Z since b1 are in the Lie ideal Z. Since L′ has small centralizer modulo Z,
bi = λia1 + zi for λi ∈ k and zi ∈ Z for all i ≥ 2. Together with the fact b1 ∈ Z, we have
that δ(b) ∈ L′′ ⊗ a1 + (Z ⊗ L + L ⊗ Z). The claim now follows from Case 4. �

For a subset S ⊂ L, the centralizer of S in L is defined to be

CS(L) = {y ∈ L | [x, y] = 0,∀ x ∈ S}.

LEMMA 4.5. If there is an element a ∈ L such that δ(a) = x ⊗ y �= 0, then δ(L) ⊂
C{x}(L) ⊗ C{y}(L).

Proof. By symmetry, it suffices to show that δ(L) ⊂ L ⊗ C{y}(L). Pick a basis {xi}
of L such that x1 = x. Then δ(a) = x1 ⊗ y. For any b ∈ L, write δ(b) = ∑

i xi ⊗ bi. By
Lemma 4.1(a), [y, b1] = 0. For any i ≥ 2, by Lemma 4.1(b), [y, bi] = −[0, b1] = 0. The
assertion follows. �

PROPOSITION 4.6. Let C be the co-radical of a coassociative Lie algebra L. Then
[C, C] = 0. As a consequence, cosemi-simple coalgebras are rigid.

Proof. Since k is algebraically closed, C = ⊕
i Mni (k) for a set of positive integers

{ni}i∈I . Let x, y ∈ C; we need to show [x, y] = 0. By linearity, we may assume that x
and y are some basis elements in C. We need to consider two cases.

Case 1: We have that x and y are in the same matrix subcoalgebra, say Mn(k). If
n = 1, x = y. The assertion is trivial. Now assume that n > 1. Then we may assume
that x = xij and y = xkl for some i, j, k, l. Consider δ(x1j) = ∑

s x1s ⊗ xsj and δ(x2l) =∑
t x2t ⊗ xtl. By Lemma 4.1(b), [xsj, xtl] = 0 for all s, t. The assertion follows.

Case 2: We have that x and y are in different matrix subcoalgebras. Then we
may assume that x = xij ∈ Mn1 (k) and y = ykl ∈ Mn2 (k). Consider δ(x1j) = ∑

x1s ⊗
xsj and δ(y1l) = ∑

y1t ⊗ ytl. By Lemma 4.1(b), [xsj, ytl] = 0 for all s, t. The assertion
follows. �
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The following lemma is also true. The proof is omitted since it is straightforward
and somewhat similar to the proof of Proposition 4.6.

LEMMA 4.7. If C1 and C2 are subcoalgebras of a coassociative Lie algebra such that
C1 ∩ C2 = {0}, then [δ(C1), δ(C2)] = 0.

LEMMA 4.8. Let L be a coalgebra. Then we have the following statements.
(a) For every x ∈ L, write δ(x) = ∑n

i=1 wi ⊗ vi for a minimal n. Then
∑

i kδ(vi) ⊂
L ⊗ Vx and

∑
i kδ(wi) ⊂ Wx ⊗ L for some subspaces Vx ⊂ ∑

i kvi and Wx ⊂∑
i kwi of dimension no more than dim δ(L).

(b) If δ(L) is 1-dimensional and L is not 2-conilpotent, then δ(L) has a basis element
of the form T ⊗ T for some 0 �= T ∈ L.

Proof. (a) Let {yt}m
t=1 be a basis of

∑
s kδ(vs) for some m ≤ dim δ(L). Then there

are elements a1, . . . , am ∈ L such that

∑
i

δ(wi) ⊗ vi =
∑

i

wi ⊗ δ(vi) =
m∑

t=1

at ⊗ yt ∈
(

m∑
t=1

kat

)
⊗ L ⊗ L.

