A CLASS OF ABELIAN GROUPS

W. T. TUTTE

1. Introduction. If M is any finite set we define a chain on M as a mapping f of M into the set of ordinary integers. If $a \in M$ then $f(a)$ is the coefficient of a in the chain f. The set of all $a \in M$ such that $f(a) \neq 0$ is the domain $|f|$ of f. If $|f|$ is null, that is if $f(a)=0$ for all a, then f is the zero chain on M. If M is null it is convenient to say that there is just one chain, a zero chain, on M.

The $\operatorname{sum} f+g$ of two chains f and g on M is a chain on M defined by the following rule:

$$
\begin{equation*}
(f+g)(a)=f(a)+g(a), \quad a \in M \tag{1.1}
\end{equation*}
$$

If M is null we take this to mean that the sum of the zero chain on M with itself is again the zero chain on M.

With this definition of addition the chains on M are the elements of an additive Abelian group $A(M)$. The zero element of $A(M)$ is the zero chain on M and the negative in $A(M)$ of a chain f on M is obtained from f by multiplying each coefficient $f(a)$ by -1 . We define a chain-group on M as any subgroup of $A(M)$.

Let N be any chain-group on M. A chain f of N is an elementary chain of N (written f elc N) if it is non-zero and there is no non-zero $g \in N$ such that $|g|$ is a proper subset of $|f|$. If in addition the coefficients of f are restricted to the values 0,1 and -1 we say that f is a primitive chain of N. We note that the negative of a primitive chain of N is another primitive chain of N.

We call N regular if for each elementary chain f of N there exists a primitive chain g of N such that $|g|=|f|$.

In this paper we study the properties of regular chain-groups. We find in particular that any finite graph has two associated regular chain-groups, and we relate the structure of these chain-groups to that of the graph. In discussing graphs we use the definitions and notation laid down in the introduction to (4).
2. Cycles and coboundaries on a graph. Let G be any finite graph. If $S \subseteq E(G)$ we denote by $G . S$ that subgraph of G whose edges are the members of S and whose vertices are the ends in G of the members of S. We denote by $G: S$ that subgraph of G whose edges are the members of S and whose vertices are all the vertices of G. Clearly $G . S$ may be derived from $G: S$ by suppressing its isolated vertices, that is the vertices not ends of edges of $G: S$.

We denote by $G \operatorname{ctr} S$ the graph whose vertices are the components of G : $(E(G)-S)$ and whose edges are the members of S, the ends in $G \operatorname{ctr} S$ of an

[^0]edge A being those components of $G:(E(G)-S)$ which contain as vertices the ends of A in G. We may regard $G \operatorname{ctr} S$ as obtained from G by contracting each component of $G:(E(G)-S)$ to a single point. We denote by $G \times S$ the graph obtained from $G \operatorname{ctr} S$ by suppressing its isolated vertices. These vertices are clearly those components of G whose edges all belong to $E(G)-S$.

If S is the set of edges of a circular path P in G we denote the graph $G . S$ by $G(P)$ and call it a circuit of G.

We call a graph a bond if it has just two vertices, no loops, and at least one link. Each link of course has the two vertices as its ends. A bond of G is a graph of the form $G \times S$ which is a bond.

Now let an orientation of G be given and let it be described by a function $\eta(A, a)$ as in (4). We refer to chains on $V(G)$ and $E(G)$ as 0 -chains and 1-chains on G respectively. We define their boundaries and coboundaries in the usual way. Thus the boundary ∂f of a 1 -chain f is given by

$$
\begin{equation*}
(\partial f)(a)=\sum_{A \in E(G)} \eta(A, a) f(A) \tag{2.1}
\end{equation*}
$$

and the coboundary δg of a 0 -chain g by

$$
\begin{equation*}
(\delta g)(A)=\sum_{a \in V(G)} \eta(A, a) g(a) . \tag{2.2}
\end{equation*}
$$

If $E(G)$ is null we take (2.1) to mean that ∂f is the zero chain on $V(G)$. Similarly if $V(G)$ is null δg is the zero chain on $E(G)$. A cycle on G is a 1 -chain whose boundary is the zero chain on $V(G)$.

The set of all cycles on the oriented graph G is clearly a chain-group $\Gamma(G)$ on $E(G)$. Another chain-group on $E(G)$ is the set $\Delta(G)$ of the coboundaries of the 0 -chains on G. We proceed to show that $\Gamma(G)$ and $\Delta(G)$ are regular.
(2.3) Let G. S be any circuit of G. Then there is a primitive chain g of $\Gamma(G)$ such that $|g|=S$.

Proof. There is a circular path $P=\left(a_{0}, A_{1}, \ldots, A_{r}, a_{0}\right)$ in G such that $G(P)=G . S$. Let g be a 1 -chain of G defined as follows:
(i) If $A \notin S$ then $g(A)=0$,
(ii) $g\left(A_{i}\right)=1$ or -1 according as a_{i-1} is or is not the positive end of $A_{i}(0<i \leqslant r)$.

Applying (2.1) we find that ∂g is a zero chain. Hence $g \in \Gamma(G)$.
If g is not an elementary chain of $\Gamma(G)$ there exists $k \in \Gamma(G)$ such that $|k|$ is a non-null proper subset of S. Then S has at least two elements. Hence by the definition of a circuit the elements of $|k|$ are links of G and some vertex of $G .|k|$ is an end of only one of them. This vertex must have a non-zero coefficient in ∂k, which is impossible. Accordingly g is elementary, and therefore primitive since its coefficients are restricted to the values 0,1 , and -1 .
(2.4) Suppose $S \subseteq E(G)$. Then S is the domain of an elementary chain of $\Gamma(G)$ if and only if $G . S$ is a circuit of G.

