Biquadratic Extensions with One Break

Nigel P. Byott and G. Griffith Elder

Abstract. We explicitly describe, in terms of indecomposable $\mathbb{Z}_{2}[G]$-modules, the Galois module structure of ideals in totally ramified biquadratic extensions of local number fields with only one break in their ramification filtration. This paper completes work begun in [Elder: Canad. J. Math. (5) 50(1998), 1007-1047].

1 Introduction

The Galois module structure of ambiguous ideals in biquadratic extensions of global number fields was studied in [Eld98]. In this paper, we examine the one situation that [Eld98] left unresolved: The structure of ideals in totally ramified biquadratic extensions of local number fields with only one ramification break. So that we can be more precise, we introduce some notation.

Let K be a finite extension of the 2 -adic numbers $\left(\mathbb{O}_{2}\right.$ and N be a totally ramified biquadratic extension of K with Galois group G generated by σ and γ. Let $G=G_{-1} \supseteq G_{0} \supseteq G_{1} \supseteq \cdots$ denote the ramification filtration of G (with lower numbering). In general, the filtration of a biquadratic extension may contain one or two breaks. We focus here on the one break situation where $G=\cdots=G_{b} \supsetneq G_{b+1}=$ $G_{b+2}=\cdots=\{e\}$, for some odd integer b satisfying $0<b<2 e_{0}$. See [Ser79]. Using subscripts to denote the field of reference, we let \mathfrak{D}_{N} denote the ring of integers of N, \mathfrak{P}_{N} its unique prime ideal and \mathfrak{P}_{N}^{i} (for some integer i) a generic ideal. We also let \mathbb{Z}_{2} denote the ring of 2-adic integers.

The main result of this paper is Theorem 3.2, where assuming exactly one ramification break, we explicitly decompose each ideal \mathfrak{P}_{N}^{i} into indecomposable $\mathbb{Z}_{2}[G]$ modules.

As explained in [Eld98], the $\mathbb{Z}[G]$-module structure of an ambiguous ideal in a biquadratic extension of global number fields is completely determined by its 2-adic completion. This is the result of a special property of $G=C_{2} \times C_{2}$, namely that the conclusion of the Krull-Schmidt Theorem holds for $\mathbb{Z}[G]$. Consequently, Theorem 3.2 together with the results of [Eld98] provide an explicit description, as a sum of indecomposable $\mathbb{Z}[G]$-modules, of any ambiguous ideal in a biquadratic extension of global number fields.

As we will need further notation, we introduce it now. Let π_{N} denote a prime element in N and v_{N} denote its valuation, then $v_{N}\left(\pi_{N}\right)=1$ and $\mathfrak{P}_{N}=\pi_{N} \mathfrak{D}_{N}$. Besides N and K, we will need to refer to T, the maximal unramified extension of $(\mathbb{O})_{2}$

[^0]contained in K. Clearly $e_{0}:=[K: T]$ is the absolute ramification index of K, while $f:=\left[T:\left(O_{2}\right]\right.$ is its degree of inertia.

1.1 Motivation of Method

In [Eld98] the Galois module structure of an ideal, \mathfrak{P}_{N}^{i}, was determined by constructing a basis over \mathfrak{D}_{T} upon which the Galois action could be explicitly followed. The essential ingredient in this construction was the determination of the valuation of an expression of the form, $(\gamma-1) \alpha+(\sigma-1) \theta$, for certain elements $\alpha, \theta \in N$ with $v_{N}(\alpha) \neq v_{N}(\theta)$ although $v_{N}(\alpha) \equiv v_{N}(\theta) \bmod 4$. It was found that this pair of conditions on α, θ could be satisfied only when there were two breaks in the ramification filtration. When there was only one break in this filtration of G, necessarily $v_{N}(\alpha)=v_{N}(\theta)$. This presented an obstacle which could not be overcome, except in a few isolated cases—see [Eld98, Theorem 3.5].

In this paper, we return to this issue. Note that since $v_{N}(\alpha)=v_{N}(\theta)$, there must be a $2^{f}-1$ root of unity, ω, and a principal unit, $1+\Gamma \in \mathfrak{D}_{N}$, such that $\theta=\omega(1+\Gamma) \alpha$. We will determine both ω and $1+\Gamma$ in determining the Galois module structure of ideals. Doing so however, requires a characterization of biquadratic extensions with only one break number.

2 Characterization of Extensions and a Galois Relationship

As one might expect, any restriction on the ramification in a biquadratic extension will restrict the type of square roots that can be used to generate the extension. Indeed if N / K is to have only one break, at b, in its ramification filtration; then the ramification break of each quadratic subfield must also occur at b. Since a quadratic extension with break number b is generated by the square root of a unit with quadratic defect $2 e_{0}-b$, we may assume that $N=K(x, y)$, where $x^{2}=1+\beta, y^{2}=1+\beta^{*} \in K$, and $v_{K}(\beta)=v_{K}\left(\beta^{*}\right)=2 e_{0}-b$. Since the extension, $K(x y) / K$, must also have b as its break number, $\beta^{*} / \beta \equiv \omega^{-2} \bmod \pi_{K}$ for some nontrivial $2^{f}-1$ root of unity, ω^{-2}. (Note that any $2^{f}-1$ root of unity may be expressed as a square.)

As a consequence of this discussion and since $K\left(\omega^{-2} y\right)=K(y)$, we assume, without loss of generality, that $N=K(x, y)$ for

$$
\begin{gather*}
x^{2}=1+\beta \tag{2.1}\\
y^{2}=\left(\omega^{2}+\beta\right)(1+\tau)
\end{gather*}
$$

where $\beta, \tau \in \mathfrak{P}_{K}, v_{K}(\beta)=2 e_{0}-b$ and ω is a non-trivial $2^{f}-1$ root of unity. Clearly τ might be zero. If $\tau \neq 0$, since we are only interested in the unit $1+\tau$ up to a square factor, we may assume that $v_{K}(\tau):=2 e_{0}-t$ where either t is odd and $0<t<b$, or $t=0$. Choose $\sigma, \gamma \in \operatorname{Gal}(N / K)$ so that

$$
\sigma(y)=-y, \quad \sigma(x)=x, \quad \gamma(y)=y, \quad \gamma(x)=-x
$$

Let $L:=K(x)$ and consider the quadratic extension N / L. Since N / L has ramification number b, there is a $\Delta \in L$ with valuation, $v_{L}(\Delta)=4 e_{0}-b$, such that $N=L(Y)$
and

$$
Y^{2}=1+\Delta
$$

Since $L(y)=L(Y)$, there is an element $a_{1}+a_{2} x \in L\left(a_{1}, a_{2} \in K\right)$ such that

$$
\begin{equation*}
Y=\left(a_{1}+a_{2} x\right) \cdot y \tag{2.2}
\end{equation*}
$$

