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Abstract

A well-known result of Zygmund states that if f € L (log+ L)l/2 on the circle group T and E is a

Hadamard set of integers, then f |e€ €, (E). In this paper we investigate similar results for the classes
B, = L (log* L), @ > 0 on an arbitrary infinite compact abelian group G and Sidon subsets E of the
dual I". These results are obtained as special cases of more general results concerning a new class of
lacunary sets Sy 5, 0 < @ < 8, where a subset E of I is an S, 5 set if éa | £ € €284 (E). We also prove
partial results on the distinctness of the S, 4 sets in the index 8.

1991 Mathematics subject classification (Amer. Math. Soc.): 42ASS5, 42A05.
Keywords and phrases: lacunary sets.

1. Introduction

Zygmund ( [6, Ch. XII, 7.6]) proved that if f is a function on the circle group T
such that | f| (log* | f I)l/2 € L' (T) and E is a Hadamard set of positive integers then

Y e | f (n) |2 < oo. Hewitt and Ross ( [2, p. 446]) pointed out that this phenomenon
has not been explored for Sidon sets and groups other than T. In this paper we
investigate this and prove the following generalization of Zygmund’s result:

Let G be a compact abelian group and let I be its dual group. Let

B.={f:1fI(log" If) e L' (@)}, «>0.

If E isaSidon subset of ' and 0 < & < 1/2 then f?a e € €1/ (E) and there exists

a Sidon subset E of T such that éa |g € ¢, (E) for r < 1/a (Corollary 4.3).
We then use this result to derive some results about multiplier spaces of certain
subspaces of L'.
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The background to this paper was an investigation into the existence of sets E
satisfying f?a le € £y, (E) but which were not Sidon. Our initial example was
Ex = E+ E+ -+ E (k times), where E = {2* : k e N}. For0 < a < k/2,
l§a lg, € €ia (E;) but éa lg, € € (Ex), r < k/a. Also E; is not a Sidon set. (Note
that F + F is never Sidon when F is an infinite set.) These considerations led us to
define and study a new class of lacunary sets which we call S, g sets:

DEFINITION. A subset E C T'is called an S, , setif B, | ; € €20 (E),0 < @ < B.

In view of this definition, the above mentioned result of Zygmund states that a
Hadamard set of positive integers is an S, 2,1/, set and our generalization of the result
states that a Sidon subset of I' is an S, ; » set, where 0 < o < 1/2.

In Section 3, we give a characterization of S, 5 sets in Theorem 3.3. This is the
main result of that section. As a corollary, we get the following new characterization
of Sidon-sets:

THEOREM. A subset E C T is a Sidon set if and only ifél/z |z € £, (E).

Furthermore, we use Theorem 3.3 to give some examples of S, s sets. We have also
included some applications to certain multiplier problems.

In Section 4, we provide a partial answer to the problem of deciding whether the
class of S,z sets are distinct for distinct indices 8. We prove that for each k € N,
there exists a subset £ C I'" which is an S, 4/, set for 0 < o < k/2, butnot an S, 4
set for 0 < @ < B < k/2. This is a consequence of Theorem 4.1, whose proof takes
up all of Section 4. We have not been able to prove the distinctness of S, 4 sets in the
index a.

2. Notation and Terminology

Throughout G will be an infinite compact abelian group and I" will denote its dual
group. The following definitions and results from Krasnosel’skii [3] will be helpful
in dealing with the spaces B, mentioned in the introduction.

DEFINITION. A function ¢ defined on [0, oo) is said to be a Young's function if it is
increasing, continuous, convex, and satisfies

(1) im2® _ 0 and
t—0 t
(2) ’lim ¢—:t—) =00
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Let ¢ be a Young’s function. If f is a measurable function on G, we define

N, (f) = f & (1F (o)) dx,
G

where Ny (f) is defined to be oo if ¢ o | f] is not integrable. The Orlicz space L? (G)
is defined as follows:

L? (G) = {f : f measurable on G with N, (Af) < oo for some A > 0}.
For f € L?, we define

| £l = inf /A {Ny ) + 1}

Then (L?, |- ||¢ ) is a Banach space.
Two Young’s functions ¢, and ¢, are equivalent if there exist positive constants &,
k> such that

G kit) (1) < i (kat), =10

If ¢, and ¢, are two equivalent Young’s functions then L# = L% and the norms
defined by ¢, and ¢, are equivalent.