This implies that δ(wi) ∈ (
∑

t kat) ⊗ L for each i. Since {yt}m
t=1 is a basis of

∑
s kδ(vs),

the equation

∑
i

wi ⊗ δ(vi) =
m∑

t=1

at ⊗ yt

implies that
∑

t kat ⊂ ∑
i kwi. Therefore, the second assertion follows by taking Wx =∑

t kat. The first assertion is similar.
(b) Pick 0 �= � ∈ δ(L), and let {xi} be a finite set of linearly independent elements

in L such that � = ∑
i,j aijxi ⊗ xj. Since δ(L) is 1-dimensional, δ(xi) = bi� for some

bi ∈ k. Pick x ∈ L such that δ(x) = � and (δ ⊗ 1)δ(x) �= 0 (since L is not 2-conilpotent).
Then,

(δ ⊗ 1)δ(x) =
∑

i,j

ai,jbi� ⊗ xj = � ⊗
⎛
⎝∑

i,j

aijbixj

⎞
⎠ = � ⊗ T,

where T := ∑
i,j aijbixj ∈ L, and

(1 ⊗ δ)δ(x) =
∑

i,j

aijxi ⊗ bj� =
⎛
⎝∑

i,j

aijbjxi

⎞
⎠ ⊗ � = S ⊗ �,

where S := ∑
i,j aijbjxi. By coassociativity, � ⊗ T = S ⊗ �. This implies that � =

c′T ⊗ T and S = c′′T for some c′, c′′ ∈ k×. Since k is algebraically closed, we can
choose c′ = 1 by a scalar change of T . �

Now we prove the main result of this section. Let{
e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)}

be a standard k-basis of sl2.
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THEOREM 4.9. The simple Lie algebra sl2 is rigid.

Proof. By using the standard basis of sl2, it is straightforward to check that sl2 has
small centralizers (details are omitted). Let L = (sl2, δ) be a coassociative Lie algebra.
We need to show that δ = 0. By Proposition 4.3 for L′ = L′′ = L = sl2 and Z = 0,
dim δ(L) ≤ 1. To avoid the triviality, we assume that dim δ(L) = 1 and let � ∈ δ(L) be
a non-zero element.

If L is not 2-conilpotent, then Lemma 4.8 says that � = T ⊗ T, where T = t1e +
t2f + t3h for some t1, t2, t3 ∈ k. Since � �= 0, not all ti are zero. Suppose δ(e) = a�,
δ(f ) = b� and δ(h) = c� for some a, b, c ∈ k. By (E2.1.1), we have

2b� = δ(2f ) = δ([f, h])

= [f ⊗ 1 + 1 ⊗ f, c�] + [b�, h ⊗ 1 + 1 ⊗ h]

= {−2bt1e + (2ct3 + 2bt2)f − ct1h} ⊗ T

+ T ⊗ {−2bt1e + (2ct3 + 2bt2)f − ct1h}.

Hence, b(t1, t2, t3) = (−2bt1, 2bt2 + 2ct3,−ct1), or

M

⎛
⎝t1

t2

t3

⎞
⎠ = 0 where M =

⎛
⎝b 0 0

0 b 2c
c 0 b

⎞
⎠ .

Since not all t1, t2, t3 are zero, the determinant of matrix M, which is b3, is zero. Hence,
b = 0. Since e and f play a very similar role, by symmetry, a = 0. By (E2.1.1) and
the fact δ(e) = δ(f ) = 0, we have that δ(h) = δ([e, f ]) = 0. Thus, c = 0, whence δ = 0,
yielding a contradiction. Therefore, δ is 2-conilpotent.

Since δ is 2-conilpotent, by Theorem 3.5, U(sl2, δ) is a connected Hopf algebra of
GKdim 3. By comparing with the list in the classification of connected Hopf algebras
of GKdim 3 [10, Theorem 1.3], U(sl2, δ) must be isomorphic to U(sl2). Since U(sl2) is
cocommutative, (sl2, δ) must be cocommutative. Hence,

� = a11e ⊗ e + a12(e ⊗ f + f ⊗ e) + a13(e ⊗ h + h ⊗ e)

+ a22f ⊗ f + a23(f ⊗ h + h ⊗ f ) + a33h ⊗ h �= 0.