To better understand this relationship between Y and y, we seek a characterization of a_{1} and a_{2}. Note that (2.2) leads to $1+\Delta=\left(a_{1}+a_{2} x\right)^{2}\left(\omega^{2}+\beta\right)(1+\tau)$. Therefore,

$$
\begin{align*}
1+\Delta=\left(a_{1}\right. & \left.+a_{2}\right)^{2} \omega^{2}+\left(\left(a_{1}+a_{2}\right)^{2}+a_{2}^{2} \omega^{2}\right) \beta \tag{2.3}\\
& +\left(a_{1}+a_{2}\right)^{2} \omega^{2} \tau+a_{1} a_{2} \omega^{2} 2(x-1)+a_{2}^{2} \beta^{2}+\left(\left(a_{1}+a_{2}\right)^{2}+a_{2}^{2} \omega^{2}\right) \beta \tau \\
& +a_{1} a_{2}(2(x-1)) \beta+a_{1} a_{2} \omega^{2}(2(x-1)) \tau+a_{1} a_{2}(2(x-1)) \tau \beta+a_{2}^{2} \beta^{2} \tau
\end{align*}
$$

To clarify matters, we eliminate some terms,

$$
1 \equiv\left(a_{1}+a_{2}\right)^{2} \omega^{2} \bmod \beta
$$

Therefore $\left(a_{1}+a_{2}\right) \omega=1+c$ for some $c \in \mathfrak{P}_{K}$. Since $(1+c)^{2} \equiv 1 \bmod \beta$, we have $2 c+c^{2} \equiv 0 \bmod \beta$. To get the stronger congruence $2 c+c^{2} \equiv 0 \bmod \beta \pi_{K}$, we consider two cases. If $v_{K}(c) \geq e_{0}$, then $v_{K}\left(2 c+c^{2}\right)=v_{K}(c(2+c)) \geq v_{K}(c)+e_{0} \geq$ $2 e_{0}>v_{K}(\beta)$. On the other hand, if $v_{K}(c)<e_{0}$, then $v_{K}\left(2 c+c^{2}\right)=v_{K}(c(2+c))=$ $2 v_{K}(c)$. Since $v_{K}\left(2 c+c^{2}\right)$ is even and $v_{K}(\beta)$ is odd, $v_{K}\left(2 c+c^{2}\right)>v_{K}(\beta)$. In any case, $1 \equiv\left(a_{1}+a_{2}\right)^{2} \omega^{2} \bmod \beta \cdot \pi_{K}$. Now reducing (2.3) modulo $\beta \cdot \pi_{L}$, we find $1 \equiv\left(a_{1}+a_{2}\right)^{2} \omega^{2}+\left(\left(a_{1}+a_{2}\right)^{2}+a_{2}^{2} \omega^{2}\right) \beta \bmod \beta \cdot \pi_{L}$. Since each term lies in K, we may replace $\bmod \beta \cdot \pi_{L}$ with $\bmod \beta \cdot \pi_{K}$. Therefore,

$$
\begin{gather*}
1=\left(a_{1}+a_{2}\right)^{2} \omega^{2} \bmod \pi_{K} \beta \\
0=\left(a_{1}+a_{2}+\omega a_{2}\right)^{2} \beta \bmod \pi_{K} \beta \tag{2.4}
\end{gather*}
$$

These equations yield $a_{1}+a_{2}=\omega^{-1} \bmod \pi_{K}(x-1)$ and $a_{1}+a_{2}+\omega a_{2}=0 \bmod$ π_{K}. Solving for a_{1} and a_{2}, we find that there are elements $\kappa_{1}, \kappa_{2} \in K$ with positive valuation such that $a_{1}=\omega^{-1}+\omega^{-2}+\kappa_{1}$ and $a_{2}=\omega^{-2}+\kappa_{2}$. Since $a_{1}+a_{2}=$ $\omega^{-1} \bmod \pi_{K}(x-1), \kappa_{1} \equiv \kappa_{2} \bmod \pi_{K}(x-1)$. Therefore

$$
\begin{gather*}
a_{1}=\omega^{-1}+\omega^{-2}+\kappa_{1} \tag{2.5}\\
a_{2}=\omega^{-2}+\kappa_{1}+u(x-1),
\end{gather*}
$$

for some $u \in L$ with $v_{L}(u) \geq 2$. Note, in particular, that a_{1} and a_{2} are units in K.
This is used to derive the following Galois relationship.
Proposition 2.1 There are elements $\alpha \in N$ and $\kappa, \beta^{\prime} \in K$ with $v_{N}(\alpha)=b$ and $v_{K}\left(\beta^{\prime}\right)=2 e_{0}-b$ such that

$$
\rho:=\left[(\gamma+1)+\left(\omega^{-1}+\kappa\right)(\sigma+1)+\beta^{\prime} \frac{1}{2}(\gamma-1)(\sigma-1)\right] \alpha
$$

has valuation $v_{N}(\rho)=3 b$. Let $s=v_{K}(\kappa)$. If $2 t>b$ and $2 b-t<2 e_{0}$ then $s=(b-t) / 2$. Otherwise, $s>e_{0}-b / 2$.

Proof Since $\gamma(Y) \neq Y$ there is a $\delta \neq 1$ in L such that $\gamma(Y) / Y=\delta$. From (2.2) we find that

$$
\delta=\frac{a_{1}-a_{2} x}{a_{1}+a_{2} x}=1+2 d_{0}+2 d_{1} x
$$

where $d_{0}=a_{2}^{2}(1+\beta) /\left(a_{1}^{2}-a_{2}^{2}(1+\beta)\right) \in \mathfrak{D}_{K}$ and $d_{1}=-a_{1} a_{2} /\left(a_{1}^{2}-a_{2}^{2}(1+\beta)\right) \in \mathfrak{D}_{K}$. Recall that since Y and y are units, $a_{1}+a_{2} x$ must be a unit. So its norm, namely $a_{1}^{2}-a_{2}^{2}(1+\beta)$, is a unit.

