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Combining cross-sectional and time-series data is a long and well-established prac-
tice in empirical economics. We develop a central limit theory that explicitly accounts
for possible dependence between the two datasets. We focus on common factors
as the mechanism behind this dependence. Using our central limit theorem (CLT),
we establish the asymptotic properties of parameter estimates of a general class of
models based on a combination of cross-sectional and time-series data, recognizing
the interdependence between the two data sources in the presence of aggregate
shocks. Despite the complicated nature of the analysis required to formulate the joint
CLT, it is straightforward to implement the resulting parameter limiting distributions
due to a formal similarity of our approximations with Murphy and Topel’s (1985,
Journal of Business and Economic Statistics 3, 370–379) formula.

1. INTRODUCTION

There is a long tradition in empirical economics of relying on information from
a variety of data sources to estimate model parameters. In this paper, we focus
on a situation where cross-sectional and time-series data are combined. This may
be done for a variety of reasons. Some parameters may not be identified in the
cross section or time series alone. Alternatively, parameters estimated from one
data source may be used as first-step inputs in the estimation of a second set
of parameters based on a different data source. This may be done to reduce the
dimension of the parameter space or more generally for computational reasons.
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Data combination generates theoretical challenges, even when only
cross-sectional datasets or time-series datasets are combined. See Ridder and
Moffitt (2007) for example. We focus on dependence between cross-sectional
and time-series data stemming from common aggregate factors. Andrews (2005)
demonstrates that even randomly sampled cross sections lead to independently
distributed samples only conditionally on common factors, since the factors
introduce a possible correlation. This correlation extends inevitably to a time-
series sample that depends on the same underlying factors. Andrews (2005)
only considers cross sections and panels with fixed T with sufficient regularity
conditions for consistent estimation. Our work in this paper and in our companion
papers Hahn, Kuersteiner, and Mazzocco (2020, 2021) extends the analysis in
Andrews (2005) to situations where consistent estimation is only possible by
utilizing an additional time-series dataset. Examples in our companion papers
draw on literatures for the structural estimation of rational expectations models as
well as the program evaluation literature. Examples for the former include cross-
sectional studies of the consumption-based asset pricing model in Runkle (1991),
Shea (1995), and Vissing-Jorgensen (2002), and a recent example of the latter is
Rosenzweig and Udry (2020).

The first contribution of this paper is to develop a central limit theory that
explicitly accounts for the dependence between the cross-sectional and time-series
data by using the notion of stable convergence. The second contribution is to use
the corresponding central limit theorem (CLT) to derive the asymptotic distribution
of parameter estimators obtained from combining the two data sources. Compared
to our companion paper Hahn, Kuersteiner, and Mazzocco (2021; henceforth
HKM21), in this paper, we impose a martingale difference structure as our
fundamental moment condition on which our estimators are based. This implies
that the theory in this paper is suitable for correctly specified maximum likelihood
and conditional moment-based estimators. Our companion paper HKM21 does
not impose a martingale structure for the time-series model, but rather allows
for mixingale processes. Thus, certain forms of model misspecification can be
handled by the theory of that paper. On the other hand, in this paper, we do not
assume independence between time-series and cross-sectional data conditional
on common factors, independence in the cross section conditional on common
factors, or stationarity or homogeneity in the temporal direction of panel or time-
series data, as is done in HKM21. Due to the strong assumptions in HKM21, the
proof strategy for joint convergence is relatively simple in that paper. Conditionally
on common factors, a CLT for independent cross sections combined with a
stable CLT for stationary mixingales is sufficient to establish joint convergence
of the time-series and cross-sectional components. In this paper where conditional
independence of the cross-sectional sample is not assumed, a more complicated
joint convergence argument establishing the joint limiting behavior of time-series
and cross-sectional averages is required.

Our analysis is inspired by a number of applied papers and in particular by the
discussion in Lee and Wolpin (2006, 2010). Econometric estimation based on the
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combination of cross-sectional and time-series data is an idea that dates back at
least to Tobin (1950). More recently, Heckman and Sedlacek (1985) and Heckman,
Lochner, and Taber (1998) proposed to deal with the estimation of equilibrium
models by exploiting such data combination. It is, however, Lee and Wolpin (2006,
2010), who develop the most extensive equilibrium model and estimate it using
similar intuition and panel data.

To derive the new CLT and the asymptotic distribution of parameter estimates,
we extend the model developed in Lee and Wolpin (2006, 2010) to a general
setting that involves two submodels. The first submodel includes all the cross-
sectional features, whereas the second submodel is composed of all the time-series
aspects. The two submodels are linked by a vector of aggregate shocks and by
the parameters that govern their dynamics. Given the interplay between the two
submodels, the aggregate shocks have complicated effects on the estimation of the
parameters of interest.

Another important literature that often uses micro data to calibrate model
parameters is the literature on dynamic stochastic general equilibrium (DSGE)
models in macro economics. The calibration approach was prominently advocated
by Kydland and Prescott (1982), who also emphasize the importance of aggre-
gate shocks to understand aggregate business cycle fluctuations. Other important
contributions to the DSGE literature emphasizing the persistence of aggregate
shocks are Long and Plosser (1983) and Smets and Wouters (2007), to name
only two in a large literature. More recently, Schorfheide (2000) proposed a
formal Bayesian approach that uses Bayesian priors to aid in the estimation of
DSGE model parameters, and An and Schorfheide (2007) use micro data to
inform the selection of prior distributions. To illustrate the contributions of this
paper, we use the production function of Olley and Pakes (1996) as a micro
foundation to estimate production function parameters from cross-sectional data.
We then use the parameters estimated from the cross section to compute aggregate
productivity shocks using time-series data. The estimated productivity shocks
now form the basis for time-series estimates of the persistency parameter of
aggregate shocks. The asymptotic theory developed in this paper provides the
theoretical foundation to quantify the additional sampling uncertainty introduced
by estimated, rather than observed aggregate shocks. The challenge specifically
arises from the combination of two distinct, yet not independent data sources.

With the objective of creating a framework to perform inference in our general
model, we first derive a joint functional stable CLT for cross-sectional and
time-series data. The CLT explicitly accounts for the factor-induced dependence
between the two samples even when the cross-sectional sample is obtained by
random sampling, a special case covered by our theory. We derive the CLT
under the condition that the dimension of the cross-sectional data n as well as
the dimension of the time-series data τ go to infinity. Using our CLT, we then
derive the asymptotic distribution of the parameter estimators that characterize our
general model. To the best of our knowledge, this is the first paper that derives an
asymptotic theory that combines cross-sectional and time-series data. In order to
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deal with parameters estimated using two datasets of completely different nature,
we adopt the notion of stable convergence. Stable convergence dates back to Rényi
(1963) and was recently used in Kuersteiner and Prucha (2013) in a panel data
context to establish joint limiting distributions. Using this concept, we show that
the asymptotic distributions of the parameter estimators are a combination of
asymptotic distributions from cross-sectional analysis and time-series analysis.

Stable convergence has found wide applications in many areas of statistics.
Stable convergence was introduced into the econometrics literature by Phillips
and Ouliaris (1990), who discuss the concept in detail and draw the connection
to CLTs by McLeish (1975b) and Hall and Heyde (1980). The insight that panel
limit theory often involves invariant sigma algebras generated by time series first
appears in Phillips and Sul (2003) and is the basis for work by Andrews (2005)
and Kuersteiner and Prucha (2013).

Another area in econometrics where stable convergence plays a prominent role
is high-frequency financial models.1 Important references to the high-frequency
literature include Barndorff-Nielsen et al. (2008), Jacod, Podolskij, and Vetter
(2010), and Li and Xiu (2016). Monographs treating the probability-theoretic
foundation for this line of research are Jacod and Shiryaev (2002; henceforth JS)
and Jacod and Protter (2012). In line with the literature on high-frequency financial
econometrics, we base our definition of stable convergence in function spaces on
JS. In the introduction to their book, JS outline two different strategies of proving
CLTs. One is what they term the “martingale method,” which dates back at least to
Stroock and Varadhan (1979). The other is the approach followed by Billingsley
(1968), which consists of establishing tightness, finite-dimensional convergence,
and identification of the finite-dimensional limiting distribution. In this paper, we
follow the second approach, whereas JS and the cited papers in the high-frequency
literature rely on the martingale method. The reason for the difference in approach
lies in the fact that the primitive parameters central to the martingale method,
essentially a set of conditional moments called the triplets of characteristics of
the approximating and limiting process in the language of JS, have no obvious
analog in the models we study. The data generating processes (DGPs) producing
our samples are not embedded in limiting diffusion processes. Even if our DGP
could be represented by or approximated with such diffusions, the parameters of
interest in our applications are not directly related to such approximations.

Our limit theory has a second connection to the high-frequency literature.
Barndorff-Nielsen et al. (2008, Prop. 5) and Li and Xiu (2016, Lem. A3) develop
methods to deduce joint stable convergence of two random sequences from stable
convergence of the first random sequence and conditional convergence in law of
the second random sequence. The assumptions made in these papers, namely that
the noise terms are mean-zero conditional on the entire time series, are stronger
than the assumptions we make in our paper. It is often unnatural to condition on
the entire time series of common shocks, which we avoid in this paper.

1We thank one of the referees for bringing this literature to our attention.
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While the formal derivation of the asymptotic distribution may appear
complicated, the asymptotic formulas that we produce are straightforward to
implement in some special cases and very similar to the standard formula of
Murphy and Topel (1985).

We also derive a novel result related to the unit-root literature. We show that,
when the time-series data are characterized by unit roots, the asymptotic distri-
bution is a combination of a normal distribution and the distribution found in the
unit-root literature. Therefore, the asymptotic distribution exhibits mathematical
similarities to the inferential problem in predictive regressions, as discussed by
Campbell and Yogo (2006). However, the similarity is superficial in that Campbell
and Yogo’s (2006) result is about an estimator based on a single data source.
However, similarly to Campbell and Yogo’s analysis, we need to address problems
of uniform inference. Phillips (2014) proposes a method of uniform inference for
predictive regressions, which we adopt and modify to our own estimation problem
in the unit-root case.