Proof. Suppose g elc $\Gamma(G)$. We show that there is a circuit $G . S$ of G such that $S \subseteq|g|$. If $G .|g|$ has a loop this result is trivial. If not, each vertex of $G .|g|$ is an end of at least two links of $G .|g|$, by (2.1). Hence, starting at an arbitrary vertex a_{0} of $G .|g|$, we can construct a path

$$
P=\left(a_{0}, A_{1}, a_{1}, A_{2}, a_{2}, \ldots\right)
$$

of arbitrary length in $G .|g|$ such that A_{i} and A_{i+1} are distinct for each i such that both exist as terms of P. We continue the path until some vertex b is repeated. Then the part of P extending from the first to the second occurrence of b is a circular path in $G .|g|$ defining a circuit $G . S$ such that $S \subseteq|g|$.

By (2.3) there exists $k \in \Gamma(G)$ such that $|k|=S \subseteq|g|$. Since g elc $\Gamma(G)$ it follows that $|g|=S$. Thus $G .|g|$ is a circuit of G.

Since the converse result is contained in (2.3) the Theorem follows.
(2.5) $\Gamma(G)$ is a regular chain-group.

Proof. Suppose f elc $\Gamma(G)$. By (2.4) there is a circuit $G . S$ of G such that $|f|=S$. Hence by (2.3) there is a primitive chain g of $\Gamma(G)$ such that $|g|=S=|f|$.
(2.6) Let $G \times S$ be any bond of G. Then there is a primitive chain g of $\Delta(G)$ such that $|g|=S$.

Proof. There are two distinct components X and Y of $G:(E(G)-S)$ such that in G each edge of S has one end in X and one in Y. Let f be the 0 -chain on G such that $f(a)=1$ if a is a vertex of X and $f(a)=0$ otherwise. Write $g=\delta f$. Then $|g|=S$ by (2.2). Further the coefficients of G are restricted to the values 0,1 , and -1 .

If g is not an elementary chain of $\Delta(G)$ there exists $k \in \Delta(G)$ such that $|k|$ is a non-null proper subset of S. Then X and Y are subgraphs of the same component, Z say, of $G:(E(G)-|k|)$. There is a 0 -chain f on G such that $k=\delta f$. Since each edge of $|k|$ has both its ends in Z there are two vertices of Z having different coefficients in f. Since Z is connected it must have a link B whose ends have different coefficients in f. But then

$$
k(B)=(\delta f)(B) \neq 0
$$

by (2.2), which is impossible. Accordingly g is elementary, and therefore primitive since its coefficients are restricted to the values 0,1 , and -1 .
(2.7) Suppose $S \subseteq E(G)$. Then S is the domain of an elementary chain of $\Delta(G)$ if and only if $G \times S$ is a bond of G.

Proof. Suppose g elc $\Delta(G)$. There is a 0 -chain f on G such that $g=\delta f$. Since g is non-zero there is, by (2.2), a link A of G with ends a and b such that $f(a) \neq f(b)$. Write $f(a)=x$. Let W be the set of all $c \in V(G)$ such that $f(c)=x$. Let $G[U]$ be that component of $G[W]$ which has a as a vertex. (Here we use the notation of (4)). Let S be the set of all links of G having just one end in $G[U]$. Then $A \in S$. Moreover $S \subseteq|g|$, by (2.2).

Now $G[U]$ is one component of $G:(E(G)-S)$. Let Z be the component of $G:(E(G)-S)$ which has b as a vertex and let T be the set of all links of G having just one end in Z. Then $A \in T \subseteq S$. Let f^{\prime} be that 0 -chain on G in which the vertices of Z have coefficient 1 and all other vertices of G have coefficient 0 . Then

$$
A \subseteq\left|\delta f^{\prime}\right|=T \subseteq S \subseteq|g|
$$

by (2.2). Hence $\left|\delta f^{\prime}\right|=|g|$, since g elc $\Delta(G)$, and therefore $T=S=|g|$.
We now see that each edge of S has one end in $G[U]$ and one in Z. Hence $G \times S$, that is $G \times|g|$, is a bond of G.

Since the converse result is contained in (2.6) the theorem follows.
$(2.8) \Delta(G)$ is a regular chain-group.
Proof. Suppose f elc $\Delta(G)$. By (2.7) there is a bond $G \times S$ of G such that $|f|=S$. Hence by (2.6) there is a primitive chain g of $\Delta(G)$ such that $|g|=S=$ $|f|$.
3. Some operations on chain-groups. Let N be any chain-group on a set M. Let a subset S of M be chosen and let the coefficient of each member of S in each chain of N be multiplied by -1 . The resulting chains are clearly the elements of a chain-group N^{\prime} on M. We say that N^{\prime} is obtained from N by reorienting the members of S.

Suppose M is the set of edges of an oriented graph G. By reorienting the members of S in G we mean interchanging positive and negative ends for each edge of G in S. By (2.1) and (2.2) the effect of this operation on the chaingroups $\Gamma(G)$ and $\Delta(G)$ is to reorient the members of S in each of them.

Properties of chain-groups which are invariant under reorientation are of special interest. Clearly one such property is that of regularity. We note also that the class of domains of elementary chain-groups is invariant under reorientation. In the case of $\Gamma(G)$ and $\Delta(G)$ the invariant properties correspond to properties of the underlying unoriented graph.

If $f \in N$ we define the restriction $f . S$ of f to S as that chain on S in which each $a \in S$ has the same coefficient as in f.

The restrictions to S of the chains of N are clearly the elements of a chaingroup on S. We denote this chain-group by N. S. Another chain-group on S is the set of restrictions to S of those chains f of N for which $|f| \subseteq S$. We denote this by $N \times S$. If $T \subseteq S \subseteq M$ the following identities hold:

$$
\begin{align*}
& (N \cdot S) \cdot T=N \cdot T \tag{3.1}\\
& (N \times S) \times T=N \times T \tag{3.2}\\
& (N \cdot S) \times T=(N \times(M-(S-T))) \cdot T \tag{3.3}\\
& (N \times S) \cdot T=(N \cdot(M-(S-T))) \times T \tag{3.4}
\end{align*}
$$

Formulae (3.1) and (3.2) follow at once from the definitions. To prove (3.3) we observe that each side is the set of restrictions to T of those chains f of N
for which $|f| \cap(S-T)$ is null. We obtain (3.4) by writing $M-(S-T)$ for S in (3.3).
(3.5) If N is regular then $N . S$ and $N \times S$ are regular.