Let $\alpha=(x-1)(Y-1)$, so $v_{N}(\alpha)=8 e_{0}-3 b$. Then

$$
\begin{gathered}
(\gamma-1) \alpha=2 x-2\left(d_{0}+d_{1}+d_{1} \beta\right) Y-2\left(1+d_{0}+d_{1}\right) x Y, \\
(\sigma-1) \alpha=2 Y-2 x Y, \\
1 / 2 \cdot(\gamma-1)(\sigma-1) \alpha=2\left(d_{0}+d_{1}+d_{1} \beta\right) Y+2\left(1+d_{0}+d_{1}\right) x Y
\end{gathered}
$$

Letting $A=1-\left(1+2 d_{0}+2 d_{1}+d_{1} \beta\right)^{-1}$ and $A^{\prime}=d_{0}+d_{1}+d_{1} \beta$, we find that

$$
\begin{equation*}
(\gamma-1) \alpha+(1-A) A^{\prime}(\sigma-1) \alpha+(A / 2)(\gamma-1)(\sigma-1) \alpha=2 x-2 x Y \tag{2.6}
\end{equation*}
$$

Note that $v_{N}((\sigma-1) \alpha)=8 e_{0}-2 b$. So $(\sigma-1) \alpha$ may be expressed in terms of an element fixed by γ having valuation $8 e_{0}-2 b$ and an element in N of higher valuation. As a consequence, $v_{N}((\gamma-1)(\sigma-1) \alpha)>8 e_{0}-b$. Meanwhile $v_{N}(2 x(1-Y))=$ $8 e_{0}-b$.

Let $\rho_{0}=\left[(2 x-2 x Y)-\left(d_{0}+d_{1}\right) /\left(1+2 d_{0}+2 d_{1}+d_{1} \beta\right)(\gamma-1)(\sigma-1) \alpha\right] \pi_{K}^{b} / 4$. Since d_{0} and d_{1} are integers in $K, v_{N}\left(\rho_{0}\right)=3 b$. Redefine α to be $\alpha:=\alpha \cdot \pi_{K}^{b} / 4$ and replace $2 x-2 x Y$ using (2.6). All this results in the expression, $\rho_{0}=[(\gamma-1)+$ $\left.\Omega(\sigma-1)+\left(\beta^{\prime} / 2\right)(\gamma-1)(\sigma-1)\right] \alpha$, with

$$
\Omega=\frac{d_{0}+d_{1}+\beta d_{1}}{1+2 d_{0}+2 d_{1}+\beta d_{1}} \quad \beta^{\prime}=\frac{d_{1}}{1+2 d_{0}+2 d_{1}+d_{1} \beta} \cdot \beta
$$

Add $2(1+\Omega) \alpha$ to both sides of this equation. Let $\rho:=\rho_{0}+2(1+\Omega) \alpha$. Since $v_{N}(2 \alpha)=4 e_{0}+b>3 b, v_{N}(\rho)=3 b$. Therefore

$$
\begin{equation*}
\rho=\left[(\gamma+1)+\Omega(\sigma+1)+\beta^{\prime} \frac{1}{2}(\gamma-1)(\sigma-1)\right] \alpha \tag{2.7}
\end{equation*}
$$

where $v_{K}(\alpha)=b$ and $v_{N}(\rho)=3 b$.
Using (2.5) we find that d_{0} and d_{1} are units, so that $v_{K}\left(\beta^{\prime}\right)=v_{K}(\beta)=2 e_{0}-b$. To characterize Ω, note that $\Omega \equiv d_{0}+d_{1} \equiv(\delta-1) / 2 \equiv-a_{2} /\left(a_{1}+a_{2}\right) \bmod (x-1)$. Meanwhile from (2.5), $-a_{2} /\left(a_{1}+a_{2}\right) \equiv-\left(\omega^{-2}+\kappa_{1}\right) \omega \bmod (x-1)$. So

$$
\Omega=\omega^{-1}+\kappa
$$

for some $\kappa \in \mathfrak{P}_{K}$ with $\kappa \equiv \omega \kappa_{1} \bmod (x-1)$.
Now we show that when $2 t>b$ and $2 b-t<2 e_{0}, v_{K}(\kappa)=(b-t) / 2$. Otherwise $v_{K}(\kappa)>e_{0}-b / 2$. First recall from (2.5) that $u(x-1)=a_{2}-\omega^{-2}-\kappa_{1} \in K$. Therefore $v_{L}(u(x-1))$ is even, and as a result, $v_{L}(u)$ is odd.

Consider $2 t>b$ (i.e. $v_{L}(\tau)<v_{L}(\Delta)$) and reduce (2.3) modulo $\tau \cdot \pi_{L}$. Since $2 t>b>0,2(x-1) \equiv 0 \bmod \tau \cdot \pi_{L}$. So $1 \equiv\left(a_{1}+a_{2}\right)^{2} \omega^{2}+\left(\left(a_{1}+a_{2}\right)^{2}+a_{2}^{2} \omega^{2}\right) \beta+$ $\left(a_{1}+a_{2}\right)^{2} \omega^{2} \tau+a_{2}^{2} \beta^{2} \bmod \tau \cdot \pi_{L}$. Using (2.5), $\left(a_{1}+a_{2}\right)^{2} \equiv \omega^{-2}+u^{2} \beta \bmod \tau \cdot \pi_{L}$, while $a_{2}^{2}=\omega^{-4}+k_{1}^{2}+u^{2} \beta \bmod \tau \cdot \pi_{L}$. Substitution leads to

$$
\begin{equation*}
0 \equiv\left(\omega^{2} u^{2}+\omega^{2} \kappa_{1}^{2}\right) \beta+\tau+\left(\left(1+\omega^{2}\right) u^{2}+\omega^{-4}+\kappa_{1}^{2}\right) \beta^{2}+u^{2} \beta^{3} \bmod \tau \cdot \pi_{L} \tag{2.8}
\end{equation*}
$$