Our results should be of interest to both applied microeconomists and macroe-
conomists. Data combination is common practice in the macro calibration lit-
erature where typically a subset of parameters is determined based on cross-
sectional studies. It is also common in structural microeconomics where the focus
is more directly on identification issues that cannot be resolved in the cross section
alone. In a companion paper (Hahn, Kuersteiner, and Mazzocco, 2020; henceforth
HKM20), we discuss in detail specific examples from the micro literature. In that
paper, we focus on identification and provide an intuitive explanation of inference
with combined cross-sectional and time-series data when aggregate factors are
present. The purpose of this paper is to prove the asymptotic theory needed for
inference rigorously.

The remainder of the paper is organized as follows. In Section 2, we present the
Olley and Pakes model and illustrate how cross-sectional data can be used to help
estimate the persistence of aggregate productivity shocks from time-series data. In
Section 3, we introduce the general statistical model. Our main CLT is presented
in Section 4. In Section 5, we discuss inference. Section 6 contains the analysis of
the unit-root case. We collect proofs of our main results in Appendixes A–C and
relegate additional derivations and results to the Supplementary Material.

2. AGGREGATE PRODUCTIVITY SHOCKS

In HKM20, we consider Olley and Pakes’s (1996) method of estimating production
functions, and show that a subset of parameters is consistently estimable from the
cross section alone even in the presence of aggregate shocks. In this section, we
argue that such a result is limited to only a subset of parameters. In general, access
to both time-series and cross-sectional datasets is required to identify the full set
of parameters, especially when the interest is in parameters that characterize the
aggregate shock process.
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The general model introduced in Section 3 is flexible enough to both cover
cases where the aggregate shocks are treated as nuisance quantities and cases
where the aggregate shocks are treated as parameters or variables to be estimated.
The example in this section can be understood to be the latter case. In our
companion papers HKM20 and HKM21, the interested reader can find additional
fully worked examples, some of them simpler and others more complex than the
model discussed in this paper.

The essence of the example we discuss in this paper is as follows. The parameter
of interest is the first-order autoregressive parameter α(A) of an aggregate shock
process νt. Aggregate shocks νt are unobserved but can be recovered from aggre-
gate output Y∗

t and aggregate capital K∗
t through the relationship νt = Y∗

t −βkK∗
t .

The parameter βk is only identified from cross-sectional data. This approach is
justified by the theory of Olley and Pakes (1996) and explained in more detail
below. Inference for α(A) then is complicated by two aspects: the estimator α̂(A) is
based on estimated data ν̂t = Y∗

t − β̂kK∗
t and β̂k is estimated on a cross-sectional

dataset that is different from the aggregate data
(
Y∗

t ,K
∗
t

)
. Our paper provides the

rigorous foundation for inference in this setting.
We now present a simplified version of Olley and Pakes’s (1996) model.

A profit-maximizing firm j produces a product Yj,t in period t, employing a
production function that depends on the logarithm of labor lj,t, the logarithm of
capital kj,t, and a productivity shock ωj,t. By denoting the logarithm of Yj,t by yj,t,
the production function takes the following form:

yj,t = βllj,t +βkkj,t +ωj,t +ηj,t, (1)

where ωj,t is a productivity shock and ηj,t is a zero-mean measurement error with
finite variance and i.i.d. over j and t. The intercept term is normalized to be zero. In
each period, capital accumulates according to the equation kj,t+1 = (1− δ)kj,t + ij,t,
where δ is the rate at which capital depreciates. We abstract from age heterogeneity
and exit decision. As in Olley and Pakes (1996), we assume that the optimal
investment decision in period t is a function of the current stock of capital and
of the productivity shock, i.e.,

ij,t = it
(
ωj,t,kj,t

)
. (2)

Olley and Pakes (1996) use the result that the investment decision (2) is strictly
increasing in the productivity shock for every value of capital to invert (2), solve
for the productivity shock, and obtain

ωj,t = ht
(
ij,t,kj,t

)
. (3)

One can then replace the productivity shock in the production function using
equation (3) to obtain

yj,t = βllj,t +φt
(
ij,t,kj,t

)+ηj,t, (4)
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where

φt
(
ij,t,kj,t

)= βkkj,t +ht
(
ij,t,kj,t

)
. (5)

For simplicity, we assume that βl and φt
(
ij,t,kj,t

)
are known,2 and work with

y∗
j,t ≡ yj,t −βllj,t.

We now introduce an aggregate shock,3 and assume that the productivity shock
at t is the sum of an aggregate shock νt drawn from a distribution F (ν|α) and of
an idiosyncratic shock εj,t independent of νt, i.e.,

ωj,t = νt + εj,t. (6)

Unlike HKM20, we assume that the firm observes ωj,t but not νt and εj,t separately.4

We assume that νt and εj,t are both Markov processes and in particular, that both
νt and εj,t are AR(1):

νt = α(A)νt−1 + e(A)
t ,

εj,t = α(C)εj,t−1 + e(C)
j,t ,

where the intercepts are zero for notational simplicity such that νt and εj,t have
mean zero.

It can be shown5 that some of the parameters can be identified by using the
cross-sectional generalized method of moments (GMM) estimator based on the
moments

0 = E
[
zj,t
(
y∗

j,t+1 − (β∗
0,t+1 +βkkj,t+1 +α(C)

(
φt
(
ij,t,kj,t

)−βkkj,t
)))]

, (7)

where β∗
0,t+1 ≡ νt+1 − α(C)νt and the zj,t is an instrument uncorrelated with the

error e(C)
j,t+1 + ηj,t+1. Note that identification of the parameters

(
β∗

0,t+1,βk,α
(C)
)

requires that the zj,t contain at least three components. The key cross-sectional
parameter of interest for the application we have in mind is βk, while the remaining

2Olley and Pakes (1996) identify the parameter βl by

βl = E
[(

lj,t −E
[

lj,t
∣∣ ij,t,kj,t

])(
yj,t −E

[
yj,t
∣∣ ij,t,kj,t

])]
E
[(

lj,t −E
[

lj,t
∣∣ ij,t,kj,t

])2] ,

which can be consistently estimated by cross-sectional variation. In HKM20, it is shown that the cross-sectional
variation identifies βl even under the presence of aggregate shocks. We abstract away from the estimation of βl because
the above method of identification was critiqued for substantive economic reasons, for example, by Ackerberg, Caves,
and Frazer (2015), and as such, researchers may prefer other methods of estimation.
3See Section I of the Supplementary Material for intuition of the moment condition for the simple case without any
aggregate shock.
4In HKM20, we assume that νt and εj,t are both Markov processes and that the firm observes the realization of the
aggregate shock and, separately, of the idiosyncratic shock. This is an assumption of convenience to be consistent with
Olley and Pakes’s (1996) assumption that the problem solved by the firm is Markovian. To understand why, consider
a case in which νt and εj,t are both AR(1) processes. If we only use their sum as a state variable, the Markovian
assumption is generally violated, because the sum of AR(1) processes is in general not an AR(1) but an ARMA(2,1)
process. However, if we include νt and εj,t as separate state variables—both observed by the firm—the Markovian
structure is preserved.
5See Section I of the Supplementary Material for details that lead to (7).
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cross-sectional parameters
(
β∗

0,t+1,α
(C)
)

are incidental to our final goal of
estimating the degree of persistence of the aggregate shock.

The parameter α(A) is not identified by the above procedure based on cross-
sectional variation. On the other hand, α(A) can be estimated consistently, possibly
with the help of production function parameters estimated in the cross section, if
aggregate time-series data with information about νt are available. For example,
if an econometrician observes

{(
Y∗

t ,K
∗
t

)
,t = 1, . . . ,τ

}
, where τ is the time-series

sample size and Y∗
t ≡ plimn→∞ n−1∑n

j=1 y
∗
j,t and K∗

t ≡ plimn→∞ n−1∑n
j=1 k∗

j,t,
then equation (1) combined with (6) implies an aggregate relationship between
output and capital of the form Y∗

t −βkK∗
t = νt. Implicit in this formulation is the

assumption that firm-specific shocks εj,t and ηj,t average out in the aggregate. If
νt is estimated by ν̂t = Y∗

t − β̂kK∗
t , then the parameter α(A) can be consistently

estimated by an AR(1) regression of Y∗
t − β̂kK∗

t on a constant and its own lagged
value (using β̂k estimated from the cross-sectional data) as long as τ is sufficiently
large. The example illustrates how cross-sectional data and micro parameters
recovered from it can be used to understand dynamic aggregate parameters.

The fact that α(A) is estimated based on ν̂t rather than νt creates an estimated
regressor problem that affects the limiting distribution of the estimator for α(A).
Unlike in classical estimated regressor problems, this paper considers the case
where two samples that are not necessarily independent of each other are used
to construct ν̂t and estimate α(A).

3. MODEL AND PROBABILITY SPACE

In this section, we present a general modeling framework that includes the example
in Section 2 as well as models considered in HKM20 and HKM21 as special cases.
We assume that our cross-sectional data consist of

{
yi,t, i = 1, . . . ,n,t = 1, . . . ,T

}
,6

where the start time of the cross section or panel, t = 1, is an arbitrary normaliza-
tion of time. Pure cross sections are handled by allowing for T = 1. Note that T is
fixed and finite throughout our discussion, while our asymptotic approximations
are based on n tending to infinity. The need to keep T fixed is motivated by short
cross-sectional panels and is critical for our theoretical development. Without this
assumption, more complicated asymptotic approximations allowing for expanding
parameter spaces as well as different limit theorems are required. The extensions
are left for future work.

