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Abstract

A well-known result of Zygmund states that if / 6 L (log+ L) on the circle group T and £ is a
Hadamard set of integers, then / |E€ £2 (E). In this paper we investigate similar results for the classes
Ba = L (log+ L)", a > 0 on an arbitrary infinite compact abelian group G and Sidon subsets E of the
dual f. These results are obtained as special cases of more general results concerning a new class of
lacunary sets Sa,p, 0 < a < P, where a subset E of V is an Sa# set if Ba \ E c l2pia (E). We also prove
partial results on the distinctness of the Sa ^ sets in the index /3.

1991 Mathematics subject classification (Amer. Math. Soc): 42A55, 42A05.
Keywords and phrases: lacunary sets.

1. Introduction

Zygmund ( [6, Ch. XII, 7.6]) proved that if / is a function on the circle group T
such that I / | (log+ | / | ) ' e Lx (T) and £ is a Hadamard set of positive integers then

H«e£ I/ («) I < 00. Hewitt and Ross ([2, p. 446]) pointed out that this phenomenon
has not been explored for Sidon sets and groups other than T. In this paper we
investigate this and prove the following generalization of Zygmund's result:

Let G be a compact abelian group and let F be its dual group. Let

° a>0.

If £ is a Sidon subset of F and 0 < a < 1/2 then Ba \ E c £1/o (£) and there exists
a Sidon subset E of F such that Ba \ E % ir (E) for r < I/a (Corollary 4.3).

We then use this result to derive some results about multiplier spaces of certain
subspaces of Ll.
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The background to this paper was an investigation into the existence of sets E
satisfying Ba \ E c tXja (E) but which were not Sidon. Our initial example was
Ek = E + E H 1- £ (it times), where E = {2k : k e N}. For 0 < a < it/2,
Ba\Et ^ h/a (Ek) but Ba\Ek % Zr (Ek), r < it/a. Also Ek is not a Sidon set. (Note
that F + F is never Sidon when F is an infinite set.) These considerations led us to
define and study a new class of lacunary sets which we call Sa<p sets:

DEFINITION. A subset E c F is called an Sa<f) set if Ba \ E c £2/3/a (£), 0 < a < p.

In view of this definition, the above mentioned result of Zygmund states that a
Hadamard set of positive integers is an Si 72,1/2 set and our generalization of the result
states that a Sidon subset of F is an SOii/2 set, where 0 < a < 1/2.

In Section 3, we give a characterization of Sa/3 sets in Theorem 3.3. This is the
main result of that section. As a corollary, we get the following new characterization
of Sidon-sets:

THEOREM. A subset E c F is a Sidon set if and only if B1/21E c t2 (E).

Furthermore, we use Theorem 3.3 to give some examples of Sa<p sets. We have also
included some applications to certain multiplier problems.

In Section 4, we provide a partial answer to the problem of deciding whether the
class of 5a/ j sets are distinct for distinct indices fi. We prove that for each k e N,
there exists a subset E c r which is an Satk/2 set for 0 < a < k/2, but not an Sa^
set for 0 < a < fi < k/2. This is a consequence of Theorem 4.1, whose proof takes
up all of Section 4. We have not been able to prove the distinctness of Sa^ sets in the
index a.

2. Notation and Terminology

Throughout G will be an infinite compact abelian group and F will denote its dual
group. The following definitions and results from Krasnosel'skii [3] will be helpful
in dealing with the spaces Ba mentioned in the introduction.

DEFINITION. A function </> defined on [0, 00) is said to be a Young's function if it is
increasing, continuous, convex, and satisfies

(1) l i m ^ - - = 0 and

(2) lim ^ = 00.
t f
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Let 0 be a Young's function. If / is a measurable function on G, we define

N*(f)= [cP(\f(x)\)dx,

where N^ ( /) is defined to be oo if 0 o | / | is not integrable. The Orlicz space L* (G)
is defined as follows:

L* (G) = [f : f measurable on G with N^ (A./) < oo for some k > 0}.
For / e L*, we define

k>0

Then (ZA | • II.) is a Banach space.
II II (p *•

Two Young's functions 0i and 02 are equivalent if there exist positive constants i
k2 such that

If 0j and 02 are two equivalent Young's functions then L*1 = L*2 and the norms
defined by (px and 02 are equivalent.