Proof. It is clear that the elementary and primitive chains of $N \times S$ are the restrictions to S of those elementary and primitive chains respectively of N whose domains are subsets of S. Hence $N \times S$ is regular.

Now suppose f elc ($N . S$). There exists $g \in N$ such that $f=g . S$. Choose such a g so that $|g|$ has the least possible number of elements. Since N is regular it has a primitive chain h such that $|h| \subseteq|g|$. If $|h|$ does not meet S we can by adding h or $-h$ to g a sufficient number of times obtain $g^{\prime} \in N$ such that $g^{\prime} . S=f$ and $\left|g^{\prime}\right|$ is a proper subset of $|g|$, contrary to the definition of g. We deduce that there is a non-zero chain $k=h . S$ of $N . S$ whose coefficients are restricted to the values 0,1 , and -1 and which satisfies $|k| \subseteq|h|$. Since f elc ($N . S$) the chain k satisfies $|k|=|f|$ and is primitive. Thus $N . S$ satisfies the definition of a regular chain-group.
4. Dendroids and representative matrices. If f is a chain on a finite set M and n is an integer we denote by $n f$ the chain obtained from f by multiplying each coefficient by n. It is clear that any chain-group containing f as an element contains also $n f$.

Let N be any chain-group on a finite set M.
We define a dendroid of N as a subset D of M such that D, but no proper subset of D, meets the domain of every non-zero chain of N. If the only element of N is the zero chain then the null subset of M is the only dendroid of N. In every other case M meets the domain of every non-zero chain of N and therefore some subset of M is a dendroid of N.

Suppose that D is a dendroid of N and that $a \in D$. There exists $f \in N$ such that $|f|$ is non-null and $|f| \cap(D-\{a\})$ is null. It follows that $|f| \cap D=\{a\}$ and hence that $f(a) \neq 0$. We can clearly choose f so that $f(a)$ is positive. We denote a choice of f for which $f(a)$ has the least possible positive value by $J^{D}{ }_{a}$. There is only one such chain $J^{D}{ }_{a}$, for the difference of two distinct ones would be a non-zero chain of N with a domain not meeting D.
(4.1) $J^{D}{ }_{a}$ is an elementary chain of N.

Proof. Suppose k is a non-zero chain of N such that $|k|$ is a proper subset of $\left|J^{D}\right|$. Write $J^{D}(a)=m$ and $k(a)=n$. Since $D \cap|k|$ is non-null we have $n \neq 0$. The chain $n J_{a}{ }_{a}-m k$ of N is zero since its domain does not meet D. Hence $|k|=\left|J^{D}{ }_{a}\right|$, contrary to the definition of k.
(4.2) If N is regular $J^{D}{ }_{a}$ is primitive

Proof. By (4.1) and the regularity of N there is a primitive chain g of N such that $|g|=\left|J^{D}{ }_{a}\right|$. Replacing g by its negative if necessary we can arrange that $g(a)=1$. Then by the definition and uniqueness of $J_{a}{ }_{a}$ we have $g=J_{a}{ }_{a}$.
(4.3) Suppose N is regular and has a non-null dendroid D. Then for each chain J of N we have.

$$
J=\sum_{a \in D} J(a) J^{D} a
$$

Proof. Write

$$
J^{\prime}=J-\sum_{a \in D} J(a) J_{a}^{D} .
$$

It is clear, by (4.2), that $\left|J^{\prime}\right|$ does not meet D. Hence J^{\prime} is a zero chain.
In the rest of this section we suppose that the set M is non-null. We enumerate its elements as a_{1}, \ldots, a_{n}. If f is any chain on M we refer to the row-vector $\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\}$ as the representative vector of f with respect to the chosen enumeration. Suppose R is a matrix of r rows and n columns whose elements are integers and whose rows are linearly independent. Then the set of chains on M whose representative vectors are the linear combinations of the rows of R with integral coefficients are the elements of a chain-group on M. If this chain-group is N we say that R is a representative matrix of N with respect to the chosen enumeration of the elements of M.

By the general theory of Abelian groups every chain-group on M having at least one non-zero element has a representative matrix. If N is a regular chaingroup of this kind we may form a representative matrix R as follows. We select a dendroid D, necessarily non-null, and take as the rows of R the representative vectors of the corresponding chains $J^{D}{ }_{a}$. It is easily seen that these vectors are linearly independent. It then follows from (4.3) that R is a representative matrix of N. We say that the representative matrix R thus constructed is associated with the dendroid D.

Suppose we have a representative matrix R of N, where N is not necessarily regular. Then if $S \subseteq M$ we denote by $R(S)$ the submatrix of R constituted by those columns of R which correspond to members of S. If $R(S)$ is square we denote its determinant by $\operatorname{det} R(S)$.
(4.4) Let R be an r-rowed representative matrix of N. Then a subset S of M is a dendroid of N if and only if it has just r elements and is such that $\operatorname{det} R(S) \neq 0$.

Proof. If the rank of $R(S)$ is less than r some linear combination of the rows of R with integral coefficients not all zero has only zeros in the columns corresponding to members of S. The corresponding chain of N is non-zero and has a domain not meeting S. Hence S is not a dendroid of N. In particular no dendroid of N has fewer than r elements.

If the rank $R(S)$ is r there is a subset T of S of just r elements such that $\operatorname{det} R(T) \neq 0$. Then the rows of $R(T)$ are linearly independent. Consequently T meets the domain of each non-zero chain of N and so some subset of T is a dendroid of N. This subset must be T itself since a dendroid of N has at least r elements. We conclude that S is a dendroid of N if it has r elements but not if it has more than r.

It follows from (4.4) that all the dendroids of N have the same number r of elements, and that each representative matrix of N has r rows. We call r the rank of N and denote it also by $r(N)$. The Theorem does not of course apply to the case in which N consists solely of the zero chain. In that case we write $r(N)=0$. Then the only dendroid of N has $r(N)$ elements.
(4.5) Let R be a matrix of r rows and n columns whose elements are integers and whose rows are linearly independent. Let M be a finite set of n elements. Then R is a representative matrix of a regular chain-group on M if and only if the determinants of its square submatrices of order r are restricted to the values 0,1 , and -1 .

