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The influence of ice melange on fjord seiches
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ABSTRACT. We compute the eigenmodes (seiches) of the barotropic and baroclinic hydrodynamic
equations for an idealized fjord having length and depth scales similar to those of Ilulissat Icefjord,
Greenland, into which Jakobshavn Isbræ (also known as Sermeq Kujalleq) discharges. The purpose of
the computation is to determine the fjord’s seiche behavior when forced by iceberg calving, capsize
and melange movement. Poorly constrained bathymetry and stratification details are an acknowledged
obstacle. We are, nevertheless, able to make general statements about the spectra of external and internal
seiches using numerical simulations of ideal one-dimensional channel geometry. Of particular signifi-
cance in our computation is the role of weakly coupled ice melange, which we idealize as a simple array
of 20 icebergs of uniform dimensions equally spaced within the fjord. We find that the presence of these
icebergs acts to (1) slow down the propagation of both external and internal seiches and (2) introduce
band gaps where energy propagation (group velocity) vanishes. If energy is introduced into the fjord
within the period range covered by a band gap, it will remain trapped as an evanescent oscillatory mode
near its source, thus contributing to localized energy dissipation and ice/melange fragmentation.

INTRODUCTION
Recent study of fjords into which large outlet glaciers calve
shows that long-period, large-scale surface gravity waves
(Amundson and others, 2008; Nettles and others, 2008)
and seiches (Amundson and others, 2012) are excited by
the calving and capsize of large icebergs. This excitation is
not surprising because considerable energy is liberated by
the calving and capsize process (Burton and others, 2011;
MacAyeal and others, 2011). Internal seiches (e.g. Csanady,
1973; Schwab, 1977; Arneborg and Liljebladh, 2001) in the
stratified waters of fjords are also probable outcomes of large
iceberg calving and capsize. These seiches are important for
several reasons. First, they cause commotion within the mass
of ice melange that typically fills the fjord, thereby causing
further break-up and capsize. Second, they determine how
the fjord will respond to forcing by the external ocean beyond
(e.g. as a harbor seiche that is excited by atmospheric events,
tsunami arrivals and arrival of storm waves). Third, they offer
a means of quantifying the energy associated with iceberg
calving and capsize, when direct local measurements of
the event are impractical due to the hazards of deploying
instruments on or below ice melange.
Interest in seiches, also called harbor oscillations, free

oscillations and normal modes, in the ocean environment is a
long-standing object of considerable research because of the
many practicalities associated with harbor design (e.g. Miles
and Munk, 1961). (An overview of the literature on seiches
and harbor oscillations is provided by Rabinovich, 2009.) On
a scale much larger than harbors, the normal modes of lakes,
bays and even the entire world ocean have been investigated
for theoretical and pedagogical reasons. Mortimer and Fee
(1976) investigated the normal modes of Lakes Michigan
and Superior, central North America, because their seiches
represent the ‘tides’ of these large inland water bodies.
Platzman (1978) (see also Platzman, 1984; Gotis, 1999)
computed the normal modes of the entire global ocean to be
used as a means of synthesizing the diurnal and semidiurnal

tides. While the application of normal-mode synthesis is not
a common method in the numerical simulation of tides, the
work of Platzman (1984) offers insight into why various tidal
constituents are amplified in various parts of theworld ocean.
For example, the relatively large amplitude of the diurnal
tide along the circumference of Antarctica was found to be
related to a normal mode of the world ocean that expresses
highest amplitude around Antarctica that has a frequency
close to that of the diurnal tides. Of interest to glaciologists,
Schwab and Rao (1977) noted the change of frequencies of
normal modes in Saginaw Bay, off Lake Huron, central North
America, associated with lake ice cover.
In the present study, we examine the frequency spectrum

of the normal modes of a large fjord (e.g. resembling
Ilulissat Icefjord) associated with a major outlet glacier (e.g.
resembling Jakobshavn Isbræ) of the Greenland ice sheet.
The purpose of our examination is to conceptualize the
influence of ice melange coverage on the wave-propagation
characteristics (both surface and internal) of the fjord. The
work is not designed to provide an accurate simulation of
any specific phenomena, but rather to provide a starting
point in the effort to understand what ice melange does
to the dynamics that determines how energy is transmitted
by waves through a fjord. Our methodology is simple:
we construct, using COMSOLTM, eigensolutions of the
surface wave and internal wave equations and examine the
variability of the eigenfrequencies under the presence or
absence of large icebergs (an array of 20 equally spaced
1 km wide icebergs) within the fjord. Anticipating the results
of similar studies of simple systems influenced by regularly
spaced imperfections (the icebergs), our objective is to
determine if band gaps (e.g. Chou, 1998) interrupt spectra
of normal modes in the fjord due to the presence of ice.
The significance of band gaps, should they prove to exist, is
to forbid wave propagation within the frequency band. This
means that oscillatory motions of the fjord with frequencies
in these gaps will be evanescent, i.e. trapped near the source.
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Fig. 1. Geometry of an idealized fjord containing icebergs for which
seich periods are computed. (a) The two-dimensional cross section
of the domain on which normal modes are computed. The 60 km
long fjord is 750m deep, closed at one end by a vertical glacier
terminus, and connected to an open ocean at the other end. Ice
melange is represented by filling the fjord with 20 discrete icebergs
that are spaced evenly along the length of the fjord. The fjord is
assumed to possess a two-layer density structure with a density
interface (across which the density varies by 5 kgm−3) that separates
a relatively fresh layer (250m thick) from a relatively salty layer
(500m thick). (b) Internal modes are computed by assuming an
iceberg draft of 200m, that reduces the upper density layer thickness
from 250m to 50m in segments of the fjord in which icebergs
float. (c) External, barotropic modes are computed for the free
surface (water/air interface) of the fjord, assuming that the combined
iceberg/ocean system has two degrees of freedom in the segments
of the fjord where icebergs float. The two degrees of freedom are
vertical heave, Ż , and horizontal surge, Ẋ .