Our time-series data consist of {zs, s = τ0 +1, . . . ,τ0 + τ }, where the time-series
sample size τ tends to infinity jointly with n. The starting point of the time-series
sample is either fixed at an arbitrary time τ0 such that −∞ < −K ≤ τ0 ≤ K < ∞
for some bounded K and τ → ∞ or τ0 = τ0 (τ ) depends on τ such that τ0 (τ ) =
−υτ +τ0,f +T for υ ∈ [0,1] and τ0,f a fixed constant. In the latter case, we use the
shorthand notation τ0 when no confusion arises. The fixed τ0 scenario corresponds

6We do not consider models with estimated fixed effects in this paper because we assume that the parameter space
is finite-dimensional.
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to a situation where a (hypothetical) time-series sample is observed into the infinite
future. The specification τ0 (τ ) covers the case τ0 = −τ + T . The case where
τ0 varies with the time-series sample size in the prescribed way can be used to
model situations where the asymptotics are carried out “backward” in time (when
υ = 1) or where the panel data are located at a fixed fraction of the time-series
sample as the time-series sample size tends to infinity (0 < υ < 1) .When υ = 1
such that τ0 → −∞, the end of the time-series sample is fixed at τ0,f + T . A
hybrid case arises when υ ∈ (0,1) such that the starting point τ0 of the time-series
sample extends back in time simultaneously with the last observation in the sample
τ0 + τ tending to infinity. For simplicity, we refer to both scenarios υ ∈ (0,1) and
υ = 1 as backward asymptotics. Backward asymptotics may be more realistic
in cases where recent panel data are augmented with long historical records
of time-series data. We show that under a mild additional regularity condition,
both forward and backward asymptotics lead to the same limiting distribution.
Conventional asymptotics are covered by setting υ = 0. The vector yi,t includes
all information related to the cross-sectional submodel, where i is an index for
individuals, households, or firms, and t denotes the time period when the cross-
sectional unit is observed. The second vector zs contains aggregate data.

The technical assumptions for our CLT, detailed in Section 4, do not directly
restrict the data, nor do they impose restrictions on how the data were sampled.
For example, we do not assume that the cross-sectional sample was obtained
by randomized sampling, although this is a special case that is covered by our
assumptions. Rather than imposing restrictions directly on the data, we postulate
that there are two parameterized models that implicitly restrict the data. The
function f

(
yi,t

∣∣β,νt,ρ
)

is used to model yi,t as a function of cross-sectional
parameters β and common shocks ν ≡ (ν1, . . . ,νT) which are treated as parameters
to be estimated, and time-series parameters ρ. In the same way, the function
g( zs|β,ρ) restricts the behavior of some time-series variables zs.7

Depending on the exact form of the underlying economic model, the functions
f and g may have different interpretations. They could be the log-likelihoods
of yi,t, conditional on νt, and zs, respectively. In a likelihood setting, f and g
impose restrictions on yi,t and zs because of the implied martingale properties
of the score process evaluated at the true parameter values. More generally, the
functions f and g may be the basis for method of moments (the exactly identified
case) or GMM (the overidentified case) estimation. In these situations, parameters
are identified from the conditions EC

[
f
(

yi,t

∣∣β,νt,ρ
)] = 0 given the shock νt and

Eτ [g(zs|β,ρ)] = 0. The first expectation, EC, is understood as being over the
cross-sectional population distribution holding ν = (ν1, . . . ,νT) fixed, whereas
the second, Eτ, is over the distribution of the time-series DGP. The moment

7The function g may naturally arise if the νt is an unobserved component that can be estimated from the aggregate
time series once the parameters β and ρ are known, i.e., if νt ≡ νt (β,ρ) is a function of (zt,β,ρ) and the behavior of
νt is expressed in terms of ρ. Later, we allow for the possibility that g in fact is derived from the conditional density
of νt given νt−1, i.e., the possibility that g may depend on both the current and lagged values of zt . For notational
simplicity, we simply write g( zs|β,ρ) here for now.
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conditions follow from martingale assumptions we directly impose on f and g.
In our companion paper HKM20, we discuss examples of economic models that
rationalize these assumptions.

Whether we are dealing with likelihoods or moment functions, the CLT
is directly formulated for the estimating functions that define the parame-
ters. We use the notation Fn (β,ν,ρ) and Gτ (β,ρ) to denote the criterion
function based on the cross section and time series, respectively. When the
model specifies a log-likelihood, these functions are defined as Fn (β,ν,ρ) =
1
n

∑T
t=1

∑n
i=1 f
(

yi,t

∣∣β,νt,ρ
)

and Gτ (β,ρ) = 1
τ

∑τ0+τ

s=τ0+1 g( zs|β,ρ). When the

model specifies moment conditions, we let hn (β,ν,ρ) = 1
n

∑T
t=1

∑n
i=1 f(

yi,t

∣∣β,νt,ρ
)

and kτ (β,ρ) = 1
τ

∑τ0+τ

s=τ0+1 g( zs|β,ρ). The GMM or moment-based
criterion functions are then given by Fn (β,ν,ρ) = −hn (β,ν,ρ)′ WC

n hn (β,ν,ρ) and
Gτ (β,ρ) = −kτ (β,ρ)′ Wτ

τ kτ (β,ρ) with WC
n and Wτ

τ two almost surely positive
definite weight matrices. The use of two separate objective functions is helpful
in our context because it enables us to discuss which issues arise if only cross-
sectional variables or only time-series variables are used in the estimation.8

We formally justify the use of two datasets by imposing restrictions on the
identifiability of parameters through the cross-sectional and time-series criterion
functions alone. Let 
 be a compact set constructed from the product 
 = 
β ×

ν ×
ρ , where 
β is a compact set that contains the true parameter value β0,
ν

is a compact set that contains the true parameter value ν0, and 
ρ is a compact set
that contains the true parameter value ρ0. We denote the probability limit of the
objective functions by F (β,νt,ρ) and G(β,ρ); in other words,

F (β,ν,ρ) = plim
n→∞

Fn (β,ν,ρ),

G(β,ρ) = plim
τ→∞

Gτ (β,ρ) .

The true or pseudo-true parameters are defined as the maximizers of these
probability limits

(β (ρ),ν (ρ)) ≡ argmax
β,ν∈
β×
ν

F (β,ν,ρ), (8)

ρ (β) ≡ argmax
ρ∈
ρ

G(β,ρ), (9)

and we denote with β0 and ρ0 the solutions to (8) and (9). The idea that neither F
nor G alone are sufficient to identify both parameters is formalized as follows. If
the function F is constant in ρ at the parameter values β and ν that maximize it,
then ρ is not identified by the criterion F alone. Formally, we state that

max
β,ν∈
β×
ν

F (β,ν,ρ) = max
β,ν∈
β×
ν

F (β,ν,ρ0) for all ρ ∈ 
ρ . (10)

8Note that our framework covers the case where the joint distribution of (yit,zt) is modeled. Considering the two
components separately adds flexibility because data is not required for all variables in the same period.

https://doi.org/10.1017/S0266466622000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000391


172 JINYONG HAHN ET AL.

It is easy to see that (10) is not a sufficient condition to restrict identification in a
desirable way. For example, (10) is satisfied in a setting where F does not depend
at all on ρ. In that case, the maximizers in (8) also do not depend on ρ and by
definition coincide with β0 and ν0. To rule out this case, we require that ρ0 is
needed to identify β0 and ν0. Formally, we impose the condition that

(β (ρ),ν (ρ)) 	= (β0,ν0) for all ρ 	= ρ0. (11)

Similarly, we impose restrictions on the time-series criterion functions that insure
that the parameters β and ρ cannot be identified solely as the maximizers of G.
Formally, we require that

max
ρ∈
ρ

G(β,ρ) = max
ρ∈
ρ

G(β0,ρ) for all β ∈ 
β, (12)

ρ (β) 	= ρ0 for all β 	= β0.

To insure that the parameters can be identified from a combined cross-sectional
and time-series dataset, we impose the following condition. Define θ ≡ (β ′,ν ′)′
and assume that (i) there exists a unique solution to the system of equations:[
∂F (β,ν,ρ)

∂θ ′ ,
∂G(β,ρ)

∂ρ ′

]
= 0, (13)

and (ii) the solution is given by the true value of the parameters. In summary,
our model is characterized by the high-level assumptions in (10)–(12), and by the
assumption that (13) only has one solution at the true parameter values.9

In order to accurately describe the theory that follows, we start with a precise
definition of the probability space that we use. Let

(
�′,G ′,P′) be a probability

space with random sequences {zt}∞t=−∞ and {yit}∞,∞
i=1,t=−∞. The observed sam-

ple {zt}τ0+τ

t=τ0+1 and {yi1, . . . ,yiT}n
i=1 is a subset of these random sequences. The

process we analyze consists of a triangular array of panel data ψ
y
n,it where

ψ
y
n,it typically is a function of yit and parameters, observed for i = 1, . . . ,n and

t = 1, . . . ,T . We let n → ∞ while T is fixed and t = 1 is an arbitrary normalization
of time at the beginning of the cross-sectional sample. It also consists of a separate
triangular array of time series ψν

τ,s, where ψν
τ,s is a function of zs and parameters

for s = τ0 + 1, . . . ,τ0 + τ . In typical applications, ψ
y
n,it and ψν

τ,s are the influence
functions of the cross-sectional and time-series estimators.

We now form the triangular array of filtrations similarly to Kuersteiner and
Prucha (2013). The filtrations are a theoretical construct defined on the probability
space in such a way that the observed sample is a strict subset of the random
variables that generate the filtrations. We proceed by first collecting information
about all of the common shocks, (ν1, . . . ,νT), then we pick the initial time-series

9Throughout this paper, we assume that the parameters are not identified using cross-sectional and time-series datasets
alone. This seems to be the main reason for data combination. However, the proposed method of inference in this
paper is effectively based on the moments in (13). This implies that our method of inference still works even if the
parameters are identified from just one dataset.
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realization zmin{1,τ0} in such a way that it predates or coincides with the initial
period of the panel dataset. We then sequentially add the cross-sectional units
for the same time period, starting from i = 1 to i = n.10 Subsequently, the same
procedure is repeated by shifting the time index ahead by one period. The process
ends once the time index reaches max(T,τ ). If τ > T, which eventually happens
in forward asymptotics, but may also arise in backward asymptotics, enlarge
the filtration by adding random variables yit even when t > T . These random
variables are generated from the same distribution that produces the observed
cross-sectional sample but are not actually included in the cross-sectional sample.
This enlargement is used mostly for notational convenience.

Formally, the filtrations are defined as follows. We use the binary operator ∨
to denote the smallest σ -field that contains the union of two σ -fields. Setting C =
σ (ν1, . . . ,νT), we define

Gτn,0 = C, (14)

Gτn,i = σ
(

zmin(1,τ0),
{
yj, min(1,τ0)

}i
j=1

)
∨C,

...

Gτn,n+i = σ
({

yj, min(1,τ0)

}n
j=1 ,
{
zmin(1,τ0)+1,zmin(1,τ0)

}
,
{
yj, min(1,τ0)+1

}i
j=1

)
∨C,

...