We say that a Young's function 0 satisfies the ^-condition if there exists a constant
C > 0 and f0 > 0 such that

0 (20 < C0 (0 for all ? > t0.

If 0 satisfies the A2-condition then the dual of L* is isomorphic to an Orlicz function
space L*, where \jr is also a Young's function given by x// (s) = sup (st — 0 (t)),

(20
5 >0.

We shall be particularly concerned with the following Young's function: Letting
a > 0, we define

tl+a/e", 0 < t < e,

It is easy to see that 0a is a Young's function satisfying the A2-condition. In fact,

0a (2f) < 21+or0a (0 for all t > e.

The spaces Ba mentioned in the introduction are nothing but Z>. It is not difficult to
show that the dual space (Ba)* is given by L*°, where

| ^t1/ (2a)2" , 0 < t < (2a)a ,
/ ' " , r > ( 2 a ) " .
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If £ is a subset of F and S c LX(G), then we define

= If e S : f = 0 outside E\ .

T will denote the space of trigonometric polynomials on G. We write \E\ for the
cardinality of a set E. In the following, C, C\, C2 , . . . are constants which may vary
from one line to the next. For other notation we refer to Hewitt and Ross [1,2] and
Lopez and Ross [4].

Section 3

Let us recall that a subset E c F is called an 5o/3 set if Ba \ E c l2(l/a{E), where
0 < a < fi. In this section we prove the main theorem of this paper giving a
characterization of Sa/3 sets. First we prove two simple lemmas: Lemma 3.1 below
will be needed in the proof of Theorem 3.3 and we use Lemma 3.2 to construct
examples of Sa/3 sets.

LEMMA 3.1. Let E be a subset ofT, a > 0 and 1 < r < oo. Then Ba \ E c ir(E)
if and only iflr.{E) c (B*)~|£, where \/r + \/r' = 1.

PROOF. If r = oo, the result is obvious, so assume/- < oo. Suppose i?a | £ c lr(E).
Then by the closed graph theorem, there exists a constant C > 0 such that

e A E ) B a , VfeBa.

Given <f> e £r-(E),'we define a linear functional on Ba by

Then

It follows that for some g e B*,

J f(x)g(-x) dx, V/ € Ba.= J
G

In particular, taking f(x) = y(x), y e E we get g(y) = 0(y). Hence 0 e (Ba)"l £•
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Conversely, suppose lr>{E) c (B*)~. Again, by the closed graph theorem, there
exists a constant C > 0 such that

Now let / e Ba and put 0 = f \E. Define a linear functional on the class of
functions on F with finite support by

For each such \j/, there exists a trigonometric polynomial g with g(y) = xj/iy), so
that

*•(/) = j f(x)g(-x)dx
G

and

Hence K^ extends to a continuous linear functional on £r(£) and so </> e ir(E).
The following lemma is essentially an interpolation result.

LEMMA 3.2. Le? E be a subset ofT, ft > 0 and 1 < p < oo. Suppose there exists
a constant C > 0 such that

ifO<a</3 and q = pP/a, there exists a constant Ca^ > 0 such that

where r = 2^/(2/3 - a).