If $v_{L}(\tau)<v_{L}\left(\beta^{2}\right)$ (in other words $\left.2 b-t<2 e_{0}\right)$, then $v_{L}\left(\left(\omega^{2} u^{2}+\omega^{2} \kappa_{1}^{2}\right) \beta\right.$) must equal $v_{L}(\tau)$. In other words, $v_{L}\left(\chi^{2} \beta\right)=v_{L}(\tau)$ with $\chi=\omega\left(u+\kappa_{1}\right)$. Consequently $v_{L}(\chi)=$ $\left(v_{L}(\tau)-v_{L}(\beta)\right) / 2=b-t$. Since $t>0, t$ is odd. Of course b is odd. Therefore $v_{L}(\chi)=b-t$ is even. Since $v_{L}\left(\kappa_{1}\right)$ is even while $v_{L}(u)$ is odd and $\chi=\omega\left(u+\kappa_{1}\right)$ has even valuation, $v_{L}\left(\omega \kappa_{1}\right)=v_{L}(\chi)$. Therefore $v_{K}\left(\omega \kappa_{1}\right)=(b-t) / 2$. Since $2 b-t<2 e_{0}$, $v_{L}\left(\omega \kappa_{1}\right)<v_{L}(x-1)$. So since $\kappa \equiv \omega \kappa_{1} \bmod (x-1), v_{K}(\kappa)=(b-t) / 2$. Alternatively, if $v_{L}(\tau)>v_{L}\left(\beta^{2}\right)$ (in other words $2 b-t>2 e_{0}$), an examination of (2.8) leads to $v_{L}\left(\left(\omega^{2} u^{2}+\omega^{2} \kappa_{1}^{2}\right) \beta\right) \geq v_{L}\left(\beta^{2}\right)$. As a result, $v_{L}\left(\chi^{2}\right) \geq v_{L}(\beta)$. Since $v_{L}(u)$ and $v_{L}\left(\kappa_{1}\right)$ have opposite parity $v_{L}\left(\kappa_{1}\right) \geq v_{L}(\beta) / 2$. Therefore $\kappa \equiv \omega \kappa_{1} \equiv 0 \bmod (x-1)$ and so $v_{L}(\kappa) \geq 2 e_{0}-b$. Since $v_{K}(\kappa)$ is an integer, $v_{K}(\kappa)>e_{0}-b / 2$.

Consider $b>2 t$ (i.e. $v_{L}(\tau)>v_{L}(\Delta)$) and reduce (2.3) modulo Δ. Clearly $1 \equiv$ $\left(a_{1}+a_{2}\right)^{2} \omega^{2}+\left(\left(a_{1}+a_{2}\right)^{2}+a_{2}^{2} \omega^{2}\right) \beta+a_{2}^{2} \beta^{2} \bmod \Delta$. Again use (2.5) to replace a_{1} and a_{2}. This results in

$$
\begin{equation*}
0 \equiv\left(\omega^{2} u^{2}+\omega^{2} \kappa_{1}^{2}\right) \beta+\left(\left(1+\omega^{2}\right) u^{2}+\omega^{-4}+\kappa_{1}^{2}\right) \beta^{2}+u^{2} \beta^{3} \bmod \Delta \tag{2.9}
\end{equation*}
$$

If $v_{L}\left(\beta^{2}\right)<v_{L}(\Delta)$, then $v_{L}\left(\left(\omega^{2} u^{2}+\omega^{2} \kappa_{1}^{2}\right) \beta\right) \geq v_{L}\left(\beta^{2}\right)$. By following the discussion in the previous paragraph $v_{K}(\kappa)>e_{0}-b / 2$. So assume instead that $v_{L}\left(\beta^{2}\right) \geq v_{L}(\Delta)$. In this case (2.9) leads to $0=\chi^{2} \beta \bmod \Delta$. So $v_{L}\left(\chi^{2}\right) \geq v_{L}(\Delta / \beta)=b$, and $v_{L}(\chi) \geq$ $b / 2$. Since $v_{L}(u)$ is odd while $v_{L}\left(\kappa_{1}\right)$ is even, $v_{L}\left(\kappa_{1}\right)=v_{L}(\chi) \geq b / 2$. If $v_{L}\left(\kappa_{1}\right)>$ $2 e_{0}-b$ then as before $v_{K}(\kappa)>e_{0}-b / 2$. So assume $v_{L}\left(\kappa_{1}\right)<2 e_{0}-b$. But then since $\kappa \equiv \omega \kappa_{1} \bmod (x-1), v_{K}(\kappa)=v_{K}\left(\kappa_{1}\right)>b / 4$. Therefore $v_{N}(\kappa(\sigma+1) \alpha)>3 b$, and so ρ has the same valuation as $\rho-\kappa(\sigma+1) \alpha$. Replace one by the other. This results in a revised expression in (2.7), one with $\Omega=\omega^{-1}$. But then $\kappa=0$ while clearly $v_{K}(0)>e_{0}-b / 2$.

3 Structure of Ideals

In this section we determine the Galois module structure of each ideal \mathfrak{P}_{N}^{i}, using the same technique as in [Eld98]. Thus we first find elements μ_{k} of N, for $k \in \mathbb{Z}$ such that $v_{N}\left(\mu_{k}\right)=k$. Clearly $\mu_{i}, \mu_{i+1}, \ldots, \mu_{i+4 e_{0}-1}$ will be a basis for \mathfrak{P}_{N}^{i} over \mathfrak{D}_{T}. We then adjust this basis to obtain a new basis, whose elements will not necessarily have distinct valuations, but on which the action of the Galois group is easier to follow.