Gτn,(t−min(1,τ0))n+i = σ
({

yj,t−1,yj,t−2, . . . ,yj, min(1,τ0)

}n
j=1 ,
{
zt,zt−1, . . . ,zmin(1,τ0)

}
,
{
yj,t
}i

j=1

)
∨C.

As noted before, the filtration Gτn,tn+i is generated by a set of random variables that
contain the observed sample as a strict subset. More specifically, we note that the
cross section yj,t is only observed in the sample for a finite number of time periods,
while the filtrations range over the entire expanding time-series sample period.
We use the convention that Gτn,(t−min(1,τ0))n = Gτn,(t−min(1,τ0)−1)n+n. This implies
that zt and y1t are added simultaneously to the filtration Gτn,(t−min(1,τ0))n+1. Also
note that Gτn,i predates the time-series sample by at least one period. To simplify
notation, define the function qn (t,i) = (t − min(1,τ0))n + i that maps the two-
dimensional index (t,i) into the integers and note that for q = qn (t,i) it follows
that q ∈ {0, . . . , max(T,τ )n}. The index q orders the filtrations from smallest to
largest. The filtrations Gτn,q are increasing in the sense that Gτn,q ⊂ Gτn,q+1 for all
q,τ , and n. However, they are not nested in the sense of Hall and Heyde’s (1980)
Condition (3.21) for two reasons. One is the fact that we are considering what
essentially amounts to a panel structure generating the filtration. Kuersteiner and
Prucha (2013) provide a detailed discussion of this aspect. A second reason has

10The filtrations are constructed based on the ordering of the cross-sectional sample. However, at the cost of slightly
stronger moment conditions, the σ -fields can be constructed in a way that is invariant to reordering of the cross-
sectional sample. We refer the interested reader to Kuersteiner and Prucha (2013), in particular Definition 1 and the
related discussion for details. Note that the stronger moment conditions needed for the invariance property hold in
situations where yit is cross-sectionally independent conditional on {zt,zt−1, . . .}∨C. The latter is a leading case in
our examples.
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to do with the possible “backward” asymptotics adopted in this paper. Even in
a pure time-series setting, i.e., omitting yi,t from the definitions (14), backward
asymptotics lead to a violation of Hall and Heyde’s Condition (3.21) because the
definition of Gτn,q changes as q is held fixed but τ increases. The consequence
of this is that unlike in Hall and Heyde (1980), stable convergence cannot be
established for the entire probability space, but rather is limited to the invariant
σ -field C. This limitation is the same as in Kuersteiner and Prucha (2013) and also
appears in Eagleson (1975), albeit due to very different technical reasons. The fact
that the definition of Gτn,q changes for fixed q does not pose any problems for the
proofs that follow, because the underlying proof strategy explicitly accounts for
triangular arrays and does not use Hall and Heyde’s Condition (3.21).

To better understand the construction of Gτn,q, we refer the reader to Kuersteiner
and Prucha (2013, pp. 112–114) for a discussion of why the cross-sectional
sample needs to be added to the filtration one at a time, why the ordering of
the cross-sectional sample is irrelevant under certain regularity conditions, and
why the nesting condition (3.21) of Hall and Heyde (1980) must fail in a panel
context. Kuersteiner and Prucha (2013, Sect. 2.3) also provide a number of worked
examples. The construction of Gτn,q proposed in this paper extends Kuersteiner
and Prucha (2013) in two directions. On the one hand, an additional time-series
component zs is part of the generating mechanism for Gτn,q. On the other hand,
the filtration expands because two indices, τ and n, rather than just n in the case
of Kuersteiner and Prucha (2013), tend to infinity. The construction of Gτn,q is
specific to the type of CLT we prove and the fact that the joint process of ψ

y
n,it and

ψν
τ,t needs to satisfy a martingale difference property relative to the filtration Gτn,q

for our proof to be valid. The fact that zt and y1t are added simultaneously to the
filtration before the cross-sectional observations y2t, . . . ,ynt is necessitated by the
possibility that zt and yjt are not independent. To understand this point, consider a
hypothetical situation where zt were added at the end of the cross-sectional sample
together with ynt. In such a scenario, it would no longer be credible to impose
the moment condition E

[
ψν

τ,t|Gτn,q−1
] = 0 for q = qn (t,n) with t > T because

Gτn,q−1 now would depend on y1t, . . . ,yn−1t. These variables in turn may predict
ψν

τ,t. Similarly, the need to develop partial sums over the index i for the component
ψ

y
n,it requires that yit be added one at a time to the filtration Gτn,q, a point also

explained in Kuersteiner and Prucha (2013).

4. JOINT PANEL–TIME-SERIES LIMIT THEORY

In this section, we first establish a generic joint limiting result for a combined
panel–time-series process and then specialize it to the limiting distributions of
parameter estimates under stationarity and, in a later section, nonstationarity.

We develop asymptotic theory for the sums of some generic random vectors
ψ

y
n,it and ψν

τ,t. Typically, ψ
y
n,itand ψν

τ,t are the scores or moment functions of a
cross-sectional and time-series criterion function based on observed data yit and zt.
Below, we introduce general regularity conditions for these generic random vectors
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ψ
y
n,it and ψν

τ,t. Let kθ be the dimension of the parameter θ , and let kρ be the
dimension of the parameter ρ. With some abuse of notation, we also denote by
kθ the number of moment conditions used to identify θ when GMM estimators
are used, with a similar convention applying to kρ . With this notation, ψ

y
n,it takes

values in Rkθ and ψν
τ,t takes values in Rkρ . We assume that T ≤ τ0 +τ . Throughout,

we assume that
(
ψ

y
n,it,ψ

ν
τ,t

)
is a type of a vector mixingale sequence relative to

a filtration Gτn,q. The concept of mixingales was introduced by Gordin (1969,
1973) and McLeish (1975a). We derive the joint limiting distribution and a related
functional CLT for 1√

n

∑T
t=1

∑n
i=1 ψ

y
n,it and 1√

τ

∑τ0+τ

t=τ0+1 ψν
τ,t.

The CLT we develop needs to establish joint convergence for terms involving
both ψ

y
n,it and ψν

τ,t with both the time-series and the cross-sectional dimension
becoming large simultaneously. Let [a] be the largest integer less than or equal a.
Joint convergence is achieved by stacking both moment vectors into a single sum
that extends over both t and i. Let r ∈ [0,1] and define

ψ̃ν
it (r) ≡ ψν

τ,t√
τ

1{τ0 +1 ≤ t ≤ τ0 + [τ r]}1{i = 1}, (15)

which depends on r in a nontrivial way. This dependence will be of particular
interest when we specialize our models to the near unit-root case. For cross-
sectional data, define

ψ̃
y
it (r) ≡ ψ̃

y
it ≡ ψ

y
n,it√
n

1{1 ≤ t ≤ T}, (16)

where ψ̃
y
it (r) = ψ̃

y
it is constant as a function of r ∈ [0,1] . In turn, this implies that

functional convergence of the component (16) is the same as the finite-dimensional
limit. It also means that the limiting process is degenerate (i.e., constant) when
viewed as a function of r. However, this does not matter in our applications as we
are only interested in the sample averages

1√
n

T∑
t=1

n∑
i=1

ψ
y
n,it =

max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

ψ̃
y
it ≡ Xy

nτ .

Define the stacked vector ψ̃it (r) =
(
ψ̃

y
it (r)

′ ,ψ̃ν
it (r)

′
)′ ∈R

kφ , where φ = (θ,ρ) and

kφ is the dimension of φ. Consider the stochastic process

Xnτ (r) =
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

ψ̃it (r), Xnτ (0) = (Xy′
nτ,0
)′

. (17)

We derive a functional CLT which establishes joint convergence between the panel
and time-series portions of the process Xnτ (r). The result is useful in analyzing
both trend stationary and unit-root settings. In the latter, we specialize the model
to a linear time-series setting. The functional CLT is then used to establish proper
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joint convergence between stochastic integrals and the cross-sectional component
of our model.

For the stationary case, we are mostly interested in Xnτ (1) where, in particular,

1√
τ

τ0+τ∑
t=τ0+1

ψν
τ,t =

max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

ψ̃ν
it (1),

and we used the fact that
∑n

i=1 ψ̃ν
it (1) = ψ̃ν

1t (1) = ψν
τ,t√
τ

1{τ0 +1 ≤ t ≤ τ0 + τ }
by (15). The limiting distribution of Xnτ (1) is a simple corollary of the functional
CLT for Xnτ (r) . We note that our treatment differs from Phillips and Moon (1999),
who develop functional CLTs for the time-series dimension of the panel dataset.
In our case, since T is fixed and finite, a similar treatment is not applicable.

We introduce the following general regularity conditions for generic random
vectors ψ

y
n,it and ψν

τ,t. Similarly, the CLT established in this section is for generic
random vectors and empirical processes satisfying the regularity conditions.
In later sections, these conditions will be specialized to the particular models
considered there. To apply the general theory in this section to specific models,
we evaluate the score or moment function at the true parameter value. In those
instances, ψ

y
n,it and ψν

τ,t will be interpreted as the score or moment function
evaluated at the true parameter value. We use ‖.‖ to denote the euclidean norm.

Condition 1. Assume that:

(i) ψ
y
n,it is measurable with respect to Gτn,(t−min(1,τ0))n+i.

(ii) ψν
τ,t is measurable with respect to Gτn,(t−min(1,τ0))n+i, for all i = 1, . . . ,n.

(iii) For some δ > 0 and C < ∞, supit E
[∥∥ψy

n,it

∥∥2+δ
]

≤ C, for all n ≥ 1.

(iv) For some δ > 0 and C < ∞, supt E
[∥∥ψν

τ,t

∥∥2+δ
]

≤ C, for all τ ≥ 1.

(v) E
[
ψ

y
n,it

∣∣Gτn,(t−min(1,τ0))n+i−1
]= 0.

(vi) E
[
ψν

τ,t

∣∣Gτn,(t−min(1,τ0)−1)n+i
]= 0, for t > T and all i = 1, . . . ,n.

(vii)
∥∥E [ψν

τ,t

∣∣Gτn,(t−min(1,τ0)−1)n+i
]∥∥

2
≤ ϑt, for t < 0 and all i = 1, . . . ,n, where

ϑt ≤ C
(|t|1+δ

)−1/2

for the same δ as in (iv) and some bounded constant C and where for a vector of

random variables x = (x1, . . . ,xd) and ‖x‖2 =
(∑d

j=1 E
[∣∣xj

∣∣2])1/2
is the L2-norm.