Proof. Suppose first that R is a representative matrix of a regular chaingroup N on M. Let $R(S)$ be any square submatrix of R of order r.

If S is not a dendroid of N then $\operatorname{det} R(S)=0$, by (4.4). If S is a dendroid of N let R^{\prime} be a representative matrix of N associated with S, and corresponding to the same enumeration of M as R. The rows of R^{\prime} must be linear combinations of the rows of R with integral coefficients. Hence there is a square matrix P of order r whose elements are integers and which satisfies $R^{\prime}=P R$. This implies $R^{\prime}(S)=P \times R(S)$ and hence

$$
\operatorname{det} R^{\prime}(S)=\operatorname{det} P \cdot \operatorname{det} R(S)
$$

Now det $R^{\prime}(S)= \pm 1$, by the definition of R^{\prime}. Since P and $R(S)$ are matrices of integers it follows that $\operatorname{det} R(S)= \pm 1$.

Conversely, suppose that the square submatrices of R of order r have determinants restricted to the values 0,1 , and -1 . We fix an enumeration of the elements of M. There is a chain-group N on M whose representative matrix with respect to this enumeration is R.

Let f be any elementary chain of N. Let a be any member of $|f|$ and E any dendroid of $N .(M-|f|)$. Then if a chain h of N has a domain not meeting $E \cup\{a\}$ its domain must be a subset of $|f|-\{a\}$. Since f is elementary this is possible only if h is zero. We conclude that some subset D of $E \cup\{a\}$ is a dendroid of N. Since D must meet $|f|$ we have $D \cap|f|=\{a\}$.

By (4.4) and the restriction imposed on R we have $\operatorname{det} R(D)= \pm 1$. Hence the reciprocal of $R(D)$ is a matrix of integers. We write $R^{\prime}=(R(D))^{-1} R$. The rows of R^{\prime} are linear combinations, with integral coefficients, of the rows of R and are therefore representative vectors of chains of N. But $R^{\prime}(D)$ is a unit matrix. Hence there is a chain g of N such that $g(a)=1$ and $|g| \cap D=\{a\}$. Then $f-f(a) g$ is a zero chain since its domain does not meet D. Accordingly $f=f(a) g$.

Keeping $|f|$ fixed we may select f so that the highest common factor of its non-zero coefficients is as small as possible. With this choice of f the result just obtained requires $f(a)= \pm 1$. Since this is true for each $a \in|f|$ the chain f is then primitive. Thus N satisfies the definition of a regular chain-group.
(4.6) Let R be a matrix of r rows and $n>r$ columns, whose elements are integers and in which the square submatrix A constituted by some r columns is unit matrix. Let the submatrix of R constituted by the remaining $n-r$ columns be B. Let M be any set of n elements. Then R is a representative matrix of a regular chain-group on M if and only if the determinants of the square submatrices of B are restricted to the values 0,1 , and -1 .

Proof. There is a 1-1 correspondence, q say, between the square submatrices of B and those square submatrices other than A of R which are of order r. If C is a square submatrix of B the corresponding submatrix $q C$ of R is made up of those columns of B which contain elements of C and those columns of A which have only zeros in the rows of R meeting C. It is clear from this definition that $\operatorname{det} q C= \pm \operatorname{det} C$. Since the rows of A, and therefore the rows of R, are linearly independent the Theorem now follows from (4.5).

If R is a representative matrix of a regular chain-group N and R^{\prime} is the transpose of R then the number $C(N)$ of dendroids of N is given by the formula

$$
\begin{equation*}
C(N)=\operatorname{det}\left(R R^{\prime}\right) . \tag{4.7}
\end{equation*}
$$

This follows from (4.4) and (4.5), with the help of the well-known formula for the determinant of the product of two matrices of types (r, n) and (n, r).
5. Dual regular chain-groups. Two chains f and g on a finite set M are orthogonal if

$$
\sum_{n \in M} f(a) g(a)=0 .
$$

If M is null we take this to mean that the zero chain on M is self-orthogonal.
If N is a chain-group on M then these chains on M which are orthogonal to all the chains of N evidently constitute a chain-group on N. We denote this chain-group by N^{*} and call it the dual of N.

The zero chain-group on M includes only the zero chain. The complete chain-group on M includes all the chains on M. It is clear that these chaingroups are regular and that each is the dual of the other.

If N is a regular chain-group on M which is neither zero nor complete we may construct N^{*} as follows. We choose arbitrarily a dendroid D of N and denote by R a representative matrix of N associated with D. If $r(N)=r$ we may adjust the notation so that $R(D)$ is a unit matrix occupying the first r columns of R. We denote by B the matrix constituted by the remaining columns of R, which we suppose s in number. Now let T be the matrix of s rows and $r+s$ columns such that the submatrix formed by the first r columns is the negative of the transpose of B and the remaining s columns constitute a unit matrix. Let N_{1} be the chain-group on M which has T as a representative matrix with respect to the chosen enumeration of M. By (4.6) N_{1} is regular.

If $b \in M-D$ we denote by K_{b} that chain of N_{1} which has a row of T as a representative vector and which satisfies $K_{b}(b)=1$. It is clear that K_{b} is orthogonal to J^{D} for each $a \in D$ and each $b \in M-D$. Hence by (4.3) the chains K_{b} are orthogonal to all the chains of N and therefore belong to N^{*}. It follows that $N_{1} \subseteq N^{*}$. Now suppose N^{*} has a chain J not belonging to N_{1}. Write

$$
J^{\prime}=J-\sum_{b \in(M-D)} J(b) K_{b}
$$

The chain J^{\prime} of N is orthogonal to each of the chains $J^{D}{ }_{a}$ and its domain is a subset of D. It is therefore a zero chain. It follows that J belongs to N_{1}, contrary to supposition. We have thus proved that $N_{1}=N^{*}$.

