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Abstract. For each positive integer n ≥ 2, there is a well-known regular orientable
Hamiltonian embedding of Kn,n, and this generates a regular face 2-colourable
triangular embedding of Kn,n,n. In the case n ≡ 0 (mod 8), and only in this case, there
is a second regular orientable Hamiltonian embedding of Kn,n. This paper presents
an analysis of the face 2-colourable triangular embedding of Kn,n,n that results from
this. The corresponding Latin squares of side n are determined, together with the full
automorphism group of the embedding.

2010 Mathematics Subject Classification. 05B15, 05C10.

1. Introduction. Topological graph theory is concerned with embedding graphs
in surfaces in such a way that the edges of the graph intersect only at the vertices
with which they are incident. Such an embedding is called a map (see [7] for precise
definitions). The surface may be orientable or non-orientable. Amongst the embeddings
of a graph G, particular interest arises in those embeddings which possess the greatest
possible symmetry. An automorphism of an embedding M is a bijection φ on the
vertices of M that preserves the edges and faces of M, and the automorphism group
of M is the set of all automorphisms which map M to M. An embedding M of a
graph G is said to be regular if and only if for every two flags, i.e. triples (v1, e1, f1) and
(v2, e2, f2), where ei is an edge incident with the vertex vi and the face fi, there exists an
automorphism of M which maps v1 to v2, e1 to e2 and f1 to f2. Plainly, G can have a
regular embedding M only if G is both vertex and edge transitive. Furthermore, the
regularity of an embedding M requires that all the face boundaries are of the same
length, and the order of the full automorphism group of M, |Aut(M)|, is simply the
number of flags.

We point out that the definition of regularity varies somewhat between authors
(see [1, p. 36] for a discussion of the terminology). The definition given here requires
the admission of automorphisms, which reverse the orientation of the surface in the
orientable case. However, many authors require that any global orientation of the
surface is preserved and this means that their regular embeddings may be less
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symmetric. We also remark that when we speak of uniqueness of embeddings, we
mean uniqueness up to isomorphism.

In [2, 9], Biggs and White describe a regular embedding Bn, with Hamiltonian face
boundaries, of the complete bipartite graph Kn,n in an orientable surface. Subsequently,
it was shown in [4] that for n �≡ 0 (mod 8) there is no further regular Hamiltonian
embedding of Kn,n in an orientable surface. In [4] it was also established that, for n ≡ 0
(mod 8), there is precisely one other regular Hamiltonian embedding B∗

n, of Kn,n in an
orientable surface, non-isomorphic with Bn.

In [8], a regular triangular embedding Tn of the complete tripartite graph Kn,n,n in
an orientable surface was given for each positive integer n. In a further paper [6], the
embedding Tn was shown to be the unique regular triangular embedding of Kn,n,n in an
orientable surface. Furthermore, as proved in [5], the orientability of such a triangular
embedding is equivalent to face 2-colourability. By selecting one of the three sets of the
tripartition of Kn,n,n, and by deleting these vertices and the edges incident with them,
one may obtain from Tn a regular Hamiltonian embedding of Kn,n in an orientable
surface. This embedding is the Bn described by Biggs and White. The existence, for
n ≡ 0 (mod 8), of a second regular Hamiltonian embedding B∗

n of Kn,n in an orientable
surface shows that this process cannot, in general, be reversed. Nevertheless, it is still
possible to take this second embedding, insert a vertex in the interior of each face, join
it by non-intersecting edges to all the vertices on the face boundary, and thereby obtain
(for n ≡ 0 (mod 8)) a triangular embedding T∗

n of Kn,n,n in an orientable surface. The
orientability of this embedding ensures face 2-colourability.

In this paper, we will determine the full automorphism group of T∗
n and show

that it has order 4n2, that is one-third of the order of the automorphism group of the
regular embedding Tn. For this reason, we will refer to this embedding as the third-
regular face 2-colourable triangular embedding of Kn,n,n. It is perhaps appropriate at
this point to note that in a recent paper [3], a new infinite family of face 2-colourable
triangular embeddings of complete tripartite graphs Kn,n,n was constructed having
automorphism groups of order 3n2, and these were called quarter-regular. In a face
2-colourable triangular embedding of Kn,n,n, we will take the colour classes of the
faces to be black and white. Each colour class of faces determines a transversal design
TD(3, n) and consequently a Latin square of side n in the manner described below.