Condition 1(i), (iii), and (v) can be justified in a variety of ways. One is the
subordinated process theory employed in Andrews (2005), which arises when yit

are random draws from a population of outcomes y. A sufficient condition for
Condition 1(v) to hold is that E [ψ (y|θ,ρ,νt)|C] = 0 holds in the population. This
would be the case, for example, if ψ were the correctly specified score for the
population distribution of yi,t given νt. See Andrews (2005, pp. 1573–1574).
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Condition 1(i), (iii), and (v) imposes a martingale difference property for ψ
y
n,it

both in the time as well as in the cross-sectional dimensions. More specifically,

E
[
ψ

y
n,it|ψy

n,i1t,ψ
y
n,i2t2

, . . . ,ψ
y
n,iktk

,C
]

= 0 for any collection (i1,t), . . . , (ik,tk) with

i1 < i, t2, . . . ,tk < t and ir ∈ {1, . . . ,n}, for 2 ≤ r ≤ k. The CLT is established by
letting the sums over the sample increase sequentially in line with the information
contained in Gτn,q and thus mapping the sums over t and i into a single sum over
an index set on the real line. This approach preserves the information structure in

Gτn,q and in particular takes into account that in general E
[
ψ

y
n,it|ψy

n,js,C
]

	= 0, for

s > t and all j ∈ {1, . . . ,n}. The score of a correctly specified likelihood is a leading
example where the information structure takes the form implied by our conditions.

The construction in this paper is in contrast to some of the joint limit theory
for panels that is based on martingale difference sequence (mds) assumptions in
the time direction only and weak convergence of time-series averages of cross-
sectional aggregates ψ̆

y
n,t = n−1/2∑n

i=1 ψ
y
n,it, driven by T going to infinity. Our

theory on the other hand depends on the cross-sectional sample size n tending to
infinity, while T is kept fixed. The pure cross-sectional case is covered by allowing
for T = 1. Other examples include cases where the cross section is sampled at
random conditional on C and ψ

y
n,it is a conditional moment function in a rational

agent model.
Condition 1(ii), (iv), and (vi) imposes a martingale property for ψν

τ,t in the time
dimension. In addition, the condition also implies that E

[
ψν

τ,t|ψy
n,is,C
]= 0 for any

i ∈ {1, . . . ,n} and s < t and t > T . We note that this condition is weaker than
assuming independence between ψν

τ,t and ψ
y
n,is, even conditionally on C. While

the examples in HKM20 do satisfy such a conditional independence restriction, it
is not required for the CLT developed in this paper.

We note that E
[
ψν

τ,t

∣∣Gτn,qn(t−1,i)
]= 0, for all i, only holds for t > T because we

condition not only on zt−1,zt−2, . . . but also on ν1, . . . ,νT , where the latter may have
nontrivial overlap with the former. When τ0 is fixed, the number of time periods t
where E

[
ψν

τ,t

∣∣Gτn,qn(t−1,i)
] 	= 0 is finite and thus can be neglected asymptotically.

On the other hand, when τ0 varies with τ , there is an asymptotically nonnegligible
number of time periods where the condition may not hold. To handle this latter
case, we impose an additional mixingale type condition that is satisfied for typical
time-series models.

Condition 1(vii) is an additional restriction needed to handle situations where τ0,
the starting point of the time-series sample, is allowed to diverge to −∞. We call
this situation backward asymptotics. Since it is generally the case that E

[
ψν

τ,t|C
] 	=

0 for t ≤ T because C contains information about future realizations of ψν
τ,t, we

need a condition that limits this dependence as t → −∞. The following example
illustrates that the condition naturally holds in linear time-series models.

Example 1. Assume that us is i.i.d. N (0,1) and zs =∑∞
j=0 ρ jus−j with |ρ| < 1

is the stationary solution to zs+1 = ρzs + us+1. Use the convention that νs = zs.
Then the score of the Gaussian likelihood is ψν

τ,s = zsus+1. Assuming that
τ0 = −τ +1,T = 1, and that zs is independent of yi,t conditional on C = σ (ν1), it
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is sufficient for this example to define Gτn,(t−min(1,τ0))n+i = σ
({

zt,zt−1, . . . ,zτ0

})∨
σ (ν1). Then11

∥∥E [ψν
τ,s

∣∣Gτn,(s−min(1,τ0)−1)n+i
]∥∥

2
= O
(|ρ||s|/2

)= o
(|s|−(1+δ)/2

)
.

The following conditions, Condition 2 for the time-series sample and Condi-
tion 3 for the cross-sectional sample, are put in place to ensure that, in combination
with Condition 1, the variance of Xnτ (r) converges as n and τ tend to ∞ jointly.
Conditions 2 and 3 correspond to Condition 3.19 in Hall and Heyde (1980, Thm.
3.2). We note in particular that the martingale structure in conjunction with uniform
moment bounds imposed in Condition 1 is sufficient to guarantee that cross-
covariance terms over different time periods converge to zero.

Condition 2. Assume that:
(i) For any r ∈ [0,1],

1

τ

τ0+[τ r]∑
t=τ0+1

ψν
τ,tψ

ν′
τ,t

p→ �ν (r), as τ → ∞,

where �ν (r) is positive definite a.s. and measurable with respect to σ (ν1, . . . ,νT)

for all r ∈ (0,1].
(ii) The elements of �ν (r) are bounded continuously differentiable functions of
r > s ∈ [0,1]. The derivatives �̇ν (r) = ∂�ν (r)/∂r are positive definite almost
surely.
(iii) There is a fixed constant M < ∞ such that

sup‖λν‖=1,λν∈Rkρ supt λ
′
ν�̇ν (t)λν ≤ M a.s.

Remark 1. Note that by construction �ν (0) = 0.

Condition 2 is weaker than the conditions of Billingsley’s (1968, Thm. 23.1)
functional CLT for strictly stationary mds because we neither assume strict
stationarity nor homoskedasticity. We do not assume that E

[
ψν

τ,tψ
ν′
τ,t

]
is constant.

Brown (1971) allows for time-varying variances, but uses stopping times to achieve
a standard Brownian limit. Even more general treatments with random stopping
times are possible (see Gänssler and Häusler (1979)). On the other hand, here,
convergence to a Gaussian process (not a standard Wiener process) with the same
methodology (i.e., establishing convergence of finite-dimensional distributions
and tightness) as in Billingsley (1968), but without assuming homoskedasticity,
is pursued. Related results with heteroskedastic errors in the high-frequency and
stochastic process literature can be found, for example, in Theorem IX.7.28 of JS.

Heteroskedastic errors are explicitly used in Section 6 where ψν
τ,t = exp ((t − s)

γ /τ)ηs. Even if ηs is iid
(
0,σ 2
)
, it follows that ψν

τ,t is a heteroskedastic triangular

11Detailed derivations are in Section II of the Supplementary Material.
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array that depends on τ . It can be shown that the variance kernel �ν (r) is �ν (r) =
σ 2 (1− exp (−2rγ ))

/
2γ in this case. See equation (56).

Condition 3. Assume that

1

n

n∑
i=1

ψ
y
n,itψ

y′
n,it

p→ �ty,

where �ty is positive definite a.s. and measurable with respect to σ (ν1, . . . ,νT) .

Condition 2 holds under a variety of conditions that imply some form of weak
dependence of the process ψν

τ,t. These include, in addition to Condition 1(ii) and
(iv), mixing or near epoch dependence assumptions on the temporal dependence
properties of the process ψν

τ,t. Condition 3 holds under appropriate moment bounds
and random sampling in the cross section even if the underlying population
distribution is not independent (see Andrews, 2005, for a detailed treatment).

4.1. Stable Functional CLT

This section details the probabilistic setting we use to accommodate the results
that JS develop for general Polish spaces. Let

(
�′,G ′,P′) be a probability space

with increasing filtrations Gkn,q ⊂ G ′ and Gkn,q ⊂ Gkn,q+1 for any q = 1, . . . ,kn and
an increasing sequence kn → ∞ as n → ∞.12 Let D

R
kθ ×R

kρ [0,1] be the space of
functions [0,1] → R

kθ ×R
kρ that are right continuous and have left limits (see

Billingsley, 1968, p. 109) with discontinuities synchronized across all elements
in the vectors. Let C be a subsigma field of G ′. Let (ζ,Zn (ω,t)) : �′ × [0,1] →
R×R

kθ ×R
kρ be random variables or random elements in R and D

R
kθ ×R

kρ [0,1],
respectively, defined on the common probability space

(
�′,G ′,P′) and assume that

ζ is bounded and measurable with respect to C.
As in JS (p. 512), let Z

(
ω′,x
) = x be the canonical element on D

R
kθ ×R

kρ [0,1]
and let Q

(
ω′,dx
)

be a version of the distribution of Z conditional on C. Similarly,
let Qn

(
ω′,dx
)

be a version of the conditional (on C) distribution of Zn. Following JS
(Def. VI.1.1 and Thm. VI.1.14), we define the σ -field generated by all coordinate
projections on D

R
kθ ×R

kρ [0,1] as D
R

kθ ×R
kρ . Then define the joint probability space

(�,G,P) with � = �′ ×D
R

kθ ×R
kρ [0,1],G = G ′ ⊗D

R
kθ ×R

kρ , and

P
(
dω′,dx

)= P′ (dω′)Q(ω′,dx
)

. (18)

Following JS (p. 512, Def. 5.28), we say that Zn converges C-stably to Z if
for all bounded, C-measurable ζ and any continuous bounded functional f :
D

R
kθ ×R

kρ [0,1] → R,

E
[
ζ f (Zn)

]→ E [ζQ [f (Z)]], (19)

12In our case, kn = max(T,τ )n where both n → ∞ and τ → ∞ such that clearly kn → ∞.
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where Q [f (Z)] is the expectation of f (Z) conditional on C. More specifically, if
W (r) is standard Brownian motion, we say that Zn ⇒ W (r)C-stably where the
notation means that (19) holds when Q is Wiener measure (for a definition and
existence proof, see Billingsley (1968, Chap. 2, Sect. 9)). Our proof strategy is
based on JS (Prop. VIII.5.33), which shows that Zn converges C-stably iff Zn is
tight and for all A ∈ C, E [1Af (Zn)] converges.