A similar argument in which the roles of the $J^{D}{ }_{a}$ and the K_{b} are interchanged shows that R is a representative matrix of $\left(N^{*}\right)^{*}$ and hence that $\left(N^{*}\right)^{*}=N$. We now have
(5.1) If N is a regular chain-group then N^{*} is regular and $\left(N^{*}\right)^{*}=N$.
(5.2) If N is a regular chain-group on a set M then the dendroids of N^{*} are the complements in M of the dendroids of N.

Proof. Let D be any dendroid of N. If N is zero or complete it is clear that $M-D$ is a dendroid of N^{*}. Otherwise we form the matrix T as in the above construction. Since T is a representative matrix of N^{*} and $\operatorname{det} T(M-D)=1$ it follows from (4.4) that $M-D$ is a dendroid of N^{*}. Replacing N by N^{*} in this result, and using (5.1), we find also that if $M-D$ is a dendroid of N^{*} then D is a dendroid of N.

Suppose N is a regular chain-group on a set M and that S is a subset of M. Then a chain g on S is orthogonal to every chain of $N . S$ if and only if it is of the form f. S, where $f \in N^{*}$ and $|f| \subseteq S$. We thus have

$$
\begin{equation*}
(N . S)^{*}=N^{*} \times \mathrm{S} \tag{5.3}
\end{equation*}
$$

By writing N^{*} for N in (5.3) and using (5.1) we obtain also

$$
\begin{equation*}
(N \times S)^{*}=N^{*} . S \tag{5.4}
\end{equation*}
$$

(5.5) Let G be a finite graph and let $\Gamma(G)$ and $\Delta(G)$ be defined in terms of the same orientation of G. Then $(\Delta(G))^{*}=\Gamma(G)$.

Proof. If G has no edge the result is trivial. In the remaining case a 1 -chain g on G is orthogonal to all the chains of $\Delta(G)$ if and only if

$$
\sum_{A \in E(G)}\left\{g(A) \sum_{a \in V(G)} \eta(A, a) f(a)\right\}=0
$$

for arbitrary integers $f(a)$. This is so if and only if

$$
\sum_{A \in E(G)} \eta(A, a) g(A)=0
$$

for each $a \in V(G)$, that is, if and only if $g \in \Gamma(G)$.

The dendroids of a chain-group depend only on the domains of the chains of the group and are therefore invariant under reorientation. Hence if G is a finite graph and $\Delta(G)$ is its group of coboundaries with respect to some fixed orientation we may expect the dendroids of $\Delta(G)$ to be interpretable in terms of the structure of G only.

If H and K are two subgraphs of G we define their intersection $H \cap K$ as that subgraph of G whose edges and vertices are the common edges and vertices respectively of H and K. A forest is a graph which has no circuit. A tree is a connected forest. A spanning forest of G is a subgraph of G of the form $G: S$ whose intersection with each component of G is a tree.
(5.6) Let G be a finite graph with a given orientation and let S be a subset of $E(G)$. Then S is a dendroid of $\Delta(G)$ if and only if $G: S$ is a spanning forest of G.

Proof. Suppose $G: S$ is not a spanning forest of G. If $G: S$ has a circuit then $E(G)-S$ is not a dendroid of $\Gamma(G)$, by (2.4), and therefore S is not a dendroid of $\Delta(G)$, by (5.2) and (5.5). If $G: S$ has no circuit its intersection with each component of G is a forest. Hence there must be a component H of G such that $H \cap(G: S)$ is not connected. Let K be any component of $H \cap(G: S)$. Let f be the 0 -chain on G such that $f(a)=1$ if a is a vertex of K and $f(a)=0$ otherwise. Then the chain δf is non-zero and its domain does not meet S. Again we find that S is not a dendroid of $\Delta(G)$.

Conversely suppose S is not a dendroid of $\Delta(G)$. Assume that $G: S$ is a spanning forest of G. Let f be any 0 -chain on G such that δf is non-zero. Then some component H of G has two vertices a and b such that $f(a) \neq f(b)$. Since $H \cap(G: S)$ is a tree there are two vertices c and d of $H \cap(G: S)$, joined by an edge of S, such that $f(c) \neq f(d)$. Hence S meets $|\delta f|$. We deduce that some proper subset T of S is a dendroid of $\Delta(G)$. Choose $e \in S-T$ and write $Q=E(G)-T$. Now Q is a dendroid of $\Gamma(G)$, by (5.2). The non-zero element $J^{Q}{ }_{e}$ of $\Gamma(G)$ satisfies $\left|J^{Q}{ }_{e}\right| \subseteq S$. Hence, by (2.4), $G: S$ has a circuit, contrary to our assumption. We deduce that in fact $G: S$ is not a spanning forest of G. The Theorem follows.
6. Conformity. Let f and g be chains on a finite set M. We say that f conforms to g if the following condition is satisfied: if $f(a) \neq 0$ then $g(a)$ is non-zero and has the same sign as $f(a)$. Conformity is clearly a transitive relation.
(6.1) If N is a regular chain-group and f is a non-zero chain of N then there exists a primitive chain of N conforming to f.

Proof. If possible choose f so that the Theorem fails and $|f|$ has the least number of elements consistent with this condition. Since N is regular it has a primitive chain h such that $|h| \subseteq|f|$. Choose $a \in|h|$ so that $f(a)$ has the least possible absolute value. Replacing h by its negative if necessary, we arrange that $h(a)=1$. Write $k=f-f(a) h$. Clearly k conforms to f. If k is a zero
chain then either h or $-h$ conforms to f. If k is non-zero there is a primitive chain g of N conforming to k, and therefore to f, since $|k|$ is a proper subset of $|f|$. In each case the definition of f is contradicted.
(6.2) If N is a regular chain-group then each non-zero chain of N can be represented as a sum of primitive chains of N each conforming to it.