Since δ(L) is 1-dimensional, the kernel L0 = ker(δ) is a 2-dimensional Lie subalgebra
of sl2. By an elementary computation, it is easy to verify that any 2-dimensional Lie
subalgebra of sl2 is either (i) kf + kh or (ii) ke + kh or (iii) k(e + ah) + k(−4af + h) for
some a ∈ k×. In the first case, (δ ⊗ 1)� = a11δ(e) ⊗ e + a12δ(e) ⊗ f + a13δ(e) ⊗ h and
without loss of generality, we can assume that δ(e) = �. Since (sl2, δ) is 2-conilpotent,
(δ ⊗ 1)(�) = 0, which implies that a11 = a12 = a13 = 0. It is easy to see that

−�(e, h) = −δ(−2e) + [δ(e), h ⊗ 1 + 1 ⊗ h]

= 2� + 4a22f ⊗ f + 2a23(f ⊗ h + h ⊗ f ).

Equations �(e, h) = [δ(e), δ(h)] = [δ(e), 0] = 0 imply that a22 = a23 = a33 = 0. Hence,
� = 0, a contradiction. The assertion follows. The second case is similar.
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The final case is when e + ah, h − 4af ∈ ker(δ) for some a ∈ k×. Let

e′ =
(

1 0
−2a 1

)(
0 1
0 0

)(
1 0

−2a 1

)−1

=
(

2a 1
−4a2 −2a

)

h′ =
(

1 0
−2a 1

)(
1 0
0 −1

) (
1 0

−2a 1

)−1

=
(

1 0
−4a −1

)

f ′ =
(

1 0
−2a 1

)(
0 0
1 0

)(
1 0

−2a 1

)−1

=
(

0 0
1 0

)
= f.

Then {e′, f ′, h′} is a new standard basis of sl2. It is clear that e′ = e + 2ah − 4a2f ∈
ker(δ) and h′ = h − 4af ∈ ker(δ). Thus, it is equivalent to the second case. Combining
all these cases, the assertion follows. �

Similar to Theorem 4.9, we show the following.

THEOREM 4.10. Write gl2 = sl2 ⊕ kz, where kz is the centre of gl2. If (gl2, δ) is a
coassociative Lie algebra, then δ |sl2= 0 and δ(z) = az ⊗ z for some scalar a ∈ k.

Sketch of proof. Some tedious computations are omitted in the following proof.
First of all, the δ given in the theorem gives rise to a coassociative Lie algebra

structure on gl2. Now we assume that (gl2, δ) is a coassociative Lie algebra.
Applying Proposition 4.3 to (L, L′, L′′, Z) = (gl2, sl2, sl2, kz), we obtain that

dim(δ(gl2)/(z ⊗ gl2 + gl2 ⊗ z)) ≤ 1.

Therefore, there is an element � ∈ sl2 ⊗ sl2 such that, for every x ∈ gl2,

δ(x) = σ (x) ⊗ z + z ⊗ τ (x) + λ(x)� (E4.10.1)

for some σ (x) ∈ sl2, τ (x) ∈ gl2 and λ(x) ∈ k. Both σ (x) and τ (x) are uniquely
determined by (E4.10.1). If � �= 0, then λ(x) is also uniquely determined by (E4.10.1).
Setting x = z in (E4.10.1), we have

δ(z) = σ (z) ⊗ z + z ⊗ τ (z) + λ(z)�. (E4.10.2)

Equation (E2.2.2) for (a, b) = (z, x) implies that

0 = [σ (z), x] ⊗ z + z ⊗ [τ (z), x] + [λ(z)�, x ⊗ 1 + 1 ⊗ x]

+ [σ (z), σ (x)] ⊗ z2 + z2 ⊗ [τ (z), τ (x)]

+ [λ(z)�, σ (x) ⊗ z] + [λ(z)�, z ⊗ τ (x)]

+ [σ (z) ⊗ z, λ(x)�] + [z ⊗ τ (z), λ(x)�].