The concept of stable convergence was introduced by Rényi (1963) and has
found wide application in probability and statistics. Most relevant to the discussion
here are the stable CLTs of Hall and Heyde (1980, Thm. 3.2) and Kuersteiner
and Prucha (2013), who extend the result in Hall and Heyde (1980, Thm. 3.2)
to panel data with fixed T. Related to our work, stable functional limit theorems
were obtained previously for different settings by Rootzen (1983), Feigin (1985),
and Dedecker and Merlevede (2002). For example, Dedecker and Merlevede
(2002) established a related stable functional CLT for strictly stationary martingale
differences, while we allow for heterogeneity and nonstationarity.

Theorem 1. Assume that Conditions 1–3 hold. Then it follows that for ψ̃it

defined in (17), and as τ,n → ∞, and T fixed,

Xnτ (r) ⇒
[

By (1)

Bν (r)

]
(C-stably),

where By (r) = �y
1/2Wy(r),Bν (r) = ∫ r

0 �̇ν (s)1/2 dWν(s), �(r) = diag
(
�y,�ν (r)

)
is C-measurable, �̇ν (s) = ∂�ν (s)/∂s, and

(
Wy (r),Wν (r)

)
is a vector of standard

kφ-dimensional, mutually independent, Brownian processes independent of �.

Proof. In Appendix A. �

Remark 2. Note that Wy (r) = Wy (1) for each r ∈ [0,1] by construction. Thus,
Wy (1) is simply a vector of standard Gaussian random variables, independent both
of Wν (r) and any random variable measurable with respect to C.

The limiting random variables By (r) and Bν (r) both depend on C and thus are
mutually dependent. However, conditional on C, the limiting random variables are
independent because of the mutual independence of Wy (r) and Wν (r) . The repre-
sentation By (1) = �y

1/2Wy(1), where a stable limit is represented as the product of
an independent Gaussian random variable and a scale factor that depends on C, is
common in the literature on stable convergence. Results similar to the one for Bν (r)
were obtained by Phillips (1987, 1988) for cases where �̇ν (s) is nonstochastic
and has an explicitly functional form, notably for near unit-root processes and
when convergence is marginal rather than stable. Rootzen (1983) establishes stable
convergence but gives a representation of the limiting process in terms of standard
Brownian motion obtained by a stopping time transformation. The representation
of Bν (r) in terms of a stochastic integral over the random scale process �̇ν (s)
is obtained by utilizing a technique mentioned in Rootzen (1983, p. 10) but not
utilized there, namely establishing finite-dimensional convergence using a stable
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martingale CLT. This technique combined with a tightness argument establishes
the characteristic function of the limiting process. The representation for Bν (r) is
then obtained by utilizing isometry properties of the stochastic integral. Rootzen
(1983, p. 13) similarly utilizes characteristic functions to identify the limiting
distribution in the case of standard Brownian motion. Similar representations have
been obtained in the high-frequency time-series literature (see Jacod et al., 2010;
Jacod and Protter, 2012). Finally, the results of Dedecker and Merlevede (2002)
differ from ours in that they only consider asymptotically homoskedastic and
strictly stationary processes. In our case, heteroskedasticity is explicitly allowed
because of �̇ν (s) . An important special case of Theorem 1 is the near unit-root
model discussed in more detail in Section 6.

More importantly, our results innovate over the literature by establishing joint
convergence between cross-sectional and time-series averages that are generally
not independent and whose limiting distributions are not independent. This result
is obtained by a novel construction that embeds both datasets in a random field.
A careful construction of information filtrations Gτn,n+i allows to map the field
into a martingale array. Similar techniques were used in Kuersteiner and Prucha
(2013) for panels with fixed T . In this paper, we extend their approach to handle an
additional and distinct time-series dataset and by allowing for both n and τ to tend
to infinity jointly. In addition to the more complicated data structure, we extend
Kuersteiner and Prucha (2013) by considering functional CLTs.

The following corollary is useful for possibly nonlinear but trend stationary
models.

Corollary 1. Assume that Conditions 1–3 hold. Then it follows that for ψ̃it

defined in (17), and as τ,n → ∞ and T fixed,

Xnτ (1)
d→ B ≡ �1/2W (C-stably),

where � = diag
(
�y,�ν (1)

)
is C-measurable and W = (Wy (1),Wν (1)

)
is a vector

of standard kφ-dimensional Gaussian random variables independent of �. The
variables �y,�ν (.),Wy (.), and Wν (.) are as defined in Theorem 1.

Proof. In Appendix A. �

The result of Corollary 1 is equivalent to the statement that Xnτ (1)
d→ N (0,�)

conditional on positive probability events in C. No simplification of the technical
arguments are possible by conditioning on C except in the trivial case where � is
a fixed constant. Eagleson (1975, Cor. 3) (see also Hall and Heyde, 1980, p. 59)

establishes a simpler result where Xnτ (1)
d→ B weakly but not (C-stably). Such

results could in principle be obtained here as well, but they would not be useful
for the analysis in Sections 4.2 and 6 because the limiting distributions of our
estimators not only depend on B but also on other C-measurable scaling matrices.
Since the continuous mapping theorem requires joint convergence, a weak limit
for B alone is not sufficient to establish the results we obtain below.
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Theorem 1 establishes what Phillips and Moon (1999) call diagonal conver-
gence, a special form of joint convergence.13 To see that sequential convergence
where first n or τ go to infinity, followed by the other index, is generally not useful
in our setup, consider the following example. Consider the double-indexed process

Xnτ (1) =
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

ψ̃it (1) . (20)

For each τ fixed, convergence in distribution of Xnτ as n → ∞ follows from
the CLT in Kuersteiner and Prucha (2013). Let Xτ denote the “large n, fixed τ”
limit. For each n fixed, convergence in distribution of Xnτ as τ → ∞ follows
from a standard martingale CLT for Markov processes. Let Xn be the “large τ ,
fixed n” limit. It is worth pointing out that the distributions of both Xn and Xτ are
unknown because the limits are trivial in one direction. For example, when τ is
fixed and n tends to infinity, the component τ−1/2∑τ0+τ

t=τ0+1 ψν
τ,t trivially converges

in distribution (it does not change with n), but the distribution of τ−1/2∑τ0+τ

t=τ0+1 ψν
τ,t

is generally unknown. More importantly, application of a conventional CLT for
the cross section alone will fail to account for the dependence between the time-
series and cross-sectional components. Sequential convergence arguments thus are
not recommended even as heuristic justifications of limiting distributions in our
setting.

4.2. Trend Stationary Models

This section provides the theoretical foundation for the inference methods
proposed in Section 6 of HKM20. Let θ = (β,ν1, . . . ,νT) and define the
shorthand notation fit (θ,ρ) = f (yit|θ,ρ), gt (β,ρ) = g(νt|νt−1,β,ρ), fθ,it (θ,ρ) =
∂fit (θ,ρ)/∂θ , and gρ,t (β,ρ) = ∂gt (β,ρ)/∂ρ. Furthermore, let fit = fit (θ0,ρ0),

fθ,it = fθ,it (θ0,ρ0),gt = gt (β0,ρ0), and gρ,t = gρ,t (β0,ρ0) . Depending on whether
the estimator under consideration is maximum likelihood or moment-based, we
assume that either

(
fθ,it,gρ,t

)
or (fit,gt) satisfy the same assumptions as

(
ψ

y
it,ψ

ν
τ,t

)
in Condition 1. We recall that νt (β,ρ) is a function of (zt,β,ρ), where zt are
observable macro variables. For the CLT, the process νt = νt (β0,ρ0) is evaluated
at the true parameter values and treated as observed. In applications, νt will be
replaced by an estimate which potentially affects the limiting distribution of ρ.
This dependence is analyzed in a step separate from the CLT.

The next step is to use Corollary 1 to derive the joint limiting distribution of esti-
mators for φ = (θ ′,ρ ′)′. Define sν

ML (β,ρ) = τ−1/2∑τ0+τ

t=τ0+1 ∂g(νt (β,ρ) |νt−1 (β,ρ),

13The discussion assumes that 0 < κ < ∞. The cases where κ = 0 or κ = ∞ allow for a simpler treatment where
either the time-series or cross-sectional sample can be ignored. In those situations, considerations of joint convergence
play only a minor role.
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β,ρ)/∂ρ and sy
ML (θ,ρ) = n−1/2∑T

t=1

∑n
i=1 ∂f (yit|θ,ρ)/∂θ for maximum like-

lihood, and

sν
M (β,ρ) = −(∂kτ (β,ρ)/∂ρ)′ Wτ

τ τ−1/2
τ0+τ∑

t=τ0+1

g(νt (β,ρ) |νt−1 (β,ρ),β,ρ)

and sy
M (θ,ρ) = −(∂hn (θ,ρ)/∂θ)′ WC

n n−1/2∑T
t=1

∑n
i=1 f (yit|θ,ρ) for moment-

based estimators. We use sν (β,ρ) and sy (θ,ρ) generically for arguments that
apply to both maximum likelihood and moment-based estimators. The estimator
φ̂ jointly satisfies the moment restrictions using time-series data

sν
(
β̂,ρ̂
)

= 0 (21)

and cross-sectional data

sy
(
θ̂,ρ̂
)

= 0. (22)

Defining s(φ) = (sy (φ)′ ,sν (φ)′
)′

, the estimator φ̂ satisfies s
(
φ̂
)

= 0. A first-order

Taylor series expansion around φ0 is used to obtain the limiting distribution for φ̂.
We impose the following additional assumption.

Condition 4. Let φ = (θ ′,ρ ′)′ ∈ R
kφ,θ ∈ R

kθ , and ρ ∈ R
kρ . Define Dnτ =

diag
(
n−1/2Iy,τ

−1/2Iν
)
, where Iy is an identity matrix of dimension kθ and Iν is

an identity matrix of dimension kρ . Assume that, for some ε > 0,

sup
φ:‖φ−φ0‖≤ε

∥∥∥∥∂s(φ)

∂φ′ Dnτ −A(φ)

∥∥∥∥= op (1),

where A(φ) is C-measurable and A = A(φ0) is full rank almost surely. Let
κ = limn/τ,

A =
[

Ay,θ
√

κAy,ρ
1√
κ

Aν,θ Aν,ρ

]
with Ay,θ = plimn−1/2∂sy (φ0)/∂θ ′, Ay,ρ = plimn−1/2∂sy (φ0)/∂ρ

′, Aν,θ =
plimτ−1/2∂sν (φ0)/∂θ ′, and Aν,ρ = plimτ−1/2∂sν (φ0)/∂ρ

′.