PROOF. Consider the linear map U, defined on fE by Uf = / , V/ 6 T£. The
hypothesis implies that U extends to a bounded linear map from €2(£) to VE with
norm at most CpP. Clearly U also extends to a bounded linear map from l\(E) to
L~ with norm at most 1. If q = pP/a, let 5 = 1 - a/p. Then 0 < 8 < 1 and
5/1 + (1 - <S)/2 = (2j8 - a)/2£ = 1/r. By the Riesz-Thorin Convexity Theorem, U
extends to a bounded linear map from ir{E) to L\ with norm at most

This completes the proof of the lemma.
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THEOREM 3.3. Let G bea compact abelian group and T its dual group. Let E c r
andO < a < ft. Then E is an Sap set if and only if there exists a constant C depending
only on a and fl and not on q such that

(3-4) \\f\\L<<C<la\\f\\irl V / e r £ , Vq>2fi/a

where r = 2$ la (and thus r' = 2/3/(2/8 - a)).

PROOF. SUFFICIENCY From Lemma 3.1, £ is an SaiP set if and only if £r-(E) c
(B*J\E.

Now suppose E c r and (3.4) holds. Let <f> e £r>(E). Since 2 < r < oo, we
have 1 < r' < 2 and £r>(E) c £2(E). Hence there exists / e L2(G) such that
f(y) = 0(y) if Y e £, and / ( y ) = 0 if y $ E. We claim that / e B*. Let X > 0
and consider

G *=0 \k<2fi k>2fi/

Using (3.4) for q = k/a in the second summation, we get

E A II f \\k/a < T ^ A * ^l/'~ ' - " " J?" '"'" V"1 ^ . t /a A " ^ II rll*/"

, , 11/ iiz.*/« — /^i h\

which is finite for a suitable choice of A, that is, X such that the expression in the
square bracket is < 1.

NECESSITY First we note that (3.4) is equivalent to saying that there exists a
constant C\ depending only on a and /3 such that

(3-5) | / | | i t / . < C , ( * / « ) " 11/11^, V / € 7 £ , A : € N and it > 2p.

Clearly (3.4) implies (3.5). On the other hand, if (3.5) holds and q > 2fi/a, let m be
the unique integer such that (m — 1)/a < q < m/a. Then

\<Cx{q-

Now suppose E c r is an Saifi set and (3.4), or equivalently (3.5), does not hold. Then
for each n € N, there exists /„ e TE and an integer kn > 2/S such that if qn = kn/a,
we have
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Letg« = fn/\fn\ty Then \gn\Lqn > Canka
n. We now estimate the norm

From the definition of the B* norm, there exists Xn > 0 such that

jexp(klja\gn(x)\l/a)dx

where 0 < Cn < e2".
If some subsequence of {Xn} tends to zero, we get a subsequence [gnk} of [gn} such

that |j ̂ ^ || B. — • « ) .
If not, then there exists a 8 > 0 such that kn > 5 Vn. Then

\\gn\\B.+Cn > ^ [&vW\gn(x)\1/a)dX
° A-n J

-(Canka
n)

1
U I II a " \\L1" — I, I

0?"— > oo as « —>• oo.

Hence £r(£) 2 (^afU. s o that by Lemma 3.1, £ cannot be an Sa,p set. This
completes the proof of the theorem.

As a consequence of Theorem 3.3 we get the following characterization of Sidon
subsets of T.

COROLLARY 3.6. Let E be a subset of T'. Then E is a Sidon set if and only if

PROOF. Let £ be a Sidon subset of T. Then as is well known ([4, p. 59]), we have

(*)
LP

<Cpl/2\\f\\(2, , Vp, 2<p<oo,

and by Theorem 3.3, this is equivalent to B 1 / 2 1 E c £.2(E). For the converse, Pisier [5]
has shown that every £ c r satisfying (*) is a Sidon set.
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3.7 EXAMPLES OF Sa,p SETS.

(i) If £ c r is a Sidon set and 1 < p < oo, then

| | / | , if >3 > 1/2.

Therefore by Lemma 3.2 and Theorem 3.3, £ is an Sa,p set for all P > 1/2 and
0 <at <p.