A transversal design of order n and block size 3, TD(3, n), is a triple (V,G,B),
where V is a 3n-element set (the points), G is a partition of V into three parts (the
groups) each of cardinality n and B is a collection of 3-element subsets (the blocks)
of V such that each 2-element subset of V is either contained in exactly one block of
B or in exactly one group of G, but not both. Two TD(3, n)s (V, {G1, G2, G3},B) and
(V ′, {G′

1, G′
2, G′

3},B′) are said to be isomorphic if, for some permutation π of {1, 2, 3},
there exist bijections αi : Gi �→ G′

π(i), i = 1, 2, 3 that map blocks of B to blocks of B′.
Automorphisms of a TD(3, n) are defined similarly.

A Latin square L of side n is an n × n array in which each element of a set of entries
E, of cardinality n, occurs once in each row and once in each column. If the rows and
columns of L are indexed, respectively, by sets R and C, an equivalent representation
of L as a subset of R × C × E is obtained by listing the n2 (row, column, entry) triples.
If entry e appears in row r and column c of L, we may write e = L(r, c) or (r, c, e) ∈ L.
Given a Latin square of side n, a TD(3, n) may be obtained by taking the three groups
as the sets of row labels, column labels and entries, and the blocks as the n2 triples of
the Latin square. Conversely, given a TD(3, n) a Latin square of side n may be formed
by taking the three groups as the row labels, column labels and entries in any one of six
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Figure 1. Voltage graph for the embedding B∗
n.

possible orders. Thinking of Latin squares as transversal designs, two Latin squares
P and Q, of side n, are said to belong to the same main class if the corresponding
transversal designs are isomorphic.

Starting with M, a face 2-colourable triangular embedding of the complete
tripartite graph Kn,n,n, the faces in each colour class (black and white) determine the
blocks of a TD(3, n) or, equivalently, a Latin square of side n. Thus a face 2-colourable
triangular embedding of Kn,n,n may be regarded as a bi-embedding of two Latin squares
P and Q of side n. The triangles of the embedding will correspond to the triples of the
Latin squares which we always list in (row, column, entry) order.

2. The embedding T∗
n and its automorphism group. The embedding B∗

n was given in
[4] by means of a voltage graph; we refer the reader to [7] for details of such graphs. The
particular graph employed in this case was a dipole embedded in a sphere as shown in
Figure 1. with voltages a0 = 0 and ai = 1 + d + d2 + · · · + di−1 for i = 1, 2, . . . , n − 1,
where n = 8s, d = 4s + 1 and all arithmetic in this section is in �n. Note that dr = 1 if
r is even, and dr = d if r is odd.

The face of B∗
n arising from the region in Figure 1. with voltage ai on the left-hand

edge has the face boundary (showing the neighbours of a typical vertex vj)

(v0w(ai)v(−di)w(ai−di)v(−2di)w(ai−2di) · · · w(ai+j+di)vjw(ai+j) · · ·w(a(i+1))).

If a vertex labelled uai is placed in the interior of this face and is joined by non-
intersecting edges to all the vertices on the boundary, then this face boundary becomes
the rotation about the vertex uai . We may then take the two Latin squares in the
resulting embedding of Kn,n,n to be given, respectively, by triples (uai , vj, w(ai+j)) and
(uai , vj, w(ai+j+di)), where i, j ∈ �n. Note that if i is even (respectively, odd) then ai is even
(respectively, odd). So, equivalently, and somewhat more conveniently, by renaming
the row, column and entry labels, the Latin squares forming the embedding T∗

n may be
taken as

L(i, j) = i + j and L′(i, j) = i + j + di =
{

i + j + 1 if i is even,
i + j + d if i is odd.

The square L is just the cyclic Latin square of side n and the square L′ lies in the same
main class as L, being obtained from it by an obvious permutation of the rows.
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In order to identify all bijections θ which form an automorphism of the bi-
embedding of L with L′, that is of the embedding T∗

n , we will think of θ as consisting
of three bijections α, β and γ acting, respectively, on the row labels, column labels and
entries of L and L′. We divide the analysis into a number of cases.

(A1) Automorphisms that preserve the colour classes, the tripartition and the
orientation.

(A2) Automorphisms that preserve the colour classes, but cyclically (and non-
trivially) permute the tripartition, thereby preserving the orientation.