Since the terms in the above equation live in different k-subspaces of U(gl2) ⊗ U(gl2),
we have [σ (z), x] = 0 = [τ (z), x] for all x ∈ sl2. Thus, σ (z) = 0 and τ (z) ∈ kz. In this
case, (E2.2.2) becomes, for every x ∈ gl2,

0 = λ(z)([�, x ⊗ 1 + 1 ⊗ x] + [�, σ (x) ⊗ z] + [�, z ⊗ τ (x)]). (E4.10.3)

First we claim that λ(z)� = 0. If not, we may assume that � �= 0 and λ(z) = 1.
Using the fact that terms live in different k-subspaces of U(gl2) ⊗ U(gl2), (E4.10.3)
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implies that

[�, x ⊗ 1 + 1 ⊗ x] = [�, σ (x) ⊗ z] = [�, z ⊗ τ (x)] = 0

for all x ∈ gl2. A computation shows that the first equation implies that � = c(h ⊗
h + 2(e ⊗ f + f ⊗ e)) for some 0 �= c ∈ k. The second and third equations imply that
σ (x) = 0 and τ (x) ∈ kz. Going back to (E4.10.1), we have, for every x ∈ gl2,

δ(x) = φ(x)z ⊗ z + λ(x)�

for some φ(x) ∈ k. For any x, y ∈ sl2, (E2.2.2) says that

δ([x, y]) = [x ⊗ 1 + 1 ⊗ x, λ(y)�] + [λ(x)�, y ⊗ 1 + 1 ⊗ y] = 0.

Since sl2 = [sl2, sl2], δ |sl2= 0. The coassociativity on z shows that � ⊗ z = 0, a
contradiction. Therefore, we proved our claim.

For the rest of the proof, we have λ(z)� = 0 and δ(z) = σ (z) ⊗ z + z ⊗ τ (z). Then
kz is an ideal of the coassociative Lie algebra (gl2, δ) and (gl2/kz, δ) ∼= (sl2, δ) is a
quotient coassociative Lie algebra where δ is the induced coproduct. By Theorem 4.9,
δ = 0. This means that � = 0. For each x ∈ gl2, write

δ(x) = σ1(x) ⊗ z + z ⊗ σ2(x) + ν(x)z ⊗ z

for some σ1(x), σ (x) ∈ sl2 and some ν(x) ∈ k. By (E2.2.2), we have

δ([x, y]) =[σ1(x), y] ⊗ z + z ⊗ [σ2(x), y] + [x, σ1(y)] ⊗ z + z ⊗ [x, σ2(y)]

+ [σ1(x), σ1(y)] ⊗ z2 + z2 ⊗ [σ2(x), σ2(y)]

for all x, y ∈ gl2. Setting y = z, we have [x, σi(z)] = 0 for all x ∈ sl2. This implies that
σi(z) = 0 for i = 1, 2. Setting x, y ∈ sl2, we have that

[σ1(x), σ1(y)] = 0 = [σ2(x), σ2(y)]

and that δ(sl2) ⊂ sl2 ⊗ z + z ⊗ sl2. Since sl2 has small centralizers, dim σ1(sl2) ≤ 1 and
dim σ2(sl2) ≤ 1. Combining above facts, there exist w1, w2 ∈ sl2 \ {0}, c ∈ k and linear
maps φ1, φ2 : sl2 → k, such that

δ(z) = cz ⊗ z,

δ(x) = φ1(x)w1 ⊗ z + φ2(x)z ⊗ w2

for all x ∈ sl2. Let {e, f, h} be the standard basis of sl2, and write w1 = ae + bf + ch �= 0
for some a, b, c ∈ k. A calculation using explicit Lie product of the elements e, f and
h shows that (E2.2.2) implies that φ1 = 0. By symmetry, φ2 = 0. Thus, the assertion
follows. �

5. Examples. We present several families of coassociative Lie algebras in this
section. One-dimensional families are listed in Example 2.9. Here is the 2-dimensional
case.