To expedite matters, we begin with [Eld98, Lemmma 3.15] and the discussion following the lemma. Note that the only condition on α_{m} in [Eld98, Lemmma 3.15] is in terms of valuation, $v_{N}\left(\alpha_{m}\right)=b+4 m$. Any element with the same valuation can be used. So we let $\alpha_{m}:=\alpha \cdot \pi_{K}^{m}$ with α from Proposition 2.2. Using all other elements as in [Eld98, Lemma 3.15] (in particular the element $\rho_{m} \in N$ produced in the proof of that lemma), we may create bases for \mathfrak{P}_{N}^{i} over \mathfrak{D}_{T}. For example, under
$3 b<4 e_{0}$ the elements listed in [Eld98, (3.2)-(3.5)] all have distinct valuations and so serve as a basis for \mathfrak{P}_{N}^{i} over \mathfrak{D}_{T}. Note that we may replace any element in this basis with another element of the same valuation (and still have a basis). And so we replace each ρ_{m} in [Eld98, (3.4)] with $\rho \cdot \pi_{K}^{m}$ (where ρ is from Proposition 2.2). It should not cause any confusion if each such $\rho \cdot \pi_{K}^{m}$ is now referred to as ρ_{m}. Note however that we have not replaced any of the ρ_{m} in [Eld98, (3.2), (3.3), (3.5)], and so for each of these ρ_{m} we have $\rho_{m}-(\gamma+1) \alpha_{m}$ contained in the fixed field of σ. Following [Eld98, Remark 3.16] we can replace each ρ_{m} in [Eld98, (3.2), (3.3), (3.5)] with $(\gamma+1) \alpha_{m}$ and still have a basis over \mathfrak{D}_{T} (although one which no longer has distinct valuations). Consequently the elements listed in [Eld98, (3.6)-(3.9)] provide an \mathfrak{D}_{T}-basis for \mathfrak{P}_{N}^{i} when $3 b<4 e_{0}$. Similarly, when $3 b<4 e_{0}$, we can conclude that the elements in [Eld98, (3.10)-(3.13)] provide a basis. In both cases, the elements α_{m} arose as $\alpha \cdot \pi_{K}^{m}$ with α from Proposition 2.2, while the ρ_{m} (that appear) are $\rho \cdot \pi_{K}^{m}$ with ρ from Proposition 2.2.

For the convenience of the reader, we include a slight revision of these lists. Each element of [Eld98, (3.9)] is divided by 2 and is listed in (3.1) below. These elements are followed in sequence by the elements in [Eld98, (3.6)-(3.8)]. Meanwhile we have divided the elements in [Eld98, (3.12), (3.13)] by 2 and listed them as (3.5) and (3.6) below. They are followed by the elements listed in [Eld98, (3.10), (3.11)]. Let $\lceil x\rceil$ denote the ceiling function (least integer greater than or equal to x).

Case $3 b<4 e_{0}$

$$
\begin{align*}
& 1 / 2(\gamma+1)(\sigma+1) \alpha_{m}, \alpha_{m},(\sigma+1) \alpha_{m},(\gamma+1) \alpha_{m}, \tag{3.1}\\
& \text { for } e_{0}+\left\lceil\frac{i}{4}\right\rceil-b \leq m \leq e_{0}+\left\lceil\frac{i-3 b}{4}\right\rceil-1 . \\
& \alpha_{m},(\sigma+1) \alpha_{m},(\gamma+1) \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}, \tag{3.2}\\
& \text { for }\left\lceil\frac{i-b}{4}\right\rceil \leq m \leq e_{0}+\left\lceil\frac{i}{4}\right\rceil-b-1 . \\
& (\sigma+1) \alpha_{m},(\gamma+1) \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}, 2 \alpha_{m}, \tag{3.3}\\
& \text { for }\left\lceil\frac{i-2 b}{4}\right\rceil \leq m \leq\left\lceil\frac{i-b}{4}\right\rceil-1 \\
& \rho_{m},(\gamma+1)(\sigma+1) \alpha_{m}, 2 \alpha_{m}, 2(\sigma+1) \alpha_{m}, \tag{3.4}\\
& \text { for }\left\lceil\frac{i-3 b}{4}\right\rceil \leq m \leq\left\lceil\frac{i-2 b}{4}\right\rceil-1 .
\end{align*}
$$

Case $3 b>4 e_{0}$

$$
\begin{align*}
& \alpha_{m}, 1 / 2(\gamma+1)(\sigma+1) \alpha_{m},(\sigma+1) \alpha_{m},(\gamma+1) \alpha_{m}, \tag{3.5}\\
& \quad \text { for }\left\lceil\frac{i-b}{4}\right\rceil \leq m \leq e_{0}+\left\lceil\frac{i-3 b}{4}\right\rceil-1
\end{align*}
$$

$$
\begin{align*}
& 1 / 2(\gamma+1)(\sigma+1) \alpha_{m},(\sigma+1) \alpha_{m},(\gamma+1) \alpha_{m}, 2 \alpha_{m} \tag{3.6}\\
& \qquad \text { for } e_{0}+\left\lceil\frac{i}{4}\right\rceil-b \leq m \leq\left\lceil\frac{i-b}{4}\right\rceil-1
\end{align*}
$$

$$
\begin{align*}
& (\sigma+1) \alpha_{m},(\gamma+1) \alpha_{m}, 2 \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m} \tag{3.7}\\
& \text { for }\left\lceil\frac{i-2 b}{4}\right\rceil \leq m \leq e_{0}+\left\lceil\frac{i}{4}\right\rceil-b-1
\end{align*}
$$

$$
\begin{equation*}
\rho_{m}, 2 \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}, 2(\sigma+1) \alpha_{m} \tag{3.8}
\end{equation*}
$$

$$
\text { for }\left\lceil\frac{i-3 b}{4}\right\rceil \leq m \leq\left\lceil\frac{i-2 b}{4}\right\rceil-1
$$

The following lemma enables us to clarify the Galois action upon the elements listed in (3.4) and (3.8).