Proof. If $f \in N$ let $Z(f)$ be the sum of the absolute values of the coefficients of f. If possible choose a non-zero $f \in N$ for which the Theorem fails and $Z(f)$ has the least value consistent with this condition. By (6.1) there is a primitive chain g of N conforming to f. Clearly $f-g$ conforms to f and $Z(f-g)<Z(f)$. By the latter result $f-g$ is either a zero chain or a sum of primitive chains of N conforming to it. But chains conforming to $f-g$ conform also to f. Hence the Theorem is true for f and we have a contradiction.

Let f and g be chains on a finite set M and let q be an integer >1. We say that g is a q-representative of f if the following conditions are satisfied:
(i) $g(a)=f(a)(\bmod q)$ for each $a \in M$,
(ii) $|g(a)|<q$ for each $a \in M$.
(6.3) If N is a regular chain-group on a set M and $f \in N$ then for each integer $q>1$ some q-representative of f is a chain of N.

Proof. Let f be any chain of N and q any integer >1. There is at least one $g \in N$ satisfying (i). For any such g we denote by $Y(g)$ the number of elements a of M for which $|g(a)| \geqslant q$. We choose a particular g satisfying (i) so that $Y(g)$ has the least possible value.
If $Y(g)>0$ choose $b \in M$ such that $|g(b)| \geqslant q$. By (6.2) there is a primitive chain h of N conforming to g and such that $h(b)= \pm 1$. Write $g^{\prime}=g-q h$. Clearly g^{\prime} satisfies (i). Moreover we have

$$
\begin{gather*}
\left|g^{\prime}(b)\right|<|g(b)|, \tag{1}\\
|g(a)|<q \text { then }\left|g^{\prime}(a)\right|<q .
\end{gather*}
$$

If $\left|g^{\prime}(b)\right| \geqslant q$ we repeat the process with g^{\prime} replacing g and with the same choice of b. Proceeding in this way we eventually obtain a chain g_{1} of N which satisfies (i) and is such that $Y\left(g_{1}\right)<Y(g)$. This contradicts the definition of g. We conclude that $Y(g)=0$, that is, g is a q-representative of f.

This Theorem is proved for the cycle-group of an oriented graph in (3). For applications of it to the theory of graphs see (3) and (4, pp. 83-84).
7. Homomorphisms. Let N be a regular chain-group on a set M. A homomorphism of N (into I) is a mapping ϕ of N into the set I of integers such that

$$
\begin{equation*}
\phi(f+g)=\phi(f)+\phi(g) \tag{7.1}
\end{equation*}
$$

for arbitrary chains f and g of N. This implies that $\phi(f)=0$ if f is the zero chain. Hence $\phi(-f)=-\phi(f)$ for each $f \in N$.

For arbitrary chains f and g on M we write

$$
\begin{equation*}
(f . g)=\sum_{a \in M} f(a) g(a) \tag{7.2}
\end{equation*}
$$

If M is null we take this to mean $(f . g)=0$.
A solution of ϕ is a chain g on M such that $(f . g)=\phi(f)$ for each $f \in N$. In this section we study the solutions of the homomorphisms of N. We need the following definitions.

If $f \in N$ we define $P(f)$ as the set of all $a \in M$ such that $f(a)>0$. We then write

$$
\begin{equation*}
\beta(f)=\sum_{a \in P(f)} f(a) . \tag{7.3}
\end{equation*}
$$

If $P(f)$ is null we take $\beta(f)$ to be 0 . We call f a positive chain of N if $P(f)=|f|$.
(7.4) Let ϕ be any homomorphism of N and a any element of M. Then either $\{a\}$ is the domain of a chain of N or there is a homomorphism ϕ_{a} of $N .(M-\{a\})$ such that

$$
\phi_{a}(f \cdot(M-\{a\}))=\phi(f)
$$

for each $f \in N$.
Proof. Suppose $\{a\}$ is not the domain of a chain of N. Then no two distinct chains of N have the same restriction to $M-\{a\}$, for otherwise the domain of their difference would be $\{a\}$. Hence there is a unique mapping ϕ_{a} of N. $(M-\{a\})$ into I such that

$$
\phi_{a}(f .(M-\{a\}))=\phi(f)
$$

for each $f \in N$. It is easily verified that ϕ_{a} is a homomorphism.
(7.5) If ϕ is any homomorphism of N and f is a chain of N such that $\phi(f)>\beta(f)$ then there is a primitive chain g of N conforming to f such that $\phi(g)>\beta(g)$.

Proof. The chain f is necessarily non-zero. Hence by (6.2) it is a sum $f_{1}+f_{2}+\ldots+f_{s}$ of primitive chains f_{i} of N conforming to f. If the Theorem is false, $\phi\left(f_{i}\right) \leqslant \beta\left(f_{i}\right)$ for each of these. Then by addition we have $\phi(f) \leqslant \beta(f)$, contrary to hypothesis.
(7.6) If ϕ is any homomorphism of N, a an element of M, and f a chain of N such that $f(a) \neq 0$ and

$$
\phi(f)-\beta(f)+\epsilon f(a)>0
$$

where ϵ is 1 or -1 , then there is a primitive chain g of N conforming to f such that either $\phi(g)>\beta(g)$ or g satisfies the equations $\phi(g)=\beta(g)$ and $g(a)=\epsilon$.

Proof. By (6.2) f is a sum $f_{1}+f_{2}+\ldots+f_{s}$ of primitive chains f_{i} of N each conforming to f. There must be just $|f(a)|$ of these such that $\left|f_{i}(a)\right|=1$.

If one of the f_{i} satisfies $\phi\left(f_{i}\right)>\beta\left(f_{i}\right)$ the Theorem is true. In the remaining case we have by addition $\phi(f)-\beta(f) \leqslant 0$. But

$$
\phi(f)-\beta(f)+\epsilon f(a)>0
$$

One consequence of this is that $f(a)$ has the same sign as ϵ, whence it follows that the $|f(a)|$ chains f_{i} satisfying $\left|f_{i}(a)\right|=1$ satisfy also $f_{i}(a)=\epsilon$. Another consequence is that at most $|f(a)|-1$ of the chains f_{i} satisfy

$$
\phi\left(f_{i}\right)-\beta\left(f_{i}\right)<0
$$

Combining these results we see that one of the chains f_{i} satisfies both $\phi\left(f_{i}\right)=$ $\beta\left(f_{i}\right)$ and $f_{i}(a)=\epsilon$.
(7.7) Let ϕ be any homomorphism of N. Then in order that ϕ shall have a solution whose coefficients are restricted to the values 0 and 1 it is necessary and sufficient that $\phi(g) \leqslant \beta(g)$ for each primitive chain g of N.