We say that a Young’s function ¢ satisfies the A,-condition if there exists a constant
C > 0 and ¢, > O such that

P2t) <Co() forallt =1,

If ¢ satisfies the A,-condition then the dual of L? is isomorphic to an Orlicz function
space LY, where ¢ is also a Young’s function given by ¥ (s) = sup (st — ¢ (¢)),

>0
s>0.

We shall be particularly concerned with the following Young’s function: Letting
a > 0, we define
tteje,  0<t<e,
t(log)*, t>e.

¢a (t) = {
It is easy to see that ¢, is a Young’s function satisfying the A,-condition. In fact,
¢, 2t) <2, (t) forall ¢ >e.

The spaces B, mentioned in the introduction are nothing but L% It is not difficult to
show that the dual space (B,)* is given by L¥=, where

| e/ a)*, 0<t<Qa)r,
Ve (1) = { e, t > Qa)e.
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If Eisasubset of " and S € L'(G), then we define
SE={feS:f=00utsideE].

T will denote the space of trigonometric polynomials on G. We write | E| for the
cardinality of a set E. In the following, C, C,, C,, ... are constants which may vary
from one line to the next. For other notation we refer to Hewitt and Ross [1, 2] and
Lopez and Ross [4].

Section 3

Let us recall that a subset E C TI" is called an S, g set if 1§u | € £yp/0(E), where
0 < a < B. In this section we prove the main theorem of this paper giving a
characterization of S, g sets. First we prove two simple lemmas: Lemma 3.1 below
will be needed in the proof of Theorem 3.3 and we use Lemma 3.2 to construct
examples of S, ; sets.

LEMMA 3.1. Let E be a subset of T, > Oand 1 < r < 0o. Then B, |z C £,(E)
ifand only if €, (E) C (B})"| g, where 1/r +1/r' = 1.

PROOF. If r = o0, the resultis obvious, soassume r < 0o. Suppose 1§(, lg € £, (E).
Then by the closed graph theorem, there exists a constant C > 0 such that

171k

v SClfls, VfeBa

Given ¢ € £, (E), we define a linear functional on B, by

Ko(f) =) o) f).

yeE

Then

VfeB,.

‘Kd’(f)’ = ”4)”2,,(5) ”fAIE"z,(E) = C||¢||l,/(E) "f

B,’

It follows that for some g € B,

Ks(f) = /f(x)g(—x) dx, Vfe€B,.
G
In particular, taking f(x) = y(x), y € E we get 2(y) = ¢(y). Hence ¢ € (B}) | ;.
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Conversely, suppose £,(E) C (B?)" Again, by the closed graph theorem, there
exists a constant C > 0 such that

”g“B; = C”té”e,f(ﬁ)' Vg el (E).

Now let f € B, and put ¢ = f | . Define a linear functional on the class of
functions on I" with finite support by

Ko@) =) oMV ().

yeE

For each such ¥, there exists a trigonometric polynomial g with g(y) = ¥ (y), so
that

Ko(f) = f f()g(~x) dx
G

and

(Ko = | £15, 0815, = CUAN5 1810,y = ALV D e

Hence K, extends to a continuous linear functional on £, (E) and so ¢ € £,(F).
The following lemma is essentially an interpolation result.

B, B, By

LEMMA 3.2. Let E be a subset of T', B > 0and 1 < p < oo. Suppose there exists
a constant C > 0 such that

171, <P fl,. VfeTe.