Lemma 3.1 Let ω, κ and β^{\prime} be defined as in the previous section. Then

$$
\eta:=\frac{\left(\omega^{-1}-1+\kappa\right)\left(\omega^{-1}+1+\kappa-\beta^{\prime}\right)}{\left(\omega^{-1}+\kappa-\beta^{\prime}\right)\left(\omega^{-1}+\kappa\right)} \equiv\left(1-\omega^{2}\right) \bmod \pi_{K}
$$

Furthermore

$$
a:=v_{K}\left(\eta-\left(1-\omega^{2}\right)\right)= \begin{cases}b-t & \text { if } 2 t>b \text { and } 2 b-t<2 e_{0} \\ 2 e_{0}-b & \text { otherwise }\end{cases}
$$

Proof One may check that

$$
\eta=\left(1-\omega^{2}\right)+\frac{\omega^{2}}{\left(1+\omega\left(\kappa-\beta^{\prime}\right)\right)(1+\omega \kappa)} \cdot B
$$

where $B=(1-\omega) \beta^{\prime}-2 \omega \kappa+\omega^{2} \kappa^{2}-\omega^{2} \kappa \beta^{\prime}$. If $v_{K}\left(\kappa^{2}\right)<v_{K}\left(\beta^{\prime}\right)$ (equivalently, $\left.2 s<2 e_{0}-b\right)$, then $v_{K}(B)=v_{K}\left(-2 \omega \kappa+\omega^{2} \kappa^{2}\right)$ and $v_{K}(\kappa)=(b-t) / 2<e_{0}$. Therefore $v_{K}\left(-2 \omega \kappa+\omega^{2} \kappa^{2}\right)=v_{K}\left(\omega^{2} \kappa^{2}\right)=2 s$. If $v_{K}\left(\kappa^{2}\right)>v_{K}\left(\beta^{\prime}\right)$ or $2 s>2 e_{0}-b$ then $v_{K}(2 \omega \kappa)=e_{0}+s>2 e_{0}-b / 2>2 e_{0}-b$. So $v_{K}(B)=v_{K}\left((1-\omega) \beta^{\prime}\right)=2 e_{0}-b$.

For m such that $\lceil(i-3 b) / 4\rceil \leq m \leq\lceil(i-2 b) / 4\rceil-1$ (in other words, those m listed in (3.4) and (3.8)), we redefine α_{m+a} in terms of α_{m}. Let

$$
\alpha_{m+a}:=\left(\eta-\left(1-\omega^{2}\right)\right) \alpha_{m}
$$

since the elements have the same valuation. Furthermore if $m+a \leq\lceil(i-2 b) / 4\rceil-1$, let $\rho_{m+a}:=\left(\eta-\left(1-\omega^{2}\right)\right) \rho_{m}$.

Now for a particular value of m, consider the Galois action on the basis elements:

$$
\rho_{m}, 2 \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}, 2(\sigma+1) \alpha_{m}
$$

First, note that we still have a basis if these are replaced by

$$
\rho_{m}, \rho_{m}-2 \alpha_{m},(\gamma-1)(\sigma+1) \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}
$$

Since $v_{N}\left(\rho_{m}\right)<v_{N}\left(2 \alpha_{m}\right)<v_{N}\left(2 \beta^{\prime} \alpha_{m}\right)$, we may also replace ρ_{m} by $\rho_{m}-2 \beta^{\prime} \alpha_{m}$. Therefore we instead examine the Galois action on the alternative elements:

$$
\rho_{m}-2 \beta^{\prime} \alpha_{m}, \rho_{m}-2 \alpha_{m},(\gamma-1)(\sigma+1) \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}
$$

The action on $(\gamma-1)(\sigma+1) \alpha_{m},(\gamma+1)(\sigma+1) \alpha_{m}$ is clear. Meanwhile it is easy to check that

$$
\begin{gathered}
(\gamma-1)\left(\rho_{m}-2 \beta^{\prime} \alpha_{m}\right)=(\gamma-1)(\sigma+1)\left[\omega^{-1}+\kappa-\beta^{\prime}\right] \alpha_{m} \\
(\gamma+1)\left(\rho_{m}-2 \alpha_{m}\right)=(\gamma+1)(\sigma+1)\left[\omega^{-1}+\kappa\right] \alpha_{m}
\end{gathered}
$$

The effect of σ is more complicated: $(\sigma+1)\left(\rho_{m}-2 \beta^{\prime} \alpha_{m}\right)=(\gamma+1)(\sigma+1)$. $\left[\omega^{-1}+1+\kappa-\beta^{\prime}\right] \alpha_{m}-(\gamma-1)(\sigma+1)\left[\omega^{-1}+\kappa-\beta^{\prime}\right] \alpha_{m}$ while $(\sigma+1)\left(\rho_{m}-2 \alpha_{m}\right)=$ $(\gamma+1)(\sigma+1)\left[\omega^{-1}+\kappa\right] \alpha_{m}-(\gamma-1)(\sigma+1)\left[\omega^{-1}-1+\kappa\right] \alpha_{m}$. As a result, we use the fact that $\sigma \gamma+1=(\sigma+1)(\gamma+1)-(\sigma+1)-(\gamma-1)$ and $\sigma \gamma-1=$ $(\sigma+1)(\gamma-1)+(\sigma+1)-(\gamma+1)$ to easily determine the much simpler effect of $\sigma \gamma$:

$$
\begin{gathered}
(\sigma \gamma+1)\left(\rho_{m}-2 \beta^{\prime} \alpha_{m}\right)=(\gamma+1)(\sigma+1)\left[\omega^{-1}+1+\kappa-\beta^{\prime}\right] \alpha_{m} \\
(\sigma \gamma-1)\left(\rho_{m}-2 \alpha_{m}\right)=(\gamma-1)(\sigma+1)\left[\omega^{-1}-1+\kappa\right] \alpha_{m}
\end{gathered}
$$

As we are working with a basis over \mathfrak{D}_{T}, we may multiply basis elements by units in \mathfrak{D}_{T}. As a result, we use the alternative basis elements:

$$
\begin{gathered}
y_{m}^{+}:=\frac{\omega^{-1}-1+\kappa}{\omega^{-1}+\kappa-\beta^{\prime}}\left(\rho_{m}-2 \beta^{\prime} \alpha_{m}\right), \quad y_{m}^{-}:=\rho_{m}-2 \alpha_{m} \\
x_{m}^{+}:=(\gamma+1)(\sigma+1)\left[\omega^{-1}+\kappa\right] \alpha_{m}, \quad x_{m}^{-}:=(\gamma-1)(\sigma+1)\left[\omega^{-1}-1+\kappa\right] \alpha .
\end{gathered}
$$