PROBLEM SET-UP
We adopt a simple, idealized one-dimensional channel
geometry of constant depth (Fig. 1). This simplification is
consistent with the fact that the fjord resembles a narrow
channel, 60 km long and∼8 km wide. Although seiches with
cross-channel structure would be important components
of the fjord’s hydrodynamic response to forcing, we do
not consider these modes in the present study. Following
observations reported by Holland and others (2008) (see
their figs 1d and 3b), we take the channel to be 750m deep
and impose a two-layer stratification structure consisting of a
250m thick upper layer of relatively fresh water and a 500m
thick lower layer of more dense salty water. We assume a
density difference, Δρ, of 5 kgm−3, and an average density,
ρ, of 1023kgm−3. (Specification of density parameters
associated with a two-layer idealization of fjord stratification
is highly idealized; see Holland and others, 2008; Straneo
and others, 2011, for an overview of fjord hydrography.)
For the computation of normal modes in circumstances

where the fjord is completely free of ice melange, we use
the two following wave equations for external and internal
modes, respectively:

∂2η

∂t2
+ c2

∂2η

∂x2
= 0 (1)

and
∂2η̃

∂t2
+ c̃2

∂2η̃

∂x2
= 0, (2)

where η(x, t ) and η̃(x, t ) are the free-surface and density-
interface excursions, respectively, x and t are horizontal
coordinate and time, respectively, and c and c̃ are the phase

velocities for shallow water waves on the free surface and
density interface, respectively, given by:

c =
√
gH (3)

and

c̃ =

√
Δρ

ρ
g
HlHu
Hl +Hu

, (4)

where g = 9.81m s−2 is the acceleration of gravity, H =
750m is the depth of the fjord (Holland and others, 2008),
and Hl = 500m and Hu = 250m are the thickness of the
lower and upper density layers, respectively. In the treatment
of ice melange, we shall assume that c̃ is a function of x
(depending on whether ice blocks some of the vertical extent
of the upper layer) and that c applies to the ice-free case, with
simplified low-order dynamics covering the hydrodynamics
of ice-covered water.

Idealized treatment of ice melange
We treat ice melange as an array of 20 icebergs of
uniform dimensions spaced equally (Fig. 1) along the 60 km
channel. The actual ice melange is extremely complex and
is composed of thousands of icebergs (Ahn and Box, 2010;
Amundson and others, 2010). The icebergs are 1000m wide
and occupy 200m of the water column (giving a vertical
dimension determined by the density ratio of ice and water).
These icebergs are roughly the dimensions that would be
obtained from the calving terminus of Jakobshavn Isbræ if the
icebergs are assumed to capsize soon after calving, and the
aspect ratio (initial width to thickness ratio) is less than 1/2.

External mode
In the case of computing the effect of the icebergs on
external modes, we assume that the icebergs constrain the
water movement in a manner consistent with having two
degrees of freedom: vertical motion (heave) described by
Zj (t ), and horizontal motion (surge) described by Xj (t ), where
j = 1, . . . , 20 is an index identifying individual icebergs
in the array. For the present, we disregard other degrees of
freedom that icebergs may have involving pitch, sway and
roll. We further simplify the surge motion of the icebergs by
assuming that their horizontal position is held fixed (Ẋj = 0),
but that water flow is nonzero between the iceberg’s basal
surface and the seabed through a vertically restricted water
column. The governing equations for Zj (t ) are

Z̈ + ω2Z = ω2
(
ηl + ηr
2

)
, (5)

where ω =
√
(g/hi)(ρ/ρi) is the intrinsic frequency of iceberg

bobbing motions (Schwerdtfeger, 1980), ρi = 900 kgm−3

is the assumed density of ice, hi = 200m is the draft
of the icebergs (vertical dimension of submerged portion)
and ηl and ηr are the free-surface elevation on the left
(down-fjord) and right (up-fjord) sides of the iceberg, xjl
and xjr , respectively. Equation (5) represents the icebergs as
oscillators with an intrinsic frequency that are forced by the
average, buoyant force provided by excursions of the free
surface on either side (hence the averaging of η on left and
right). The volume change of the water column beneath the
iceberg as it heaves requires horizontal fluxes, assumed to be
equal, on the left- and right-side boundaries of the iceberg:

ql = −qr = ŻW
2
, (6)
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been studied (e.g. the study of the ‘harbor paradox’ by Miles
and Munk (1961), who examined the dependence of seiche
amplitude on various breakwater structures intended to
protect harbors from the open ocean).) The present study has
achieved the goal of showing how the presence of regularly
spaced floating icebergs (an admittedly simplified view of ice
melange) can elicit important structural changes in the fjord’s
seiche spectrum. One can argue that this demonstration
may possibly over-emphasize effects that are unlikely to be
possible in fjords that are filled with more realistic patterns of
ice melange. Indeed, our intention in this study has been to
emphasize and illustrate, as clearly as possible, the strongest
possible effects; and we have thus chosen to idealize and
simplify our study in ways which achieve this purpose. In a
realistic fjord, the size of the floating ice bodies and their
spacing will be far more irregular than the manner in which
they have been approximated here. Future study will yield a
sense of how the more disordered geometry of ice melange
will influence wave energy propagation in the fjord. Perhaps
the most substantial conclusion of the present study is to
serve as motivation for more difficult work to come.
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