(ii) Recall ([4, p. 15]) that a subset £ c r is called an asymmetric set if 1 g E and
whenever y e E with y2 ^ 1, then y"1 £ £. We call £ a dissociate set if 1 £ £
and for every finite subset £ c £ and mapping w : £ —• {0, ±1, ±2} such that
H ^ ymiy) = 1, we have y-w = 1, Wy e F.

If G is an infinite compact abelian group, then T always contains infinite dissociate
sets ([4, p. 21]).

Now let £ be an infinite dissociate set and k e N. Define

Ek = I Y\ y '• S is an asymmetric subset of £ U E~l with \S\ = k \ .

Then ([4, p. 65]) there exists a constant Ak > 0 such that

V / ^ £ ( , 2 < < 7 < o o .

Therefore, by Lemma 3.2 and Theorem 3.3, Ek is an Sa^ set for fi > k/2 and
0 <a < p.

(iii) The examples of Sa<p sets given above require y8 > 1/2. We now show that
for P < 1/2, Sa j sets need not exist.

Let G = YIA Zp> where A is an infinite index set and T = YYA Zp ' t s dual group.
Suppose £ c r is an infinite subset and F a finite subset of £ . The subgroup H
of F generated by F has cardinality at most plF]. Let V = H^. Then V is an open
subgroup of G, so m(V) > 0.

Put/! = Xv/m(V). Then/! = XH and so \\h\E\\t > l^|1 / r , 1 < r < oo.

Next we estimate II h II „ . By the Plancherel theorem,

so that m(V) \H\ = 1. Therefore

|L <l+e+ [ Mx)\Qog+\h(x)\)adx<4+—l— f(log+\H\)adx
JG m(V)Jv

= 4 + (log+ \H\)a < C(log+ \H\)a = C \F\a (logpT.
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Taking £ < 1/2 and r = 2/8/a < I/a, we have

- * 0 0 a s I^I-^OQ-

Hence Ba \ E <£ ir(E), which proves that E is not an Sa<p set.

Now we include an application of the preceding results to some multiplier problems.
For the following definition we refer to Hewitt and Ross ([2, p. 368]).

DEFINITION 3.8. Let S{ and S2 be subsets of Ll(G). A bounded function 0 on F is
said to define a multiplier from Si to S2 if <pf e S2 for every f e S\.

The set of multipliers from St to S2 is denoted by (Si, S2). For 1 < r < oo and

ScLUetS, = [/ eS:/€<,(T)J.
Using the Plancherel theorem and Holder's inequality, we have,

(3.9) trpnr-p)<z(L\,Lx
p),

provided l < / ? < 2 < r < o o .
It is not known if the inclusion in (3.9) is proper. We are not able to settle this

issue. Instead, we prove the proper inclusion in the larger space {{Ba)r, Lp). (In fact

THEOREM 3.10. Let 0 < a < 1/2 and Bar = If e Btt : / <= Lr{T)\. Then

(-rpur-p) % {Btt,r, L),), provided 1 < p < 2 and I /a < r < oo.

PROOF. Let £ be an infinite S a l / 2 subset of T. Then Ba \ E c ll/a(E). Hence using
the Plancherel theorem and Holder's inequality we see that

c (Ba, Lp) c (Ba,r, Lp).

Since r > I /a, we observe that p / ( l — pa) > rp/(r — p) and therefore

Theorem (3.10) now follows from this observation.

REMARK. If a > 1/2 then {Ba<r,Lp) 2 (B 1 / 2 r ,Lp . It follows from Theorem 3.10
that Irp/ir-p) 2 (fli/2,r, Ll

p), provided 1 < p < 2 and r > 2. Hence, irp/(r-P) 2
{.Bar, L

x), provided a > 1/2 and ! < / ? < 2 < r < o o .
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Section 4

In Section 3, we gave a characterization of Sa^ sets. It is easy to see that if fi\ < p\
then every Sa ̂  set is also an 5a,ft set. It is natural to ask whether the class of Sa^
sets is a proper subclass of Sa,ft sets. In this section we show that for each positive
integer k there exists a subset E c r which is an Satk/2 set for 0 < a < k/2 but not
an Satp set for any ft < k/2.