Since $\alpha_{m+a}=\left[\eta-\left(1-\omega^{2}\right)\right] \alpha_{m}, x_{m+a}^{+}=\left[\eta-\left(1-\omega^{2}\right)\right] x_{m}^{+}$, and so $\eta x_{m}^{+}=$ $\left(1-\omega^{2}\right) x_{m}^{+}+x_{m+a}^{+}$. Therefore

$$
\begin{gather*}
(\gamma-1) y_{m}^{+}=x_{m}^{-} \quad(\gamma+1) y_{m}^{-}=x_{m}^{+} \\
(\sigma \gamma+1) y_{m}^{+}=\left(1-\omega^{2}\right) x_{m}^{+}+x_{m+a}^{+} \quad(\sigma \gamma-1) y_{m}^{-}=x_{m}^{-} \tag{3.9}
\end{gather*}
$$

Now consider the situation where $m+a \geq\lceil(i-2 b) / 4\rceil$. If $m+a<e_{0}+\lceil(i-3 b)\rceil$ then it is clear that $(\gamma+1) \alpha_{m+a}$ is an element in our basis, appearing in (3.1)-(3.3) or (3.5)-(3.7). If $m+a \geq e_{0}+\lceil(i-3 b)\rceil$ then $(\gamma+1) \alpha_{m+a} \in 2 \mathfrak{P}_{N}^{i}$. In either case, we may replace y_{m}^{+}by $\bar{y}_{m}^{+}:=y_{m}^{+}-(\gamma+1)\left[\omega^{-1}+\kappa\right] \alpha_{m+a}$ and still have a basis. Note that
($\gamma-1$) has the same effect upon \bar{y}_{m}^{+}as on y_{m}^{+}, but that the effect of $(\sigma \gamma+1)$ is much simpler:

$$
(\sigma \gamma+1) \bar{y}_{m}^{+}=\left(1-\omega^{2}\right) x_{m}^{+}
$$

Replace each such y_{m}^{+}with \bar{y}_{m}^{+}. Therefore without loss of generality, we may replace the elements listed in (3.4) and (3.8) by

$$
y_{m}^{+}, y_{m}^{-}, x_{m}^{+}, x_{m}^{-}
$$

and assume that the Galois action is defined by (3.9) except that

$$
(\sigma \gamma+1) y_{m}^{+}= \begin{cases}\left(1-\omega^{2}\right) x_{m}^{+}+x_{m+a}^{+} & \text {if } m+a<\lceil(i-2 b) / 4\rceil \tag{3.10}\\ \left(1-\omega^{2}\right) x_{m}^{+} & \text {otherwise }\end{cases}
$$

Let

$$
\begin{equation*}
n:=\left\lfloor\frac{\left\lfloor\frac{i-2 b-1}{4}\right\rfloor+\left\lfloor\frac{3 b-i}{4}\right\rfloor}{a}\right\rfloor, \tag{3.11}
\end{equation*}
$$

$\lfloor x\rfloor$ denoting the floor or greatest integer function. One can easily verify that $\lfloor b /(4 a)\rfloor-1 \leq n \leq\lfloor b /(4 a)\rfloor$, moreover n is the maximal integer such that $\lceil(i-3 b) / 4\rceil+n a<\lceil(i-2 b) / 4\rceil$.

Therefore the basis elements listed in (3.4) and (3.8) result in a direct sum of $\mathfrak{D}_{T}[G]$-modules with bases such as:

$$
\begin{gather*}
y_{m+k a}^{+}, y_{m+k a}^{-}, x_{m+k a}^{+}, x_{m+k a}^{-} \\
\vdots \tag{3.12}\\
y_{m+2 a}^{+}, y_{m+2 a}^{-}, x_{m+2 a}^{+}, x_{m+2 a}^{-} \\
y_{m+a}^{+}, y_{m+a}^{-}, x_{m+a}^{+}, x_{m+a}^{-} \\
y_{m}^{+}, y_{m}^{-}, x_{m}^{+}, x_{m}^{-}
\end{gather*}
$$

Either $k=n$ or $k=n-1$. Note that $(\sigma \gamma+1) y_{m+k a}^{+}=\left(1-\omega^{2}\right) x_{m+k a}^{+}$.
Let us now examine the module that results from these basis elements. If we list the x_{i}^{+}first then the x_{i}^{-}, followed by the y_{i}^{+}and then the y_{i}^{-}; the Galois action is described by the following $4 k \times 4 k$ matrices over \mathfrak{D}_{T} :

$$
\gamma \rightarrow\left|\begin{array}{cccc}
E & 0 & 0 & E \\
0 & -E & E & 0 \\
0 & 0 & E & 0 \\
0 & 0 & 0 & -E
\end{array}\right| \quad \sigma \gamma \rightarrow\left|\begin{array}{cccc}
E & 0 & M & 0 \\
0 & -E & 0 & E \\
0 & 0 & -E & 0 \\
0 & 0 & 0 & E
\end{array}\right|
$$

where E denotes a $k \times k$ identity matrix and M is the matrix in Jordan canonical form associated with the minimal polynomial $\left(x-\left(1-\omega^{2}\right)\right)^{k}$. In other words, M is an $k \times k$ matrix with $1-\omega^{2}$ on the diagonal and 1 just above the diagonal.

Upon restriction of scalars the Galois action appears essentially the same. Let $p(x)$ be the irreducible polynomial with $1-\omega^{2}$ as a root, and let d be the degree of $p(x)$. Then in this case E denotes a $k d \times k d$ identity matrix, while M denotes the $k d \times k d$ matrix over \mathbb{Z}_{2} in Jordan canonical form with minimal polynomial $p(x)^{k}$. We denote this module by

$$
\begin{equation*}
\hat{\mathcal{J}}_{k-1}(p(x)) \tag{3.13}
\end{equation*}
$$

This module is part of a family of indecomposable modules identified in [Naz61, p. 1306] in the paragraph beginning "Let $n=d$ ". It is also listed among the modules classified in Lemma 1 of [Naz67, p. 1310] where a proof of its indecomposability is given. We have chosen our notation to be consistent with notation in [Eld98]. This module belongs in the same family as another module that also appears in the decomposition of ideals. Replacing $p(x)$ by $x-1$ we find that $\hat{J}_{k-1}(x-1)=\hat{J}_{k-1}$, the module listed on [Eld98, p. 1040].