Proof. Let us call a solution of a homomorphism limited if its coefficients are restricted to 0 and 1 .

The theorem is trivially true if M is null. Assume as an inductive hypothesis that it is true whenever the number $\alpha(M)$ of elements of M is less than some positive integer q. Consider the case $\alpha(M)=q$.

Suppose there is a primitive chain g of N such that $\phi(g)>\beta(g)$. Then any chain h on M with coefficients restricted to the values 0 and 1 satisfies

$$
(g . h) \leqslant \beta(g)<\phi(g)
$$

Hence no limited solution of ϕ exists.
Conversely suppose ϕ has no limited solution. Assume there is no primitive chain g of N such that $\phi(g)>\beta(g)$. It may happen that each $a \in M$ constitutes the domain of a chain of N. Then, since N is regular, there is for each $a \in M$ a chain f_{a} of N such that $f_{a}(a)=1$ and $f_{a}(b)=0$ if $b \neq a$. We define a chain h on M, with coefficients restricted to the values 0 and 1 , by writing $h(a)=\phi\left(f_{a}\right)$ for each $a \in M$. Then for each $f \in N$ we have

$$
\begin{aligned}
(f \cdot h) & =\left(\left(\sum_{a \in M} f(a) f_{a}\right) \cdot h\right)=\sum_{a \in M} f(a)\left(f_{a} \cdot h\right) \\
& =\sum_{a \in M} f(a) \phi\left(f_{a}\right)=\phi(f) .
\end{aligned}
$$

Thus h is a limited solution of ϕ. But this is impossible.
We deduce that there exists $a \in M$ such that $\{a\}$ is not the domain of a chain of N. We define ϕ_{a} as in (7.4). There is no limited solution of ϕ_{a}, for such a solution would be the restriction to $M-\{a\}$ of a limited solution d of ϕ satisfying $d(a)=0$. Hence, by the inductive hypothesis and (3.5) there exists $f \in N$ such that

$$
\phi_{a}(f \cdot(M-\{a\}))-\beta(f \cdot(M-\{a\}))>0
$$

If $f(a) \leqslant 0$ it follows that $\phi(f)-\beta(f)>0$. By (7.5) this is contrary to our assumptions. Hence $f(a)>0$ and we have

$$
\phi(f)-\beta(f)+f(a)>0
$$

By (7.6) and our assumptions it follows that there is a chain j of N such that

$$
\begin{equation*}
\phi(j)-\beta(j)=0 \text { and } j(a)=1 \tag{i}
\end{equation*}
$$

Now let ψ be the homomorphism of N defined by $\psi(f)=\phi(f)-f(a)$ for each $f \in N$. The homomorphism ψ_{a} of $N .(M-\{a\})$ has no limited solution, for such a solution would be a restriction to $M-\{a\}$ of a limited solution d of ϕ such that $d(a)=1$. Hence by the inductive hypothesis and (3.5) there exists $f \in N$ such that

$$
\phi(f)-f(a)-\beta(f .(M-\{a\}))>0
$$

If $f(a) \geqslant 0$ this gives $\phi(f)-\beta(f)>0$. By (7.5) this is contrary to our assumptions. Hence $f(a)<0$ and

$$
\phi(f)-\beta(f)-f(a)>0
$$

By (7.6) and our assumptions it follows that there exists $k \in N$ such that

$$
\begin{equation*}
\phi(k)-\beta(k)=0 \text { and } k(a)=-1 \tag{ii}
\end{equation*}
$$

It follows from (i) and (ii) that $\phi(j+k)-\beta(j+k)>0$. This is contrary to our assumptions, by (7.5). This completes the proof for the case $\alpha(M)=q$.

The general theorem follows by induction.
(7.8) Let ϕ be any homomorphism of N. Then ϕ has a solution whose coefficients are all non-negative if and only if $\phi(f) \geqslant 0$ for each positive primitive chain f of N.

Proof. N has only a finite number of primitive chains. Hence we can find an integer $q>0$ such that $\phi(f)<q$ for each primitive chain f of N.

Choose a set U, the union of $\alpha(M)$ disjoint sets U_{a}, one for each $a \in M$. Each U_{a} is to have just q elements. If $k \in N$ we denote by k^{\prime} the chain on U in which the coefficient of each element of U_{a} is $k(a)$, for each $a \in M$. The chains k^{\prime} constitute a chain-group N^{\prime} on U. Elementary and primitive chains of N^{\prime} correspond respectively to elementary and primitive chains of N. Hence N^{\prime} is regular. There is a homomorphism ϕ^{\prime} of N^{\prime} such that $\phi^{\prime}\left(k^{\prime}\right)=\phi(k)$ for each $k \in N$.

If $\phi(f)<0$ for some positive primitive chain f of N it is clear that ϕ has no solution whose coefficients are all non-negative.

In the remaining case we have $\phi^{\prime}\left(g^{\prime}\right) \leqslant \beta\left(g^{\prime}\right)$ for each primitive chain g^{\prime} of N^{\prime}. This follows from the definition of N^{\prime} if $\beta\left(g^{\prime}\right)>0$. In the remaining case $-g^{\prime}$ corresponds to a positive chain $-g$ of N, and so $\phi^{\prime}\left(g^{\prime}\right)=-\phi(-g) \leqslant 0=$
$\beta\left(g^{\prime}\right)$. Hence by (7.7) ϕ^{\prime} has a limited solution h^{\prime}. There is a corresponding solution h of ϕ defined by

$$
h(a)=\sum_{c \in U_{a}} h^{\prime}(c), \quad a \in M
$$

The coefficients in h are all non-negative.
(7.9) If $a \in M$ then either N or N^{*} has a positive primitive chain f such that $a \in|f|$.