Then if0 < a < B and q = pB/ua, there exists a constant C, g > O such that

HfllLﬂ = Cavﬂqa ”f”[r’ Vf € TE’
where r =2B/(28 — o).

PROOF. Consider the linear map U, defined on Tp by Uf = f,Vf € Te. The
hypothesis implies that U extends to a bounded linear map from £,(E) to L} with
norm at most Cp?. Clearly U also extends to a bounded linear map from £,(E) to
LY with norm at most 1. If ¢ = pB/a,letd =1 —«a/B. Then0 < § < 1 and
8/1+(1-8)/2 = (2B —a)/2B = 1/r. By the Riesz-Thorin Convexity Theorem, U
extends to a bounded linear map from £, (E) to L} with norm at most

(Cpﬂ)a/ﬂ — Cu/ﬂ(a/ﬂ)a o _ Ca.ﬂqa-

This completes the proof of the lemma.
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THEOREM 3.3. Let G be a compact abelian group and T its dual group. Let E C T
and0 < o < B. Then E isan S, g set if and only if there exists a constant C depending
only on @ and 8 and not on q such that

(3.4) 171, <caIfll,, VfeTe, Vg=28/a
wherer = 2B/a (and thusr' = 28/(28 — a)).

PROOF. SUFFICIENCY From Lemma 3.1, E is an S, 4 set if and only if £,.(E) C
(B p-

Now suppose E € I' and (3.4) holds. Let ¢ € £, (E). Since 2 < r < oo, we
have 1 < r’ < 2 and ¢,.(E) C ¢,(E). Hence there exists f € L*(G) such that
f(y) o(y)ify € E, andf(y) =0ify ¢ E. Weclaimthat f € B}. LetA > 0
and consider

x A. o Ak/a o
f exp (M 1 f @) dx = 3 = | £l = (Z + Z) RS

A k=0 k<28 k>2p

Using (3.4) for ¢ = k/a in the second summation, we get

(s o a)‘ “ K @
> 2 < 3 A [ewmrl 71, ] = o e K A

k>28 k>28 k>28
<3 [t
k>28

which is finite for a suitable choice of A, that is, A such that the expression in the
square bracket is < 1.

NECESSITY First we note that (3.4) is equivalent to saying that there exists a
constant C; depending only on « and 8 such that

335 |flpe < Ck/°|f],,, YfeTe, keN and k>28.

Clearly (3.4) implies (3.5). On the other hand, if (3.5) holds and ¢ > 28/a, let m be
the unique integer such that (m — 1)/ < ¢ < m/a. Then
1710 < 1 f e < Crmje)*| £, < Ci@ + 10| £,
< G +1/287¢°| F|l,, = Ca*|| £]..-
Now suppose E C I"isan S, 5 set and (3.4), or equivalently (3.5), does not hold. Then

for each n € N, there exists f, € Tr and an integer k, > 28 such that if g, = k,/«,
we have

u f"| Lan > n(CIn)a "ﬁ;“e’,.
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Let g, = fu/| full,,- Then |[ga],,, > CankZ. We now estimate the norm | g.|,
From the definition of the B? norm, there exists A, > 0 such that

1
”M&+Q>x‘1+fwﬂwﬂ&mWﬂa
G

where 0 < C, < e

If some subsequence of {A,} tends to zero, we get a subsequence {g, } of {g.} such
that | g,, |B; —> 0.

If not, then there exists a § > 0 such that A, > § Vn. Then

1
“g" “B; +C, > x—/exp ()\’ll/“ |gn(x)|‘/¢!) dx

k(qn)—l

an _ n)q"
kn
—(8C )q"(——Z —> 00 as n — 0.

n.

ZAkW

IV

Hence ¢, (E) € (B:Y|g, so that by Lemma 3.1, E cannot be an S,z set. This
completes the proof of the theorem.

As a consequence of Theorem 3.3 we get the following characterization of Sidon
subsets of I'.

COROLLARY 3.6. Let E be a subset of I'. Then E is a Sidon set if and only if
Biplg C6(E).