We now list certain other $\mathbb{Z}_{2}[G]$-modules that we will require for our main result. Our notation is that used in [Eld98, Section 4]. Let $\hat{\mathcal{G}}=\mathbb{Z}_{2}[G]$. Note this module occurs for each m in (3.2). Let $\hat{\mathcal{Z}}$ denote the rank one module fixed by the group action, while for each $x \in G$ let $\hat{\mathcal{R}}_{x}$ be the rank one module on which only x acts trivially upon (all other nontrivial group elements should act via multiplication by -1). Then the maximal order, $\hat{\mathcal{Z}} \oplus \hat{\mathcal{R}}_{\sigma} \oplus \hat{\mathcal{R}}_{\gamma} \oplus \hat{\mathcal{R}}_{\sigma \gamma}$, occurs for each m in (3.6).

Let $\hat{\mathcal{C}}$ and $\hat{\mathcal{D}}$ be rank 4 modules with Galois action described by the pairs of matrices below:

$$
\begin{array}{ll}
\hat{\mathcal{C}}: \gamma \rightarrow\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right| & \sigma \rightarrow\left|\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right| \\
\hat{\mathcal{D}}: \gamma \rightarrow\left|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right| \quad \sigma \rightarrow\left|\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right|
\end{array}
$$

Note that $\hat{\mathcal{C}}$ occurs for each m in (3.1) and (3.6), while $\hat{\mathcal{D}}$ occurs for each m in (3.3) and (3.7). All this is collected in the following Theorem:

Theorem 3.2 Let ω, b, t be as in (2.1), $p(x)$ be the minimal polynomial of $1-\omega^{2}$ over \mathbb{Z}_{2} and $d=\operatorname{deg} p(x)$. If $2 t>b$ and $2 b-t<2 e_{0}$, let $a=b-t$. Otherwise, let $a=2 e_{0}-b$. Let

$$
n:=\left\lfloor\frac{\left\lfloor\frac{i-2 b-1}{4}\right\rfloor+\left\lfloor\frac{3 b-i}{4}\right\rfloor}{a}\right\rfloor .
$$

The $\mathbb{Z}_{2}[G]$-module structure of \mathfrak{P}_{N}^{i} then, is as follows:

$$
\mathfrak{P}_{N}^{i} \cong X \oplus y
$$

where
while

$$
y=\hat{\mathcal{J}}_{n-1}(p(x))^{\left(\left\lceil\frac{i-3 b}{4}\right\rceil-\left\lceil\frac{i-2 b}{4}\right\rceil+(n+1) a\right) \frac{f}{d}} \oplus \hat{\mathcal{J}}_{n}(p(x))^{\left(\left\lceil\frac{i-2 b}{4}\right\rceil-\left\lceil\frac{i-3 b}{4}\right\rceil-n a\right) \frac{f}{d}}
$$

Note that $\lceil x\rceil$ denotes the ceiling or least integer function.

4 Example: Quadratic Twist

Consider the class of biquadratic extensions with $\tau=0$ (where τ is as in (2.1)). These are extensions $N_{1}:=K(x, y)$ with $x^{2}=1+\beta$ and $y^{2}=\omega^{2}+\beta$ for some nontrivial $2^{f}-1$ root of unity ω, and some $\beta \in K$ with $v_{K}(\beta)=2 e_{0}-b, b$ odd and $0<b<2 e_{0}$. To compare such an extension with one for which $\tau \neq 0$ we introduce the quadratic extension $K(z) / K$ associated with the unit $z^{2}=1+\tau$. So that $K(z) / K$ is truly a quadratic extension, we must have $v_{K}(\tau)=2 e_{0}-t$ with $0 \leq t<2 e_{0}$.

Clearly N_{1} and $N_{2}:=K(x, y z)$, both biquadratic extensions, sit in the larger field $K(x, y, z)$. To ensure that they both have exactly one break in their Galois filtration, we must assume $0<t<b$.

Now use Theorem 3.2 to compare the Galois structure of ideals in N_{1} and in N_{2}, and one notices something remarkable. The Galois structure of each ideal in N_{2} is precisely the same as the Galois structure of the corresponding ideal in N_{1} if $t<$ $b / 2$ or $2 b-t>2 e_{0}$. Thus, if the ramification number t of $K(z) / K$ is sufficiently small (relative to b), each ideal of N_{2} has the same Galois module structure as the corresponding ideal of N_{1}, whereas for larger values of t this is not the case. We would like to thank the referee for pointing out that we may view N_{2} as the quadratic twist of N_{1} associated with the extension $K(z) / K$, and for suggesting the following more general question:

Question 4.1 Given a representation V of $\operatorname{Gal}(\bar{K} / K)$ with fixed field N_{1}, and a onedimensional character χ of $\operatorname{Gal}(\bar{K} / K)$, such that the twist $V \otimes \chi$ of V by χ has isomorphic image to V, how is the Galois module structure of ideals in the fixed field N_{2} of $V \otimes \chi$ related to that of ideals in N_{1} ? In particular, if χ is, in some appropriate sense, "not too highly ramified" (relative to V), will the ideals of N_{1} and N_{2} have "the same" Galois module structure?

References

[Eld98] G. G. Elder, Galois module structure of ideals in wildly ramified biquadratic extensions. Canad. J. Math. (5) 50(1998), 1007-1047.
[Naz61] L. A. Nazarova, Integral representations of Klein's four-group. Soviet Math. Dokl. 2(1961), 1304-1307.
[Naz67] , Representation of a Tetrad. Math. USSR-Izv. (6) 1(1967), 1305-1321.
[Ser79] J-P. Serre, Local fields. Springer-Verlag, New York, 1979.

School of Mathematical Sciences	Department of Mathematics
University of Exeter	University of Nebraska at Omaha
Exeter EX4 4QE	Omaha, Nebraska 68182-0243
United Kingdom	U.S.A.
e-mail: N.P.Byott@exeter.ac.uk	e-mail: elder@unomaha.edu

[^0]: Received by the editors July 20, 2000.
 The first author was partially supported by EPSRC grant GR/M91037 and by UCR grant MG2000-03, The University of Nebraska at Omaha.

 AMS subject classification: Primary: 11S15; secondary: 20C11.
 (c)Canadian Mathematical Society 2002.