Condition 5. For maximum likelihood criteria, the following holds:

(i) For any r ∈ [0,1], 1
τ

∑τ0+[τ r]
t=τ0+1 gρ,tg′

ρ,t
p→ �ν (r) as τ → ∞ and where �ν (r)

satisfies the same regularity conditions as in Condition 2.

(ii) 1
n

∑n
i=1 fθ,itf ′

θ,it
p→ �ty for all t ∈ [1, . . . ,T] and where �ty is positive definite

a.s. and measurable with respect to σ (ν1, . . . ,νT) . Let �y =∑T
t=1 �ty.
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Condition 6. Let WC = plimn WC
n and Wτ = plimτ Wτ

τ , and assume the limits
to be positive definite and C-measurable. Define h(θ,ρ) = plimn hn (β,νt,ρ) and
k (β,ρ) = plimτ kτ (β,ρ) . For moment-based criteria, the following holds:

(i) 1
τ

∑τ0+[τ r]
t=τ0+1 gtg′

t
p→ �g (r) as τ → ∞ and where �g (r) satisfies the same

regularity conditions as in Condition 2.

(ii) 1
n

∑n
i=1 fitf ′

it
p→ �t,f for all t ∈ [1, . . . ,T] . Let �f =∑T

t=1 �t,f . Assume that �f

is positive definite a.s. and measurable with respect to σ (ν1, . . . ,νT).
Assume that, for some ε > 0 :
(iii) supφ:‖φ−φ0‖≤ε

∥∥(∂kτ (β,ρ)/∂ρ)′ Wτ
τ − ∂k (β,ρ)′ /∂ρWτ

∥∥= op (1) .
(iv) supφ:‖φ−φ0‖≤ε

∥∥(∂hn (θ,ρ)/∂θ)′ WC
n − (∂h(θ,ρ)/∂θ)′ WC

∥∥= op (1) .

It is easy to see that the regularity conditions laid out in Conditions 1, 4, and 5
are satisfied if the requirements in Footnote 32 of HKM20 are imposed on the
estimating functions f and g defined in that paper. The following result establishes
the joint limiting distribution of φ̂.

Theorem 2. In the case of likelihood-based estimators, assume that Con-
ditions 1, 4, and 5 hold with

(
ψ

y
it,ψ

ν
τ,t

) = (fθ,it,gρ,t
)
. In the case of moment-

based estimators, assume that Conditions 1, 4, and 6 hold with
(
ψ

y
it,ψ

ν
τ,t

) =(
∂h(θ0,ρ0)′

∂θ
WCfit,

∂k(β0,ρ0)′
∂ρ

Wτ gt

)
. Assume that φ̂ − φ0 = op (1) and that (21) and

(22) hold. Then,

D−1
nτ

(
φ̂ −φ0

)
d→ −A−1�1/2W (C-stably),

where A is full rank almost surely, C-measurable and is defined in Condition 4.

Proof. In Appendix B. �

Remark 3. The distribution of �1/2W is given in Corollary 1. In particu-
lar, � = diag

(
�y,�ν (1)

)
. When the criterion is maximum likelihood, �y and

�ν (1) are given in Condition 5. When the criterion is moment-based, �y =
∂h(θ0,ρ0)′

∂θ
WC�f WC′ ∂h(θ0,ρ0)

∂θ
and �ν (1) = ∂k(β0,ρ0)′

∂ρ
Wτ�g (1)Wτ ′ ∂k(β0,ρ0)

∂ρ
with �f

and �g (1) defined in Condition 6.

The theorem provides formulas for the joint asymptotic variance covariance
matrix of φ̂ in two scenarios. The first scenario obtains when f and g are either the
scores of a likelihood function, or if they are estimating functions in a just identified
set of moment conditions. The second scenario covers GMM estimators in a
scenario where f and g are moment functions in an overidentified set of moment
conditions. The methods reported in Section 6 of HKM20 use an exactly identified
moment-based approach. There may be cases where one wants to estimate the
cross-sectional model using a likelihood approach and the time-series model using
a moment approach, or vice versa. These cases can be handled as a special case
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of the second scenario, where f or g is an exactly identified moment condition,
whereas the other one may be an overidentified moment condition.

5. ASYMPTOTIC INFERENCE

Our asymptotic framework is such that standard textbook-level analysis suffices
for the discussion of consistency of the estimators. In standard analysis with a
single data source, one typically restricts the moment equation to ensure iden-
tification, and imposes further restrictions such that the sample analog of the
moment function converges uniformly to the population counterpart. Because
these arguments are well known, we simply impose as a high-level assumption
that our estimators are consistent. In this section, we illustrate how the rigorous
technical results of Section 4 can be applied to statistical inference problems for
specific examples.

5.1. Intuition

For expositional purposes, suppose that the time series zs is such that the logarithm
of its conditional probability density function given zs−1 is g( zs|β,ρ). To simplify
the exposition in this section, we assume that the cross-sectional model does not
depend on the macro parameter ρ. We denote the consistent first-stage estimator
of θ = (β,ν1, . . . ,νT) by θ̃ .14

We assume that the dimension of the cross-sectional data is n. Implicit in
this representation is the idea that we are given a short panel for estimation of
θ = (β,ν1, . . . ,νT), where T denotes the time-series dimension of the panel data.
In order to emphasize that T is small, we use the term “cross section” for the short
panel dataset, and adopt asymptotics where T is fixed. Then, assume that θ̃ is a
regular estimator with influence function ϕit such that

√
n
(
θ̃ − θ
)= 1√

n

n∑
i=1

T∑
t=1

ϕit +op (1) (23)

with E [ϕit] = 0. Using θ̃ from the cross-sectional data, we can then consider
maximizing the criterion Gτ (θ,ρ) = 1

τ

∑τ0+τ

s=τ0+1 g( zs|θ,ρ) with respect to ρ. Here,
τ0 +1 denotes the beginning of the time-series data, which is allowed to differ from
the beginning of the panel data. The moment equation then is

∂Gτ

(
θ̃,ρ̂
)

∂ρ
= 0,

14In order to emphasize the fact that θ is estimated using only the cross-sectional data, we use the symbol θ̃ . In
more complicated models, θ needs to be estimated using both cross-sectional and time-series data, and we reserve
the notation θ̂ for the general joint estimator.
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and the asymptotic distribution of ρ̂ is characterized by

√
τ (ρ̂ −ρ) = −

⎛⎝∂2G
(
θ̃,ρ
)

∂ρ∂ρ ′

⎞⎠−1⎛⎝√
τ

∂Gτ

(
θ̃,ρ
)

∂ρ

⎞⎠+op (1) .

Because
√

τ
(
∂Gτ

(
θ̃,ρ
)
/∂ρ − ∂Gτ (θ,ρ)/∂ρ

)
≈ (

∂2G(θ,ρ)/∂θ∂ρ ′) √
τ√
n

√
n(

θ̃ − θ
)
, we obtain

√
τ (ρ̂ −ρ) = −A−1

ν,ρ

√
τ

∂Gτ (θ,ρ)

∂ρ
−A−1

ν,ρAν,θ

√
τ√
n

(
1√
n

n∑
i=1

T∑
t=1

ϕit

)
+op (1)

(24)

with

Aν,ρ ≡ ∂2G(θ,ρ)

∂ρ∂ρ ′ , Aν,θ ≡ ∂2G(θ,ρ)

∂ρ∂θ ′ .

Because both Aν,ρ and Aν,θ are C-measurable random variables in the limit,
the continuous mapping theorem can only be applied if joint convergence of√

τ∂Gτ (θ,ρ)/∂θ,n−1/2∑n
i=1

∑T
t=1 ϕit and any C-measurable random variable is

established. Joint stable convergence of both components delivers exactly that. We
also point out that it is perfectly possible to consistently estimate parameters, in
our case (ν1, . . . ,νT), that remain random in the limit. For related results, see the
recent work of Kuersteiner and Prucha (2020).

Assume that the unconditional distribution is such that

1√
n

n∑
i=1

T∑
t=1

ϕit
d→ MN

(
0,�y
)
,

where �y generally does depend on (ν1, . . . ,νT) through the parameter θ and as a
result the distribution is mixed normal in general. Let us also assume that

√
τ

∂Gτ (θ,ρ)

∂ρ

d→ N (0,�ν),

where we assume that �ν is a fixed constant that does not depend on (ν1, . . . ,νT).
We note that in general ϕit is a function of (ν1, . . . ,νT). If there is overlap

between (1, . . . ,T) and (τ0 +1, . . . ,τ0 + τ), we need to worry about the asymptotic
distribution of

√
τ∂Gτ (θ,ρ)/∂ρ conditional on (ν1, . . . ,νT). However, because in

this example the only connection between y and ϕ is assumed to be through θ and
because T is assumed fixed, the two terms

√
τ∂Gτ (θ,ρ)/∂ρ and 1√

n

∑n
i=1

∑T
t=1 ϕit

are expected to be asymptotically independent in the trend stationary case and
when �ν does not depend on (ν1, . . . ,νT). Even in this simple setting, independence
between the two samples does not hold, and asymptotic conditional or uncon-
ditional independence as well as joint convergence with C-measurable random
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variables needs to be established formally. This follows from C-stable convergence
established in Section 4.2 and is summarized in the following corollary.

Corollary 2. Under the same conditions as in Theorem 2, it follows that

√
τ (ρ̂ −ρ)

d→ −A−1
ν,ρ�

1/2
ν (1)Wν (1)− 1√

κ
A−1

ν,ρAy,θ�
1/2
y Wy (1) (C-stably).

For

�ρ = A−1
ν,ρ�νA−1

ν,ρ + 1

κ
A−1

ν,ρAν,θ�yA′
ν,θA−1

ν,ρ,

it follows that

√
τ�−1/2

ρ (ρ̂ −ρ)
d→ N (0,I) (C-stably).