PROOF. Let E be a Sidon subset of I'. Then as is well known ( [4, p. 59]), we have
*) I £, Cp?|fllp. Yfe€Te, VP 2<p<oo,

and by Theorem 3.3, this is equivalent to él 12| g € £€2(E). For the converse, Pisier [5]
has shown that every F C T satisfying (*) is a Sidon set.
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3.7 EXAMPLES OF S, 4 SETS.
()If ECT'isaSidonsetand 1 < p < oo, then

~

I£]., =<cp?lfl,, VfeTs
<cp’|fl,. i B=z1/2

Therefore by Lemma 3.2 and Theorem 3.3, E is an S, 4 set for all 8 > 1/2 and
0<a <8

(i1) Recall ([4, p. 15]) that a subset £ C T is called an asymmetric setif 1 ¢ E and
whenever y € E with y2 # 1, then y~' ¢ E. We call E a dissociate set if | ¢ E
and for every finite subset F € E and mapping m : F — {0, £1, £2} such that
[T,ery™® =1, wehave y"” =1, Vy €F.

If G is an infinite compact abelian group, then I" always contains infinite dissociate
sets ([4, p. 21]).

Now let E be an infinite dissociate set and kK € N. Define

E.= {l_[y : S is an asymmetric subset of £ U E~! with |§| = k} )

yeSs

Then ([4, p. 65]) there exists a constant A; > 0 such that

1£1. =< Awg*?| f]

0 VfeTg, 2<gq<oo.
Therefore, by Lemma 3.2 and Theorem 3.3, E, is an S,z set for 8 > k/2 and
0<a<B.

(iii) The examples of S, z sets given above require 8 > 1/2. We now show that
for B < 1/2, S, g sets need not exist.

Let G = [], Z,, where A is an infinite index set and I' = []} Z, its dual group.
Suppose E C T is an infinite subset and F a finite subset of E. The subgroup H
of I' generated by F has cardinality at most p'*!. Let V = H*. Then V is an open
subgroup of G, so m(V) > 0.

Puth = xy/m(V). Thenh = xy andso A ||, > |F|"",1 <r < oo

Next we estimate |/ || 5, BY the Plancherel theorem,

]z = 1/mvy = k], = 141,
so that m(V) |H| = 1. Therefore

k], <1+e+ fc G0 og? Ih(x)dx <4+ —— [ og* 1y

=4+ (log" |H|)* < C(log™ [H|)* = C |F|" (log p)*.
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Taking 8 < 1/2and r = 28/a < 1/a, we have

||l;|E||e’/||h — o0 as |F|— oc.

B,
Hence éa | e € £,(E), which proves that E is not an S, g set.

Now we include an application of the preceding results to some multiplier problems.
For the following definition we refer to Hewitt and Ross ([2, p. 368]).

DEFINITION 3.8. Let S; and S, be subsets of L'(G). A bounded function ¢ on I is
said to define a multiplier from S, to S, if ¢ f € S, forevery f € §;.

The set of muitipliers from S, to S, is denoted by (8, $;). For 1 < r < oc and
SCLletS, = [feS:fee,(r)].
Using the Plancherel theorem and Holder’s inequality, we have,

(3.9) erp/(r—p) g (L,l-a L;;)’

provided1 < p <2 <r < o0.

It is not known if the inclusion in (3.9) is proper. We are not able to settle this
issue. Instead, we prove the proper inclusion in the larger space ((B,),, L ;). (In fact
forany S € L', (L}, L},) C (., L:,).)

THEOREM 3.10. Let 0 < a < 1/2 and B,, = {f € B, : fe e,(r)]. Then
rpjr-py € (B, L), provided 1 < p <2and1/a <r < oo.