(A3) Automorphisms that preserve the colour classes but reverse the orientation by
non-cyclically permuting the tripartition.

(A4) Automorphisms that exchange the colour classes.

It is easy to see that any automorphism of the bi-embedding must be a composition of
automorphisms of these types. For i, j ∈ �n, it will be convenient to define

i ∗ j =
{

i + j + 1 if i is even,
i + j + d if i is odd.

Case A1. Assume that there exist bijections α, β, γ of �n such that

(α(i), β(j), γ (i + j)) ∈ L and (α(i), β(j), γ (i ∗ j)) ∈ L′.

Then

α(i) + β(j) = γ (i + j), (1)

α(i) ∗ β(j) = γ (i ∗ j). (2)

Taking i = 0 in (1) implies that for all j ∈ �n, β(j) = γ (j) − α(0). Similarly, j = 0
implies that for all i ∈ �n, α(i) = γ (i) − β(0). Thus there exist constants b and c such
that for all i ∈ �n,

β(i) = α(i) + b, (3)

γ (i) = α(i) + c. (4)

Consequently, (1) can be rewritten as

α(i + j) = α(i) + α(j) + a, (5)

for some constant a. Taking j = 1 in (5) gives α(i + 1) = α(i) + e, where e = α(1) + a.
Consequently, for all i ∈ �n, α(i) = α(0) + ie. This implies that e is coprime with n,
since otherwise α is not a bijection, and hence e must be odd. Substituting in (3) gives
β(i) = α(i) + b = α(0) + ie + b = β(0) + ie, and, similarly, (4) gives γ (i) = γ (0) + ie.

Applying these results to (2), we see that for all i, j ∈ �n,

(α(0) + ie) ∗ (β(0) + je) = γ (0) + (i ∗ j)e. (6)

Hence there exist integers r, s ∈ {1, d} such that

(α(0) + ie) + (β(0) + je) + r = γ (0) + (i + j + s)e.

Since α(0) + β(0) = γ (0), it follows that r = se. The table given in Figure 2. gives the
possible parities of relevant terms in (6) and calculates the corresponding values for
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α(0) i α(0) + ie r s r = se
E E E 1 1 1 = e
E O O d d d = de
O E O d 1 d = e
O O E 1 d 1 = de

Figure 2. Summary of possible parities for α(0) and i in (6).

r and s (E represents even parity and O represents odd parity). There are two cases
depending on the parity of α(0). From the table, it will be seen that if α(0) is even we
have e = 1, while if α(0) is odd we have e = d.

For a, b ∈ �n we now define

φa,b : (i, j, k) −→
{

(i + a, j + b, k + (a + b)) if a is even,
(di + a, dj + b, dk + (a + b)) if a is odd.

It is easy to verify that φa,b is simultaneously an automorphism of both L and L′ and
hence defines an automorphism of T∗

n that preserves the colour classes, the tripartition
and the orientation. It follows that there are precisely n2 automorphisms of type A1,
and that these are given by {φa,b : a, b ∈ �n}.

Case A2. Assume that there exist bijections α, β, γ of �n such that

(γ (i + j), α(i), β(j)) ∈ L and (γ (i ∗ j), α(i), β(j)) ∈ L′.

Then

β(j) = γ (i + j) + α(i), (7)

β(j) = γ (i ∗ j) ∗ α(i). (8)

For i = 0, (7) implies that for all j ∈ �n β(j) = γ (j) + α(0). Similarly, j = 0 implies
that for all i ∈ �n, γ (i) = −α(i) + β(0). Thus there exist constants b and c such that for
all i ∈ �n,

β(i) = −α(i) + b,

γ (i) = −α(i) + c.

Arguing as in Case A1, we find that there exists a constant e coprime with n such that

α(i) = α(0) + ie, β(i) = β(0) − ie, γ (i) = γ (0) − ie.

From (8) we then deduce that for all i, j ∈ �n,

(γ (0) − (i ∗ j)e) ∗ (α(0) + ie) = β(0) − je. (9)

Hence there exist integers r, s ∈ {1, d} such that

(γ (0) − (i + j + s)e) + (α(0) + ie) + r = β(0) − je.