EXAMPLE 5.1. If dim L = 2, then there are two Lie algebra structures on L up to
isomorphism. Namely, L is either abelian or non-abelian.
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If L is abelian, then the classification of coassociative Lie algebra structures on L
is equivalent to the classification of coalgebra structures on L. It is easy to show that
δ-structure in L is isomorphic to one of the following:

(5.1.1) δ = 0;
(5.1.2) (L, δ) is cosemi-simple;
(5.1.3) L = kx1 ⊕ kx2 and δ(x1) = x1 ⊗ x1, δ(x2) = 0;
(5.1.4) L = kx1 ⊕ kx2 and δ(x1) = x1 ⊗ x1, δ(x2) = x1 ⊗ x2 + x2 ⊗ x1;
(5.1.5) L = kx1 ⊕ kx2 and δ(x1) = 0, δ(x2) = x1 ⊗ x1.

If L is non-abelian, then L has a basis {x1, x2} such that [x1, x2] = x2. We have the
following two cases.

Case 1: δ(x2) = 0. We are only interested in non-zero δ-structures. Write δ(x1) =∑
i,j aijxi ⊗ xj �= 0. In this case

�(x1, x2) = −[δ(x1), x2 ⊗ 1+1 ⊗ x2] = −(a11(x2 ⊗ x1+x1 ⊗ x2)+(a12 + a21)x2 ⊗ x2).

By (E2.3.2), �(x1, x2) = [δ(x1), δ(x2)] = 0. Hence, a11 = 0 and a12 + a21 = 0. Let
a = a12 and b = a22. We have that δ(x1) = ax1 ⊗ x2 − ax2 ⊗ x1 + bx2 ⊗ x2. Now
coassociativity of δ shows that a = 0. Thus, δ(x2) = 0 and δ(x1) = bx2 ⊗ x2. Up to
a base change, we may assume b = 1. Hence, this is Example 2.4.

Case 2: δ(x2) �= 0. Since L is 2-dimensional and non-nilpotent, it has small
centralizers. By Lemma 4.3, δ(L) is 1-dimensional. Since δ(x2) �= 0, by replacing x1 by
x1 − ax2 for some suitable a ∈ k, we have δ(x1) = 0. Write δ(x2) = ∑

i,j bijxi ⊗ xj �= 0.
In this case,

0 = [δ(x1), δ(x2)] = �(x1, x2) = δ(x2) − [x1 ⊗ 1 + 1 ⊗ x1, δ(x2)]

= b11x1 ⊗ x1 + b12x1 ⊗ x2 + b21x2 ⊗ x1 + b22x2 ⊗ x2

− (b12x1 ⊗ x2 + b21x2 ⊗ x1 + 2b22x2 ⊗ x2)

= b11x1 ⊗ x1 − b22x2 ⊗ x2.

Hence, b11 = b22 = 0 and δ(x2) = b12x1 ⊗ x2 + b21x2 ⊗ x1. The coassociativity of δ

implies that b12 = b21 = 0. Therefore, δ = 0 in this case, yielding a contradiction.
Combining these two cases, the only non-zero δ-structure on the 2-dimensional

non-abelian Lie algebra is the one in Example 2.4 up to isomorphisms.
One nice fact in 2-dimensional case is that δ is always cocommutative. If δ is

conilpotent, then L is quasi-equivalent to a Lie algebra by Corollary 3.6.

Next, we consider some higher dimensional examples.

EXAMPLE 5.2. Let g be a 3-dimensional Lie algebra with a k-linear basis {x, y, z}
such that its Lie structure is determined by

[x, y] = y, [z, y] = 0, [z, x] = −z + λy,

for any λ ∈ k. Let L = (g, δ), where the coproduct δ is determined by

δ(x) = δ(y) = 0, δ(z) = x ⊗ y − y ⊗ x.

It is routine to check that L is a coassociative Lie algebra (using Definition 2.1). It
is obvious that δ is conilpotent and anti-cocommutative. Let H be the enveloping
algebra U(L). It follows from the antipode axiom that S(x) = −x, S(y) = −y, and

https://doi.org/10.1017/S001708951300058X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951300058X


212 D.-G. WANG, J. J. ZHANG AND G. ZHUANG

S(z) = −z + y. Hence, S2(z) = z − 2y and H is not involutory. By Theorem 3.7, g is
not unimodular, which can also be verified directly.