PROOF. Let E be an infinite S, 1, subset of I". Then éa | e € £1,.(E). Hence using
the Plancherel theorem and Holder’s inequality we see that

ep/(l—pa)(E) g (Bou L:,) .C_ (Ba,n Lll,)
Since r > 1/a, we observe that p/(1 — pa) > rp/(r — p) and therefore
erp/(r—p)(E) Z ep/(l—pa)(E)-

Theorem (3.10) now follows from this observation.

REMARK. If @ > 1/2 then (B,,, L,) 2 (By2.r, L}). It follows from Theorem 3.10
that £,/ & (Bija,, L}), provided 1 < p < 2 and r > 2. Hence, {,,/—p &
(Ba,, L)), providede > 1/2and1 < p <2 < r < o0.
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Section 4

In Section 3, we gave a characterization of S, s sets. It is easy to see thatif 8, < B,
then every S, g set is also an S, 5, set. It is natural to ask whether the class of S, g,
sets is a proper subclass of S, g, sets. In this section we show that for each positive
integer k there exists a subset £ C I" which is an S, /» set for 0 < o < k/2 but not
an S, 4 set forany B < k/2.

The main result of this section is Theorem 4.1 from which the above result about
S«.p sets follows as an immediate consequence. We would like to mention that the
problem of deciding whether the classes of S, g sets are distinct for distinct indices o
remains unresolved.

THEOREM 4.1. Let G be an infinite compact abelian group and k € N. Then there
exists a subset E, C I" and a constant C, such that
@ [fl,. <Cq*?|fl, VYfe€Ts and 2<gq<oo,
() Bulg, €6(E), O<a<k/2 and r<kfa.

COROLLARY 4.2. Let k € N. Then there exists a subset E C T" which is an S, 4,2
setfor0 <a < k/2,butnotan S, g setfor0 <a < f <k/2.

PROOF. This is an immediate consequence of Theorems 3.3 and 4.1.

In addition, we now get the result mentioned in the introduction.

COROLLARY 4.3. Let G be an infinite compact abelian group, E a Sidon subset of
I'yand 0 < a < 1/2. Then B, |g C €,,,(E). Further, there exists a Sidon subset

E C T for which B, | g € £.(E) for everyr < 1/a.

PROOF. If E is a Sidon subset, then it is an S, ;,, subset (Example 3.7(i)). The set
E constructed in Theorem 4.1 for k = 1 is a Sidon subset (cf. Corollary 3.6) and
B, g & ¢.(E) forr < 1/a, by (ii).

PROOF OF THEOREM 4.1. There are several steps in the proof of the above theorem.
We first prove the theorem in three special cases, namely, when I' = Z, Z(p™) and
[Tic4 Z.» where A is an infinite set. Then we prove three lemmas and finally using
these and the structure theorem for compact abelian groups, we reduce the general
case to these three special cases.

In the proof for each of the three groups mentioned above, we start with a dissociate
set E, so that (cf. Example (ii) of Section 3) the set £, = E+ E + --- 4+ E (k-
times) satisfies inequality (i) of the theorem. Next we construct a sequence {4, } of
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|, — Oasn —> oo, where
1 <r <k/aand 0 < o < k/2. Conclusion (ii) then follows from the closed graph
theorem.

44 THECASET = Z.
Let E = {3‘}::1. Then E is a Hadamard set with Hadamard constant 3. Hence E
is a dissociate set ([4, p. 23]). As remarked above, the set

Ep={3"+3%+.-4+3%: feN, j=1,2...,k}

satisfies inequality (i) with a constant depending only on k.
Let K, denote the nth Fejer kernel. For n large enough (so that K, () < 1/2 if
[t| > m/2) we have

Kd|l, <1+7me+2 [ K,(x)(log" K,(x))*dx.
| Kalls,

Since K, (x) < min(n + 1, 7%/ (n + 1)x?), we get

1/(n+1)

K], < 14em+2 f (n + D(log(n + 1))*dx

/2

/.(+uﬂ( m+nﬁ)“

1/(n+1)
2

T
n+1)

<1l+4+emr+20ogn+ 1) +2
< Cy(log(n + 1))

(log 7>(n + 1))*(n + 1 — 2/m)

Now let h, = K3.,. Then for n large,
|5 5, < CQlog3"k)* = Cin®.