Proof. By (6.2) it is sufficient to show that either N or N^{*} has a positive chain f such that $a \in|f|$.

Let ϕ be the homomorphism of N such that $\phi(f)=-f(a)$ for each $f \in N$. If $\{a\}$ is the domain of a chain of N the Theorem is clearly true. If not we define ϕ_{a} as in (7.4). Then, if ϕ_{a} has a solution h^{\prime} with coefficients all nonnegative, let h be the chain on M such that $h(a)=1$ and $h .(M-\{a\})=h^{\prime}$. Then $(f . h)=0$ for each $f \in N$ and so h is a positive chain of N^{*}. If no such solution h^{\prime} exists, then by (7.8) there exists $f \in N$ such that $f .(M-\{a\})$ is positive and $-f(a)=\phi(a)<0$. Then f is a positive chain of N such that $a \in|f|$. In either case the Theorem is true.
8. Some applications to graph theory. Let G be a graph taken with a fixed orientation.

A directed bond of G is a bond $G \times S$ of G such that the positive ends of the edges of S all belong to the same component of $G:(E(G)-S)$. A directed circuit of G is a circuit $G . S$ of G defined by a circular path in which each edge is immediately succeeded by its positive end. Using (2.4) and (2.7) we may verify that the subsets S of $E(G)$ such that $G \times S$ is a directed bond or $G . S$ a directed circuit of G, are the domains of the positive primitive chains of $\Delta(G)$ and $\Gamma(G)$ respectively. If we apply this to (5.5) and (7.9) we obtain the following graph-theoretical result.
(8.1) Any edge of G is an edge of some directed bond or of some directed circuit of G.

In conclusion we show how (7.8) may be applied to obtain a known theorem concerning the 1 -factors of even graphs ($\mathbf{1 ; 2)}$.

We suppose henceforth that G is even, that is, the set $V(G)$ falls into two disjoint subsets V_{1} and V_{2} such that each edge of G has one end in V_{1} and the other in V_{2}. We fix an orientation by taking the positive end of each edge in V_{2}. If $a \in V(G)$ we write $\sigma(a)=1$ or -1 according as a is in V_{2} or V_{1}. We call G balanced if each component has the same number of vertices in V_{1} as in V_{2}. The decomposition $\left\{V_{1}, V_{2}\right\}$ of $V(G)$ is unique within each component of G, apart from the order of V_{1} and V_{2}. Hence if G is balanced for one such decomposition it is balanced for all of them.

A 1-factor of G is a subgraph $G: F$ of G such that each vertex of G is an end of just one edge of F. It is clear that a graph which is not balanced has no 1 -factor. For balanced graphs we prove the following theorem.
(8.2) Suppose G balanced. Then G has a 1-factor if and only if there is no subset U of V_{1} such that the set of all vertices of V_{2} joined by edges of G to vertices of U has fewer members than U.

Proof. If such a subset U of V_{1} exists it is clear that G has no 1-factor.
Conversely suppose G has no 1 -factor. Then for each $g \in \Delta(G)$ we write

$$
\begin{equation*}
\phi(g)=\sum_{a \in V(G)} \sigma(a) f(a), \tag{i}
\end{equation*}
$$

where f is any 0 -chain on G such that $\delta f=g$. If f_{1} and f_{2} are two such 0 -chains and $\phi_{1}(g)$ and $\phi_{2}(g)$ are the corresponding values of $\phi(G)$ we have

$$
\begin{equation*}
\phi_{1}(g)-\phi_{2}(g)=\sum_{a \in V(G)} \sigma(a)\left(f_{1}(a)-f_{2}(a)\right) \tag{ii}
\end{equation*}
$$

Now $\delta\left(f_{1}-f_{2}\right)=\delta\left(f_{1}\right)-\delta\left(f_{2}\right)$, which is the zero 1 -chain on G. Hence by (2.2) $f_{1}(a)-f_{2}(a)$ is the same for all vertices a of any one component of G. Since G is balanced it follows from (ii) that $\phi_{1}(g)=\phi_{2}(g)$. Hence $\phi(g)$ is uniquely defined for each $g \in \Delta(G)$. It is now clear that ϕ is a homomorphism of $\Delta(G)$.

Suppose ϕ has a solution h whose coefficients are all non-negative. By considering the coboundaries $\delta(f)$ such that f has only one non-zero coefficient we find that

$$
\begin{equation*}
\sum_{A \in E(G)} \eta(A, a) h(A)=\sigma(a) \tag{iii}
\end{equation*}
$$

for each $a \in V(G)$. But $\eta(A, a) \sigma(a) \geqslant 0$ for each a, A. It follows that $h(A)$ is 0 or 1 for each A and that the edges for which $h(A)=1$ define a 1 -factor of G. This contradicts our supposition. Hence by (7.8) there is a positive primitive chain k of $\Delta(G)$ such that $\phi(k)<0$.

Now $G \times|k|$ is a directed bond of G. Let C be the component of $G:(E(G)-$ $|k|)$ which includes the positive ends of the members of $|k|$. Let f be the 0 -chain on G such that $f(a)=1$ or 0 according as a is or is not a vertex of C. By (i) we have

$$
\sum \sigma(a)<0,
$$

where the summation is over the vertices of C. If U is the set of all vertices of C in V_{1} it follows that U is a subset of V_{1} of the kind specified in the enunciation.

References

1. P. Hall, On representation of subsets, J. London Math. Soc., 10 (1934), 26-30.
2. R. Rado, Factorization of even graphs, Quart. J. Math., 20 (1949), 95-104.
3. W. T. Tutte, On the imbedding of linear graphs in surfaces, Proc. London Math. Soc. (2), 51 (1949), 474-483.
4. -_, A contribution to the theory of chromatic polynomials, Canadian J. Math., 6 (1953), 80-91.

University of Toronto

[^0]: Received October 26, 1954; in revised form May 13, 1955.