Let h2n+1 be the (2n + 1)-dimensional Heisenberg Lie algebra with a standard
basis {x1, · · · , xn, y1, · · · , yn, z}. Here [xi, yi] = z for all i, and all other brackets are
zero. Let A = (aij), B = (bij), C = (cij) and D = (dij) denote n × n-matrices over k, and
let E = (ei) be an n-column vector over k.

EXAMPLE 5.3. Each of the following δ defines a coassociative coalgebra structure
on h2n+1 such that (h2n+1, δ) is a coassociative Lie algebra.

(a) For every i, δ(xi) = δ(z) = 0, and

δ(yi) =
∑

j

(aijxj + bijyj) ⊗ z +
∑

j

z ⊗ (cijxj − bijyj) + eiz ⊗ z,

where the coefficient matrices A = (aij), B = (bij), C = (cij) and E = (ei) satisfy
(i) BA = B2 = BC = 0;

(ii) BE = 0;
(iii) A + Aτ + C + Cτ = 0;
(iv) ABτ = BAτ and
(v) CBτ = BCτ .

(b) For every i, δ(xi) = eiz ⊗ z, δ(z) = 0 and δ(yi) = ∑
bij(xj ⊗ z + z ⊗ xj), where

the coefficient matrix B = (bij) satisfies B = Bτ .
(c) For every i, δ(xi) = 0, δ(z) = z ⊗ z, and

δ(yi) =
∑

j

(aijx + bijyj) ⊗ z +
∑

j

z ⊗ (−ajixj + (δij − bij)yj),

where the coefficient matrices A = (aij) and B = (bij) satisfy the conditions
B2 = B; BA = A and BAτ = 0.

Proof. (a) Easy computations show that

(δ ⊗ 1)δ(yi)

=
∑

j

bijδ(yj) ⊗ z

=
∑

j,s

(bijajsxs + bijbjsys) ⊗ z ⊗ z +
∑

j,s

z ⊗ (bijcjsxs − bijbjsys) ⊗ z

+
∑

j

bijejz ⊗ z ⊗ z, and

(1 ⊗ δ)δ(yi)

=
∑

j

z ⊗ (−bij)δ(yj)

=
∑

j,s

z ⊗ (−bijajsxs − bijbjsys) ⊗ z +
∑

j,s

z ⊗ z ⊗ (−bijcjsxs + bijbjsys)

−
∑

j

bijejz ⊗ z ⊗ z.
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Coassociativity is equivalent to equations BA = B2 = BC = 0 and BE = 0. To check
condition (E2.1.1) we note that (E2.1.1) is trivial when (a, b) = (z, z), (xi, z), (yi, z)
and (xi, xj). It suffices to verify (E2.1.1) for (a, b) = (xi, yj) and (a, b) = (yi, yj) for all
1 ≤ i, j ≤ n.

If (a, b) = (xi, yj), we have that

LHS of (E2.1.1) = δ([xi, yj]) = δ(δijz) = 0, and

RHS of (E2.1.1) = [xi ⊗ 1 + 1 ⊗ xi, δ(yj)] = bjiz ⊗ z − bjiz ⊗ z = 0.

Hence, (E2.1.1) holds for (a, b) = (xi, yj).
If (a, b) = (yi, yj), we have that

LHS of (E2.1.1) = δ([yi, yj]) = δ(0) = 0, and

RHS of (E2.1.1) = [yi ⊗ 1, δ(yj)] + [1 ⊗ yi, δ(yj)]

+ [δ(yi), yj ⊗ 1] + [δ(yi), 1 ⊗ yj] + [δ(yi), δ(yj)]

= ajiz ⊗ z + cjiz ⊗ z

+ aijz ⊗ z + cijz ⊗ z

+
(∑

s

aisbjs − bisajs

)
z ⊗ z2 +

(∑
s

−cisbjs + biscjs

)
z2 ⊗ z.