Since γ (0) + α(0) = β(0), it follows that r = se.
We now examine the consequences of (9) when i = 0. In this case, s = 1. If j = 0,

then r = 1 if γ (0) − se is even, and r = d if γ (0) − se is odd. Since e is odd, we have that
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r = 1 if γ (0) is odd, and r = d if γ (0) is even. If j = 1, then r = 1 if γ (0) − (1 + s)e is even,
and r = d if γ (0) − (1 + s)e is odd. Hence r = 1 if γ (0) is even, and r = d if γ (0) is odd.
From this contradiction, we deduce that there are no automorphisms of the form θ :
(i, j, k) −→ (γ (k), α(i), β(j)). If there were an automorphism of the form ψ : (i, j, k) −→
(β(j), γ (k), α(i)), then ψ2 would give an automorphism of the form θ just eliminated.
We may therefore conclude that the embedding T∗

n has no automorphisms that preserve
the colour classes, but cyclically (and non-trivially) permute the tripartition.

Case A3. We start by considering the mapping

μ0 : (i, j, k) −→ (i,−k,−j).

If (i, j, k) ∈ L then k = i + j and so (i,−k,−j) = (i,−k, i + (−k)) ∈ L. If (i, j, k) ∈ L′

then k = i ∗ j, so if i is even we have (i,−k,−j) = (i,−k, i − k + 1) = (i,−k, i ∗ (−k)) ∈
L′, while if i is odd we have (i,−k,−j) = (i,−k, i − k + d) = (i,−k, i ∗ (−k)) ∈ L′. It
follows that μ0 defines an automorphism of T∗

n that preserves the colour classes but
reverses the orientation by exchanging the second and third vertex parts. Note also
that μ0 has order 2.

If there were an automorphism that preserved the colour classes but exchanged
the first and second or first and third vertex parts, then it could be combined with μ0

to produce an automorphism of type A2, so no such automorphism can exist. On the
other hand, μ0 may be combined with each automorphism φa,b of type A1 to give n2

distinct automorphisms of type A3. Now assume that θ is any automorphism of type
A3. Then μ0θ is an automorphism of type A1, say φa,b, so that θ = μ0φa,b. Hence there
are precisely n2 automorphisms of type A3.

Case A4. We start by considering the mapping

ν0 : (i, j, k) −→
{

(4s − i,−j, d − k) if i is even,
(−i,−j, d − k) if i is odd.

Firstly, assume that (i, j, k) ∈ L so that k = i + j. Then, if i is even, (4s − i,−j, d − k) =
(4s − i,−j, (4s − i) + (−j) + 1) = (4s − i,−j, (4s − i) ∗ (−j)) ∈ L′. On the other hand,
if i is odd, (−i,−j, d − k) = (−i,−j, (−i) + (−j) + d) = (−i,−j, (−i) ∗ (−j)) ∈ L′.
Secondly, assume that (i, j, k) ∈ L′ so that k = i ∗ j. Then, if i is even, (4s − i,−j,
d − k) = (4s − i,−j, d − i − j − 1) = (4s − i,−j, (4s − i) + (−j)) ∈ L. On the other
hand, if i is odd, (−i,−j, d − k) = (−i,−j, d − i − j − d) = (−i,−j, (−i) + (−j)) ∈ L.
It follows that ν0 defines an automorphism of T∗

n that exchanges the colour classes,
but preserves the tripartition and consequently reverses the orientation. Note also
that ν0 has order 2.

By combining ν0 with the n2 automorphisms of type A1, we obtain n2 distinct
automorphisms of type A4 and, arguing as in Case A3, we see that there are no
further automorphisms that exchange the colour classes but preserve the tripartition.
Similarly, by combining ν0 with the n2 automorphisms of type A3, we obtain a further
n2 distinct automorphisms of type A4 and, again arguing as in Case A3, we see that
there are no further automorphisms that exchange the colour classes and the second
and third vertex parts of the tripartition.

We now argue that there are no further automorphisms of type A4. The possibilities
are for automorphisms that exchange the colour classes but also exchange the first and
second, or first and third vertex parts, or cyclically permute the tripartition. If there
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were an automorphism θ of any one of these types, then it could be combined with
either μ0 or ν0 to give an automorphism of a form already eliminated. Thus there are
precisely 2n2 automorphisms of type A4.

We now state our conclusions in the following theorem.

THEOREM 2.1. The full automorphism group of the embedding T∗
n is generated by

the mappings φa,b (a, b ∈ �n), μ0 and ν0, and the order of this group is 4n2.
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