The main result of this section is Theorem 4.1 from which the above result about
Sa,£ sets follows as an immediate consequence. We would like to mention that the
problem of deciding whether the classes of Sa<p sets are distinct for distinct indices a
remains unresolved.

THEOREM 4.1. Let G be an infinite compact abelian group and k e N. Then there
exists a subset Ek c r and a constant Ck such that

(i) | | / | L <Ckq
k'2\\f\, VfeTEt, and 2 < q < oo,

(ii) K | Ek £ tr{Ek), 0 < a < k/2 and r < k/a.

COROLLARY 4.2. Let k e N. Then there exists a subset E c r which is an Sa,k/2

set for 0 < a < k/2, but not an Sa<fi set for 0 < a < fl < k/2.

PROOF. This is an immediate consequence of Theorems 3.3 and 4.1.

In addition, we now get the result mentioned in the introduction.

COROLLARY 4.3. Let G be an infinite compact abelian group, E a Sidon subset of
F, and 0 < a < 1/2. Then Ba \E c £1/a(£). Further, there exists a Sidon subset
E c r for which Ba\E

<£ lr{E) for every r < I/a.

PROOF. If £ is a Sidon subset, then it is an SaA/2 subset (Example 3.7(i)). The set
E constructed in Theorem 4.1 for k = 1 is a Sidon subset (cf. Corollary 3.6) and
Ba\E%er(E)forr< l/a,by(ii).

PROOF OF THEOREM 4.1. There are several steps in the proof of the above theorem.
We first prove the theorem in three special cases, namely, when r = Z, Z(p°°) and
TVaeA Zqa > where A is an infinite set. Then we prove three lemmas and finally using
these and the structure theorem for compact abelian groups, we reduce the general
case to these three special cases.

In the proof for each of the three groups mentioned above, we start with a dissociate
set E, so that (cf. Example (ii) of Section 3) the set Ek = E + E + • • • + E (k-
times) satisfies inequality (i) of the theorem. Next we construct a sequence [hn} of
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trigonometric polynomials such that \\hn \\B /\\hn\ Et ||€ —> 0 as n —> oo, where
1 < r < k/a and 0 < a < k/2. Conclusion (ii) then follows from the closed graph
theorem.

4.4 THE CASE Y = Z.

Let £ = {3*}^!,. Then £ is a Hadamard set with Hadamard constant 3. Hence E
is a dissociate set ([4, p. 23]). As remarked above, the set

Ek = {3t>+3t* + --- + 3t> : l j € H , ; = 1 , 2 , . . . , * }

satisfies inequality (i) with a constant depending only on k.
Let Kn denote the rcth Fejer kernel. For n large enough (so that Kn{t) < 1/2 if

I'I > TT/2) wehave

it 12

Kn(x)(log+Kn(x))adx.

Since Kn(x) < min(n + 1, n2/ (n + I)*2), we get

l/(n+l)

f (n•en+ 2 / (n + l)(log(« + \))adx

o

dx

r2(< 1 + en + 2(log(n + 1))" + 2 - ^ — ( l o g 7 r 2 ( « + l))a(n + 1 - 2/n)

< Ca(log(« + 1))«.

Now let hn = Ar3/.*. Then for n large,

To estimate \hn | £ J | £ we need an upper bound on |[l,3"fc] n Ek\. For this, we
observe that if m = 3i> + 3'2 H h 3 4 with £i < £2 < • • • < 4 , then the £-tuple
(^i, £2, • • •, t-t) is uniquely determined by m. Hence

| [1, 3"k] n Ek | > "Ck > Ctn* for « large enough.

