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On profiniteness of compact

totally disconnected algebras

B.J. Day

The paper presents a necessary and sufficient condition for a
given compact totally disconnected space C to be the projective
limit of a given directed cone of epimorphisms onto finite
discrete quotients of C . This problem is related to the
question of when a compact totally disconnected algebra is

profinite and some observations in this direction are recorded.

Introduction

The nation of a pro-object is closely related to problems in duality
(see Day [2] and Hofmann [4]). The usual technique is to obtain duality on
the models M and then 1ift this duality to the pro-M-objects.

In the present paper we reverse the above mentioned procedure and use
Stone duality to deduce a necessary and sufficient condition for a given
compact totally disconnected space to be a pro-M-object for a given M .
The resulting observations on profiniteness of algebras are closely related
to the work of Choe [1] and Numakura [6]. The method we employ is a
generalisation of Numakura's method for semigroups and leads to Choe-type

conditions for profiniteness.

The general references for this article are Gratzer [3] and Mac Lane

[51.

1. General conditions for profiniteness

Let K= (K, 1, x, [-, -], ...) be the cartesian closed category of
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compactly generated Hausdorff spaces and let B be the category of boolean
rings. Then, for each C € C , the category of compact totally

disconnected spaces, we have an isomorphism C = B([C, 2], 2) by Stone
duality which asserts that B(-, 2) : BP » ¢ is a category equivalence.

Let U : B » Ens be the underlying-set functor. Then U creates
filtered colimits since B is finitary over Ens ; U also preserves and

reflects regular epimorphisms.

Now let D : D > C %bYe a diagram in C with each D(a) a finite set,
and let p : C + D be a natural transformation each of whose components is
an epimorphism. Then the aim is to find a condition for this trans-

formation p to be a limit cone in C .

THEOREM 1.1. If D <is directed then the canonical map
p: C ~1lim D <s a monomorphism (respectively an isomorphism) if and only
if the canonical map colim U[D, 2] + U[C, 2] in Ens 1is a surjection

{respectively a bijection).

Proof. Consider

¢ ~B([c, 21, 2) > 1im B([D, 2], 2) = 1im D .

Here p is a monomorphism (respectively an isomorphism) if and only if o
is a monomorphism (respectively an isomorphism). But a is just the image

of the canonical map

B : colim[D, 2] » [c, 2]

in B under the category equivalence B » C . fThus p is a mono-
morphism (respectively an isomorphism) if and only if B is an epimorphism
(respectively an isomorphism). But the domain of B is a filtered
colimit. Thus, on considering the aforementioned properties of U , the

result follows. //

COROLLARY 1.2. The canonical map p : C » 1lim D 1is a monomorphism
1f and only if each continuous map C + 2 factors through some e 1in the
cone. //

A directed cone p : C + D is called saturated if:

(i) given any commuting diagram
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h

m————n
with e , e, in the cone,then h = Df ;
(ii) given any pair in the cone, their pushout in C is in the
cone.

THEOREM 1.3. The canonical map p : C > lim D is an isomorphism if
p: C—+D 1is saturated and each map g : C - 2 factors through some e

in the cone.

Proof. Firstly colim U[D, 2] + U[C, 2] is a surjection (see

Corollary 1.2). It is an injection since, given any two factorisations of

we can form the pushout of (em, en] in C and relate both factorisations

a given g : C > 2,

7
AN

|
+
2

to a third via maps in the diagram (since we are assuming p : C + D is
saturated). //

EXAMPLE 1.4. Let N = (T, y, n) be a monad on Ens . Then we can

4
1ift this to a monad on K ; namely TX = J TY+[Y, X] . 1If we associate

each compact totally disconnected ﬁ;algebra C with its set of finite

quotients then we obtain a (directed) saturated cone under ( . //

2. Special conditions for profiniteness

Throughout this section we will consider the situation in the

preceding example in which Il is a finitary monad on Ens (this makes 11
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finitary on K ). The set of all non-nullary finitary operations of I
will be denoted by § for short.

Let 4 Ybe a compact N-algebra. We will call a subset M CAxA a
A-module if x € M implies u(A, ..., z, ..., A) €M for all u €N .
Given any set X € A x A we will denote by X* the union of all the

A-modules contained in X .
LEMMA 2.1. X* is a A-module. //

For any Y<C A x A we define

a(u)
(y) = U U u(A, ..., Y, ..., A)
HEQ =1
LEMMA 2.2. (Y) 4g a A-module. //

We will call 4 A-finite if there exists a finite number of

operations {ul, ey uk} c © such that

x al)
U U wd, ..., 2, ..., A)
i=1 g=1 *

(Y) =

for all Y< A x4 .

THEOREM 2.3, Let X be an open equivalence relation on a A-finite
A . Then X* 1is an open algebra congruence on A .

Proof. Choose x € X* . Then, by continuity of u and compactness

of A , there exists an open set Vu about &« such that
u[A, ey Vu, e A) C X for each U € 2 . Thus there exists an open set
V about x such that ui(A, ey Vy Lo.,A)CE X forall £=1, ..., k.

Thus, by A-finiteness of A4 , there exists an open V about x such that
(V) S X . Therefore (V) C X* and so X* 1is open. It is straightforward

to check that X* is an A-congruence (see Numakura (6], Lemma k). //

COROLLARY 2.4, A A-finite totally discomnected algebra A is
profinite. //

Now suppose that 2 1is generated by only a finite set Qb of basic
operations. Call A A-associative if, for each u € Qb , there exists an

integer m = m(p) > 0 such that
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u(d, o, uw(, e, wB, e, Y, A), o)) e, e, Y, e, A)

for all Y < A x A , where the only restriction on the left-hand side is

that U should occur precisely m times. Call A A-distributive if

ud, oo, 08, e, Y, i, D), e, ) .
=p(A, ooy B, ooy Y, o, A), el )

for all u,p({)b and Yc A x4

PROPOSITION 2.5. If A 4is A-associative and A-distributive then
it 18 A-finite.

Proof. The diagonal A 1is a subalgebra of 4 X A so
u(A, ..., A) C A for all p € Q . Thus any derived expression whose
entries are all A except for one entry which is Y , can be contained in
the expression ul(A, cees ue(A, cers un(A, cees Yy o, 8), L)) in
which the Hys ooe5 W, are basic operations from Qb . By
A-distributivity followed by A-associativity, any such derived expression
can be contained in an expression in which each basic W occurs less than

m(p) times, and there is only a finite number of such expressions;so the

result follows. //

Examples of A-associative and A-distributive algebras include
groups, rings, semigroups, distributive lattices, and lattice ordered

groups.
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