To estimate ||f1,, e | . We need an upper bound on |(1,3"k] N E;|. For this, we
observe thatif m = 3% +3% + ... + 3% with £, < £, < --- < £, then the k-tuple
(€1, ¢,, ..., L) is uniquely determined by m. Hence

|[1, 3"k N Ekl >"Cy > C,n*  for n large enough.

Therefore ||ﬁ,, | &, ||£ > Cnt"andifl < r < k/a,
Qasn — oc.

Al g ], < Cener —
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4.5 THECASET = Z(p™).

Recall that Z(p>=) = {j/p": je€ Z, ne Z}/Z, where p is a prime. We write
[j/p"] for the elements (equivalence classes) of Z(p™).

In the following we assume p # 2. For p = 2 some modification is needed which
we indicate at the end.

Let E = {[1/p"] : n € Z}. Then E is a dissociate set, for if )" &; [1/p"] =0,
where ny < n, < --- < n,and k; € {£1, £2}, then

m—1 m—1
km/pnm + ij/pn, eZ or kmp”m—l/pnm + p"m~l ij/p"/ cZ.
=1 )

But then , k,, p"=' /p"™ € Z which is impossible since p # 2.

Now fix k > Oandlet £, = E + E + - -- + E (k-times). The inequality (i) of the
theorem holds for E, (see Example (ii), Section 3).

Next let H, be the subgroup generated by [1/p"], that is,

H,={lj/p"1:j=12,...,p"}, |HJ|=p"

LetV, = H,,l and put s, = xy,/m(V,). Then ﬁ,, = xu,. We have seen in Example
(iii), Section 3 that

m(V,)|H, =1 and |h,|, < C(logp)n.

We now estimate |]I;,, le|l, = Ha O ESY.
Clearly |H, N E;| < n*. If m € E, has the representation

m=1/p" +1/p%2+...4+1/p%* (@modZ), with £ <€ <--- < ¥,
then the k-tuple (€,, €5, . .., £;) is uniquely determined by m. For, if not, suppose
1/p“ +1/p% +---+1/p* =1/p" +1/p* +---+1/p* (modZ)

withé, <l <--- < frand j < jp < -+ < ji.
Since both terms are less than 1, equality holds without mod Z. Then after
cancellation we may assume ¢, < j;. Multiplying by p‘' we get,

1+p5|—52 +.__+p51—ek — p&—jl +pl|—jz +.._+pll_jk

which is a contradiction since the left side is greater than 1, while the right is less than 1.
We conclude from this that |H, N E;| > "Cy > Cyn* for large n, so that

Cknk/r < ”il,, |Ek ”lr < nk/r

and the conclusion (ii) of the theorem follows if 1 < r < k/a.
For the case p = 2, we start with the set £ = {[1/22"] in € Z}. Then the above
proof with p replaced by 22 works in exactly the same way.
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46 THECASET =[], Z,..

Here A is an infinite set, each g, is a prime and Z,, = {1, Wy, wg, e a)Z""},
where w, is a primitive g,th root of unity. I' is the dual of the compact abelian group
G =Tl,es Z,,- We consider two cases:

Casel sup,., q. < 0o. Inthis case there exists a countably infinite set {o, ] C A
such that for some prime p, g, = p for all n. Let y, be a character on G defined by
Vo(@) = w,,, w € G.

Then each y, has order p. Let E = {y,}°,. Now E is an independent set, hence a
dissociate set. Therefore the set E, = E + E + - - - + E (k-times) satisfies inequality
(i) of Theorem 4.1.

Let H, be the subgroup generated by {y; };’
xv,/m(V,). Then h, = x, and |H,| = p".

By the same argument as in the case I' = Z(p*), we see that

_, and let V, = H+. Put h, =

[all, < Can®

and Cin*” < ||k, |||, < n*”, and conclusion (ii) follows.