Therefore | A J £ 4 | , r > C***/randif 1 < r < k/a, \\hn\\Bj\\hn \Ek\\(r < Ckn
a-k'r —*

0 as n -»• oo.
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4.5 THE CASE r = Z(/?°°).

Recall that Z(p°°) = {j/pn : j e Z, n e Z} / Z , where p is a prime. We write
[j/pn] for the elements (equivalence classes) of Z(p°°).

In the following we assume p / 2. For p = 2 some modification is needed which
we indicate at the end.

Let E = {[l/pn] :neZ}. Then £ is a dissociate set, for if £™=1 kj [l/pnj] = 0,
where nt < n2 < • • • < nm and kj e {±1, ±2}, then

m —1

/P"' e Z Or k-P"m"/P"m + P"""' £ W 6 Z.
7 = 1 ; = 1

But then , km p"™' / p"" e Z which is impossible since p ^ 2.
Now fix k > 0 and let Ek = E + E + • • • + E (&-times). The inequality (i) of the

theorem holds for Ek (see Example (ii), Section 3).
Next let Hn be the subgroup generated by [l/pn], that is,

Hn = {[j/pn]: j = 1,2,..., p"), \Hn\=p".

Let Vn = H^ and put hn = XvJm(Vn). Then hn = XHn- We have seen in Example
(iii), Section 3 that

m{Vn)\Hn\ = \ and \\hn\\Ba < C(logp)ana.

We now estimate \hn \ Ek\\( =\HnC\ Ek\
l/r.

Clearly \Hn D Ek\ < nk. If m € Ek has the representation

m = l/p1' + l/p
e> H h l / p ^ (mod Z), with lx < t2 < • • • < 4 ,

then the &-tuple (^ , £2. • • •. 4 ) is uniquely determined by m. For, if not, suppose

1 / / / ' + l/pt2 + ••• + \ / p t k = \ / p h + \ / p h + ••• + \ / p h ( m o d Z )

with £, < £2 < • • • < 4 and vi < y2 < • • • < 7-t-
Since both terms are less than 1, equality holds without mod Z. Then after

cancellation we may assume lx < j \ . Multiplying by plx we get,

1 + pe'~h H + ph~lt = pe'~jl + pu~h H h pe'~jk

which is a contradiction since the left side is greater than 1, while the right is less than 1.
We conclude from this that \Hn D Ek\ > "Ck > Ckn

k for large n, so that

Ckn
k'r <\\hn\Et\\lr<nklr

and the conclusion (ii) of the theorem follows if 1 < r < k/a.
For the case p = 2, we start with the set E = {[l/22 n] : n 6 Z}. Then the above

proof with p replaced by 22 works in exactly the same way.
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4.6 THE CASE F = l\*a£A Zqa.

Here A is an infinite set, each qa is a prime and Z9o = {1, coa, col, • • • > wa° ' }>
where coa is a primitive qath root of unity. F is the dual of the compact abelian group
G = n«€A Z<?«- We consider two cases:

Case 1 supae A qa < oo. In this case there exists a countably infinite set {an} c A
such that for some prime p, qUn — p for all n. Let yn be a character on G defined by
yn(co) = coan, co e G.

Then each yn has order p. Let £ = {yn}™=i- Now £ is an independent set, hence a
dissociate set. Therefore the set Ek = £ + £ + ••• + £ (&-times) satisfies inequality
(i) of Theorem 4.1.

Let Hn be the subgroup generated by {y,}"=1 and let Vn = / / x . Put hn =

Xvn//M(Vn). Trien/in = XH» and | / / n | = p".
By the same argument as in the case F = Z(p°°), we see that

and Ckn
k/r < \\hn\ Et\\e < nk/r, and conclusion (ii) follows.