Hence, (E2.1.1) holds if and only if A + Aτ + C + Cτ = 0, ABτ = BAτ and CBτ =
BCτ . This completes the proof of (a).

The proofs of (b) and (c) are similar and therefore omitted. �

We consider one last example. Let Un be the strictly upper triangular n × n-matrix
coalgebra, namely it is the coalgebra with basis {xij}1≤i<j≤n such that

δ(xij) =
∑

i<s<j

xis ⊗ xsj for all 1 ≤ i, j ≤ n.

In the following proposition, let E = (ei), F = (fi) and G = (gi) be three arbitrary
vectors in kn−1. For 1 ≤ i < j ≤ n, define

aij = gi + gi+1 + · · · + gj−1.

It follows from the definition that ais + asj = aij for all 1 ≤ i < s < j ≤ n.

EXAMPLE 5.4. Let n ≥ 3. Then the following anti-commutative k-bilinear map [ , ] :
U⊗2

n → Un defines a Lie algebra structure on Un such that (Un, [ , ]) is a coassociative
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Lie algebra.

[x1n, x1n] = 0, (E5.4.1)

[xst, xij] = 0 if (s, t) �= (1, n) and (i, j) �= (1, n), (E5.4.2)

[x1n, xij] = aijxij if (i, j) �= (1, n), (1, n − 1), (2, n), (E5.4.3)

[x1n, x1n−1] = a1n−1x1n−1 +
n−1∑
i=1

eixii+1, (E5.4.4)

[x1n, x2n] = a2nx2n +
n−1∑
i=1

fixii+1. (E5.4.5)

Proof. First we prove that (Un, [ , ]) is a Lie algebra. Let K = ⊕
(i,j)�=(1,n) kxij ⊂ L.

By definition, we have [K, K ] = 0 and [L, K ] = [K, L] ⊂ K . Since we define [ , ] to be
anti-commutative, it suffices to show the Jacobi identity

[a, [b, c]] = [b, [a, c]] + [[a, b], c]

for all a, b, c ∈ Un. If a, b, c ∈ K , then the Jacobi identity is trivially true. If a = b = x1n

and c ∈ K , the Jacobi identity is also true since it is true for all a = b. The Jacobi identity
is stable under permutation and thus the remaining case to consider is when a = x1n

and b, c ∈ K . In this case,

[a, [b, c]] = [a, 0] = 0,

[b, [a, c]] + [[a, b], c] ∈ [K, K ] + [K, K ] = {0}.
Hence, the Jacobi identity holds and (Un, [ , ]) is a Lie algebra.

To prove (Un, [ , ]) is a coassociative Lie algebra, we need to verify (E2.1.1). By
linearity, it suffices to check (E2.1.1) for cases listed in (E5.4.1)–(E5.4.5).

Case 1: If (a, b) = (x1n, x1n), (E2.1.1) is automatic (for any a = b).
Case 2: Suppose that (a, b) = (xst, xij) for (s, t) �= (1, n) and (i, j) �= (1, n). Since

δ(L) ⊂ K ⊗ K and [K, K ] = 0, both sides of (E2.1.1) are zero.
Case 3: Suppose that (a, b) = (x1n, xij) for (i, j) �= (1, n). Using the fact [K, K ] = 0,

we have

LHS of (E2.1.1) = δ([x1n, xij]) = aij

∑
i<s<j

xis ⊗ xsj,

RHS of (E2.1.1) = [x1n ⊗ 1 + 1 ⊗ x1n,
∑

i<s<j

xis ⊗ xsj]

= (ais + asj)
∑

i<s<j

xis ⊗ xsj = aij

∑
i<s<j

xis ⊗ xsj.

Hence, (E2.1.1) holds. This takes care of cases in (E5.4.3)–(E5.4.5).
Combining all the above cases, we have checked (E2.1.1). Therefore, (Un, [ , ]) is a

coassociative Lie algebra. �
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