Case2 supg, = oo.
a€A

Choose {g,, } such that 9%* < ¢, < gu, < -+ < gu, ... and lim g, = co. Asin
case 1, define y,(w) = w,,, w € G. Then y, is of order ¢q,,. i

We let H, be the subgroup generated by {y; };'=1 and let V, = H} and put &, =
xv,/m(Vy).

Then h, = xn,, |Hal =[], 9a;» and

|4, < CloglH,D)* < Cllog [ 4a)"

j=1

o0

In this case, constructing the set E; from the set E = {y,},, as in the earlier cases
does not give the required estimate for ]|ft,, le | .- We overcome this difficulty as
follows:

For each n, choose m, as the largest integer for which (3k)™*! < g, (where we
fix k € N as in the statement of the theorem).

Let £ = {yf")j :neN, j=012,....,m,— 1}. To see that E is a dissociate
set, itis enough to show that for each n, the subset {y,,, ¥,*, . .., ¥®¥™ "' } isadissociate
set, since the set {y,} is independent. For this, suppose

(y")p.ek)" (yn)pz(sk)‘z ...(yn)pmok)‘m =1 with p; = %1, %2
and0 <¢, <€ <--- <¥, <m,. Then, since p, is not divisible by 3,

PiBR)* 4 -+ puBR)" = (BR)" (D1 + P23 + - - + pa(3K)7H) £ 0.
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Moreover

m,—1

<2) Gk < Gb™ < g,
i=0

> piBhY
j=1

so that we obtain the contradiction

() EF PO £ 1

Now if we take E;, = E + E +- - -+ E (k-times), the inequality (i) of the theorem holds.
It remains to estimate ||fl,. | £, "z = |H, N E;|"". Itis clear that |H, N E;| < Zi™C,.

We actually show that |H, N E;| = Xi™C,. For this, we show that each of
the elements (y;,)" (y,)®” ... (3, )" (where 1 < ji < --- < ji < n and
0 < ¢; < my,) are distinct.

This will follow, if we show that (y,)Z7 %% never equals 1, where s; and m are
integers suchthat 0 < |s;| <2k, 1 <m <2kand0<¢, <, <--- < ¥, < (B)™.
It is enough to show that 0 < [s1(3k)‘l 4+ 4 S (3k)""| < qo,- Now

5130 + - + 5, (30| < 2GR < BB < gs,.
Next, suppose s,(3k)" + - - - + 5,,(3k)* = 0. Then
§) = —(3k)€2—-21 {52 + s3(3k)l3—lz 4ot os, (3/{)8"‘_82} ,

which is not possible since 0 < |s;] < 2k.
Thus we have seen that

n

. k
IH,,ﬂEk|=Z""kaZC,Q(Zm,-) for large n
1

> C,z(loglquaj)k.

Therefore ||12,, e . >C (log IT;_, qaj)k/ ", which is the required estimate.

4.7. To complete the proof of Theorem 4.1 for a compact abelian group, we need
three short lemmas. We shall need the following definitions ([4, p. 24]).

4.8 DEFINITIONS. Let s be a non-negative integer, £y a subset of I" and ¢ € T.
R, (Ey, ¥) denotes the number (possibly 00) of asymmetric subsets S of E = E,UE,"
satisfying |S} = s and ]_[yes y = yr. Note that R;(Ey, ¥) = R,(E, ¢) for all s and
Y.

A subset Ey C I is called a Rider set if there exists a constant B > 0 such that
R,(Ey, 1) < B° forall s. Note that if Ej is a dissociate set, then E is a Rider set since
R,(Ey, 1) =0foralls > 1.
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If E is a Rider set, then inequality (i) of Theorem 4.1 holds for E, ([4, p. 65]).

For convenience, we will say that the group G has property P, if there exists a
Rider set E C I" such that B, | ; Z £,(E,) for0 < a < k/2and r < k/a.