Case 2 sup qa = oo.
OE/4

Choose (<7O } such that 9k2 < qa. < qa. < • • • < qa . . . and lim qa = oo. As in

case 1, define yn(co) — coan, co e G. Then /„ is of order qan.
We let //„ be the subgroup generated by {y,}"_, and let Vn = H^ and put hn =

XvJm(Vn).
Then hH = XH.,\Hn\ = FI"=i 1«r a n d

||/zn||fl < C(log\Hn\)
a <

In this case, constructing the set Ek from the set £ = {yn}™=l as in the earlier cases
does not give the required estimate for \\hn | £ J | £ . We overcome this difficulty as
follows:

For each n, choose mn as the largest integer for which (3&)m"+1 < qUn (where we
fix k € N as in the statement of the theorem).

Let £ = {yn
(3*)J : n e N, j = 0, 1, 2 , . . . , mn - 1}. To see that £ is a dissociate

set, it is enough to show that for each n, the subset {yn, yn
3*,.. . , yn

(3*>"""'} is a dissociate
set, since the set {yn} is independent. For this, suppose

(yn)
p'mt' {yn)

P2°k)h • • • (yn)""mtm = l with Pj = ± 1 , ± 2

and 0 < t\ < t2 < • • • < lm < mn. Then, since px is not divisible by 3,

px0k)li + h pm(3£)c = (3k)ei(pl + p2Qk)tl-u H h pm(3/t)€"^') / 0.
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Moreover
mn-l

c 2 ] P (3k)j < i3k)m" < qaa,
7=0

so that we obtain the contradiction

Now if we take Ek = E + E-\ \-E (&-times), the inequality (i) of the theorem holds.
It remains to estimate \hn \ Et ||€ = \Hn D Ek\

l/r. It is clear that \Hn n Ek\ < ^m>Ck.
We actually show that \Hn D Ek\ = ^"'m'Ck. For this, we show that each of

the elements (yh)
m'1 (yh)

m'2 • • • (YjtY
3k)'m (where 1 < jx < • •• < jk < n and

0 < £, < mji) are distinct.
This will follow, if we show that {yf^SiOk)'' never equals 1, where st and m are

integers such that 0 < \st\ <2k,\ <m < 2k and 0 < tx < l2 < • • • < lm < (3k)m'.
It is enough to show that 0 < \si(3k)e' -\ h sm(3k)t'" | < qa.. Now

\sd3k)e> +••• + sm(3kY» | < {2k){2k)Ok)m'-x < (3k)m'+l < qaj.

Next, suppose Si(3kY' -\ 1- sm(3kYm = 0. Then

5, = -(

which is not possible since 0 < |si | < 2k.
Thus we have seen that

I//„ n Et | = £>>Ct ><: ; (£« , - )* for large n

>Ck(\ogf\qa)
k.

y=i

Therefore \hn \ Ek ||£ > C (log flLi ?<»>) > which is the required estimate.

4.7. To complete the proof of Theorem 4.1 for a compact abelian group, we need
three short lemmas. We shall need the following definitions ([4, p. 24]).

4.8 DEFINITIONS. Let s be a non-negative integer, En a subset of r and if e T.
Rs(En,\l/) denotes the number (possibly oo) of asymmetric subsets 5 of E = Eo U E^1

satisfying \S\ = s and Y[YeS Y — &• N o t e t n a t ^ ( ^ o . f) = K(E, rfr) for all s and

A subset En c r is called a Rider set if there exists a constant B > 0 such that
Rs(E0, 1) < Bs for all s. Note that if En is a dissociate set, then Eo is a Rider set since
/?,(£„, l) = 0 for alls > 1.
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If £ is a Rider set, then inequality (i) of Theorem 4.1 holds for Ek ([4, p. 65]).
For convenience, we will say that the group G has property Pk if there exists a

Rider set £ c r such that Ba | E <£ tr{Ek) for 0 < a < k/2 and r < k/a.
Note that if a group G has property Pk, then Theorem 4.1 holds for G.

LEMMA 4.9. Let H be a closed subgroup of G. Suppose G/H has property Pk.
Then G has property Pk.

PROOF. By hypothesis there exists a Rider subset £ c (G/Hf= Hx and a function
g e Ba(G/H) such that g\Ek & ir(Ek). We will show that the same set works for G
also.

Since g e Ba(G/H), gone Ba(G), where n : G —> G/H is the quotient map.
Furthermore (g o n)\y) — g(y) for y e Hx. Therefore (g o n)"\ Ek g tr(Ek) and the
lemma is proved.

LEMMA 4.10. Let {G,},eA be a family of infinite compact abelian groups and G =
YlttA G,. If for some t0 e A, G,o has property Pk, then G has property Pk.

PROOF. We write x = (x,),^A for elements of G with e = (e,)teA as the identity
element , and y — (y,),eA for elements of the dual group T. By hypothesis, there
exists a Rider set E c r,0 such that Ba(G,J\ Ek % tr{Ek).

Let F = f ] /o e,0 x E. Then it is easy to see that F is a Rider subset of T.
If * € Ba(GJ is such that g\Et ? lr(Ek), define gi(x) = g(xl0), x e G. Then

g, 6 Ba(G) and | , ( y ) = g(y,0). Hence | , | Fk ? lr{Fk).

LEMMA 4.11. Let H be an open subgroup of G. If there exists a dissociate subset
£ C r / / / x such that Ba(Hf\ Ek £ ir(Ek), then G has property Pk.

PROOF. Suppose £ = {ya : a e A] c T/HL satisfies the hypothesis of the lemma.
Let ya be any representative of the coset ya for each a e A, and E — [ya : a e A}.
We claim that £ is the required Rider set.

If {Ya,, Ya2' •••./«„} is an asymmetric subset of £ U E~l such that 1 =
Yat ' Ya2 • • • Ya,, t n e n 1 = Ya, • Ya2 • • • /«„ • Since £ is a dissociate set yaj = 1 for
each j = 1, 2 , . . . , « , but this is not possible since I £ E. Therefore /?„(£, 1) = 0
and so £ is a Rider set.

Now let / e Ba{H) be such that / 1 Ek $ lr{Ek). Define

! W - • / < J : ) i f x e " •= {/'
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Theng e Ba(G) and

g(Ya) = f(-x, Ya)g(x)dmG(x) = c[(-x, ya)f(x)dmH(x) = Cf{Ya)
H H

where mc \H = CmH.
Therefore g | Ek & £r(Ek). This completes the proof of the lemma.

4.12 THE CONCLUSION OF THE PROOF OF THEOREM 4.1. We consider two cases.
Firstly, suppose F is not a torsion group. Then G contains a closed subgroup H
such that G/H is isomorphic to the circle group T. By Lemma 4.9 and the case
F = Z, the theorem is true.

Now if F is a torsion group, then F is a weak direct product of p-primary groups
([1, A.3]). By Lemma 4.10, we may assume that F is a /^-primary group. Now there
are two subcases:

Subcase 1. F is a /^-primary divisible group. Then F is a weak direct product of
groups of the form Z(p^) ( [1, A 14]). By Lemma 4.10 and the proof in the case
Z(p°°), the theorem holds in this case.

Subcase 2. F is a p-primary non-divisible group. Then F contains a subgroup
B = IX zi° s u c h t h a t r/B i s divisible ([1, A 24]). Now B = (G/B^f, so that if B
is infinite, the theorem holds for G/Bx, hence also for G, by Lemma 4.8.

Finally if B is finite, then BL is an open subgroup of G and (fix)* = T/fi which
is a divisible p-primary group. By case 1 above the theorem holds for BL. Using
Lemma 4.9 and the proof for the case Z(p°°), we have in fact a dissociate set E c r/B
such that Ba(B

Lf\ ^ <£ lr(Ek). By Lemma 4.11, there exists a Rider set E c F such
that Ba(Gf\ Ek 2 £r(Ek) and the theorem holds for G.
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