Note that if a group G has property P;, then Theorem 4.1 holds for G.

LEMMA 4.9. Let H be a closed subgroup of G. Suppose G/H has property P,.
Then G has property P,.

PROOF. By hypothesis there exists a Rider subset E C (G/H) = H* and a function
g € B,(G/H) such that g |, & £,(E;). We will show that the same set works for G
also.

Since g € B,(G/H),gom € B,(G), where ® : G —> G/H is the quotient map.
Furthermore (g o 7)(y) = g(y) for y € H*. Therefore (g o n)| g, & ¢,(E:) and the
lemma is proved.

LEMMA 4.10. Let {G,},. 4 be a family of infinite compact abelian groups and G =
[Lica G:. If for some ty € A, G, has property Py, then G has property P,.

PROOF. We write x = (x,),c4 for elements of G with ¢ = (e,),4 as the identity
element , and y = (¥,);c4 for elements of the dual group I'. By hypothesis, there
exists a Rider set E C I, such that B.(G,))'| ¢, € ¢,(E).

Let F =[],,, e, X E. Thenit s easy to see that F is a Rider subset of I'.

If g € B,(G,,) is such that g |, & ¢,(E,), define g,(x) = g(x,), x € G. Then
g1 € B,(G) and &,(y) = §(v,,). Hence &, | 5, & £,(Fp).

3 LEMMA 4.11. Let H be an open subgroup of G. If there exists a dissociate subset
E CT'/H* such that B,(HY| g & L. (Ey), then G has property Py.

PROOF. Suppose E= {V« : @ € A} € '/ H* satisfies the hypothesis of the lemma.,
Let y, be any representative of the coset y, foreacha € A, and £ = {y, : @« € A}.
We claim that E is the required Rider set.

If {ya,, Vags v s Van} is an asymmetric subset of E U E~! such that 1 =
Yoy - Yay - Ye,» then 1= Vo * Y~ Va,- SiNCE E is a dissociate set Ve, = 1 for
each j = 1,2, ..., n, but this is not possible since 1 & E. Therefore R,(E, 1) =0
and so E is a Rider set.

Now let f € B.(H) be such that f | 5 ¢ £,(E}). Define

[ Fx) ifxeH,
g(x)_{ 0 ifxg¢H.
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Then g € B,(G) and

) = f (=, va)g(x) dmg(x) = C / (=%, yo) f () dmp () = € F (v)
H H

where mg | ; = Cmy.
Therefore g | ;, & £,(E). This completes the proof of the lemma.

4.12 THE CONCLUSION OF THE PROOF OF THEOREM 4.1. We consider two cases.
Firstly, suppose I" is not a torsion group. Then G contains a closed subgroup H
such that G/H is isomorphic to the circle group T. By Lemma 4.9 and the case
I' = Z, the theorem is true.

Now if T" is a torsion group, then I' is a weak direct product of p-primary groups
([1, A.3]). By Lemma 4.10, we may assume that I is a p-primary group. Now there
are two subcases:

Subcase 1. I" is a p-primary divisible group. Then I is a weak direct product of
groups of the form Z(p°) ([1, A 14]). By Lemma 4.10 and the proof in the case
Z({p*), the theorem holds in this case.

Subcase 2. T is a p-primary non-divisible group. Then I" contains a subgroup
B =TT Z,, such that I'/B is divisible ([1, A 24]). Now B = (G/B"), so that if B
is infinite, the theorem holds for G/B+, hence also for G, by Lemma 4.8.

Finally if B is finite, then B+ is an open subgroup of G and (B*) = I'/ B which
is a divisible p-primary group. By case 1 above the theorem holds for B*. Using
Lemma 4.9 and the proof for the case Z(p™), we have in fact a dissociate set £ C I'/B
such that B, (B i Z E,(Ek). By Lemma 4.11, there exists a Rider set £ C I" such
that B,(G)| g, € £,(E,) and the theorem holds for G.
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