Corollary 2 follows directly from Theorem 2. It implies that

√
τ (ρ̂ −ρ)

d→ MN

(
0,A−1

ν,ρ�νA−1
ν,ρ + 1

κ
A−1

ν,ρAν,θ�yA′
ν,θA−1

ν,ρ

)
, (25)

where 0 < κ ≡ limn/τ < ∞ and where the limiting distribution on the RHS of
(25) is a mixed Gaussian distribution. This means that a practitioner would use the
square root of

1

τ

(
A−1

ν,ρ�νA−1
ν,ρ + 1

κ
A−1

ν,ρAν,θ�yA′
ν,θA−1

ν,ρ

)
≈ 1

τ
A−1

ν,ρ�νA−1
ν,ρ + 1

n
A−1

ν,ρAν,θ�yA′
ν,θA−1

ν,ρ

as the standard error when formulating a t-ratio. This result looks similar to
Murphy and Topel’s (1985) formula, except that we need to make an adjustment
to the second component to address the differences in sample sizes.

The assumption that 0 < κ < ∞ is used as a technical device to obtain an
asymptotic approximation that accounts for estimation errors stemming both from
the cross-sectional and time-series samples. Simulation results in HKM20 for
data and sample sizes calibrated to actual macro data show that our approxi-
mation provides good control for estimator bias and test size. The knife edge
case κ = ∞ corresponds to situations where the estimation of cross-sectional

parameters can be neglected for inference about ρ̂, and where now
√

τ (ρ̂ −ρ)
d→

MN
(
0,A−1

ν,ρ�νA−1
ν,ρ

)
. The expansion in (24) also shows that the case κ = 0 leads

to a scenario where uncertainty from the cross section dominates such that the

rate of convergence of ρ̂ now is
√

n rather than
√

τ and where
√

n(ρ̂ −ρ)
d→

MN
(
0,A−1

ν,ρAν,θ�yA′
ν,θA−1

ν,ρ

)
. However, in what follows, we focus on the case most

relevant in practice where 0 < κ < ∞.
The asymptotic variance formula is such that the noise of the cross-sectional

estimator θ̃ can make quite a difference if κ is small, i.e., if the cross-sectional
size n is small relative to the time-series size τ . Obviously, this calls for larger
cross sections for accurate estimation of the time-series parameter ρ. We also note

https://doi.org/10.1017/S0266466622000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000391


188 JINYONG HAHN ET AL.

that cross-sectional estimation asymptotically has no impact on macro estimation
if Aν,θ = 0. One scenario where Aν,θ = 0 is the case where the model is additively
separable in θ and ρ such that G(θ,ρ) = G1 (θ)+G2 (ρ) .

For completeness, we also present a result that focuses on the limiting distribu-
tion of the subset of parameters that are associated with the cross-sectional model.
Here, we no longer impose the restriction that the cross-sectional model does not
depend on time-series parameters. Cross-sectional parameters are the main object
of interest in HKM20, whereas in Section 2 of this paper, we consider a model
where the main parameter of interest is a time-series parameter.

Corollary 3. Under the same conditions as in Theorem 2, it follows that
√

n
(
θ̂ − θ0

)
d→ −Ay,θ�1/2

y Wy (1)−√
κAy,ρ�1/2

ν (1)Wν (1) (C-stably), (26)

where

Ay,θ = A−1
y,θ +A−1

y,θAy,ρ

(
Aν,ρ −Aν,θA−1

y,θ Ay,ρ

)−1
Aν,θA−1

y,θ,

Ay,ρ = −A−1
y,θ Ay,ρ

(
Aν,ρ −Aν,θA−1

y,θ Ay,ρ

)−1
.

For

�θ = Ay,θ�yAy,θ ′ +κAy,ρ�ν (1)Ay,ρ′, (27)

it follows that
√

n�
−1/2
θ

(
θ̂ − θ0

)
d→ N (0,I) (C-stably). (28)

The corollary develops the asymptotic distribution of the estimators for the
general case where neither the time-series nor the cross-sectional parameters are
identified separately. We note that the exposition in Section 6 of HKM20 does
impose the additional restriction that Av,θ = 0, which significantly simplifies (27).
When Av,θ = 0, the distributional approximation reported in HKM20 (Sect. 6, eqn.
(35)) corresponds to the result obtained in (28).15

Note that �θ, the asymptotic variance of
√

n
(
θ̂ − θ0

)
conditional on C, in

general, is a random variable, and the asymptotic distribution of θ̂ is mixed normal.
However, as in Andrews (2005), the result in (28) can be used to construct an
asymptotically pivotal test statistic. For a consistent estimator �̂θ , the statistic√

n�̂
−1/2
θ

(
Rθ̂ − r

)
is asymptotically distribution free under the null hypothesis

Rθ − r = 0 where R is a conforming matrix of dimension q × kθ and r a q × 1

15We also note that the the Supplementary Material of HKM20 contains explicit formulas for �θ for the general
equilibrium model considered in that paper. Section VI of the Supplementary Material of this paper contains similar
explicit formulas for a version of the Olley and Pakes’s model considered here.
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vector. These insights form the basis for the standard errors proposed in Section 6
of HKM20.

We note that when two datasets are combined, the variance estimate of the
estimators have to reflect the estimation error of the nuisance parameters. The
formula above boils down to the usual variance formula of the two-step estimator.
In fact, the formula is somewhat simpler than the usual two-step formula, at least
in the stationary scenario. The reason is that the covariance of the moments of the
two steps is zero when the moments are based on cross-sectional and time-series
data, respectively. This is generally not the case for two-step procedures based only
on one sample.

An additional theoretical difficulty that arises in this paper is common factors
that remain random in the limit and affect the limiting variance �θ . Theoreti-
cally, we handle this difficulty by relying on the concept of stable convergence
to establish the limit distribution of our estimators. While inference based on
pivotal statistics, such as the t-ratio, is not affected by stable limits, caution
needs to be exercised when interpreting standard errors and confidence intervals
for θ̂ . The reason is that these quantities remain data-dependent through their
dependence on common shocks even in the limit and may not be comparable
across different empirical studies. This point is emphasized on page 1390 of
HKM20.

5.2. A Worked Example

We now discuss how the model in Section 2 fits into our theory and discuss how
to obtain valid standard errors. The estimator introduced in Section 2 is defined
in terms of moment (not likelihood)-based criterion functions. Using the Taylor
series expansion-based intuition, we discuss how the asymptotic distribution can be
understood. Our discussion in this section parallels and complements the material
in Section 6 of HKM20.

Unlike the model in Section 3, the moment (7) in Section 2 does not identify
all the ν1, . . . ,νT , and it only identifies

(
β∗

0,t+1,βk,α
(C)
)
, where we define β∗

0,t+1 ≡
νt+1 −α(C)νt. Therefore, it is convenient to define a finite-dimensional parameter
that is identified from the cross section as θ (ν), which may depend on the
aggregate shocks ν = (ν1, . . . ,νT) instead of working with (β,ν). For the model
in Section 2, θ (ν) is equal to

(
νt+1 −α(C)νt,βk,α

(C)
)
. The parameter β in Section

5.1 denotes the collection of cross-sectional parameters that do not depend on ν.
Since θ (ν) = (νt+1 −α(C)νt,βk,α

(C)
)

in Section 2, only the parameters
(
βk,α

(C)
)

do not depend on ν. Thus, the
(
βk,α

(C)
)

in Section 2 plays the role of β in
Section 5.1.

We consider the following GMM estimation functions in the cross-sectional
and time-series samples. Following the notational convention in Section 3, we

define hn (θ) = 1
n

∑T
t=1

∑n
j=1 f
(

yj,t

∣∣θ) with θ = θ (ν) and kτ (β,ρ) = 1
τ

∑τ0+τ

s=τ0+1

g( zs|β,ρ), where in Section 2 the parameters are θ = (νt+1 −α(C)νt,βk,α
(C)
)
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and ρ = α(A). The reason why it is sufficient to focus on
(
βk,α

(C)
)

is that
the main interest lies in α(A), which can be identified in the time-series
sample with knowledge of βk alone. Also note that for this model, yj,t =(

ij,t,kj,t,lj,t,y∗
j,t,ij,t−1,kj,t−1,lj,t−1,y

∗
j,t−1

)
and zs = (Y∗

s ,K
∗
s

)
is the vector of aggregate

observed data.
The cross-sectional moment function f

(
yi,t|θ
)

can be specified as

f
(
yj,t|θ
)= (y∗

j,t −
(
β∗

0,t +βkkj,t +α(C)
(
φt
(
ij,t−1,kj,t−1

)−βkkj,t−1
)))

zj,t,

where zj,t can be chosen as the vector zj,t = (1,kj,t−1,ij,t−1
)′

, for example.
Similarly, specialize the generically defined function g( zs|β,ρ) for the aggre-

gate time-series model to the score of the conditional pseudo-likelihood for
the aggregate shock process, denoted by g(νs (β) |νs−1 (β),β,ρ) ≡ g( zs|β,ρ),

and where the aggregate shock νs (βk) = Y∗
s − βkK∗

s depends on zs = (Y∗
s ,K

∗
s

)
through the parameter βk. When βk is evaluated at the true parameter value
βk,0, we use the shorthand notation νs ≡ νs

(
βk,0
)
. For the AR(1) model we

postulate for νs, the function g(νs (β) |νs−1 (β),β,ρ) can be written explicitly as
g(νs (β) |νs−1 (β),β,ρ) = (νs (β)−α(A)νs−1 (β)

)
νs−1 (β).

Differentiating the counterparts of Fn and Gτ discussed in Section 3, we can see
that the GMM estimator for φ solves the two moment conditions

sy
M (θ) = −(∂hn (θ,ρ)/∂θ)′ WC

n n−1/2
T∑

t=1

n∑
i=1

f (yit|θ,ρ) = 0, (29)

sν
M (β,ρ) = −(∂kτ (β,ρ)/∂ρ)′ Wτ

τ τ−1/2
τ0+τ∑

t=τ0+1

g(νt (β,ρ) |νt−1 (β,ρ),β,ρ) = 0.

Proceeding as in HKM20, let Jnτ (φ) = [n−1/2sy
M (θ),τ−1/2sν

M (β,ρ)
]

and Dnτ =
diag
(
n−1/2If ,τ

−1/2
)
, where If is an identity matrix equal to the dimension of θ . A

Taylor series expansion of Jnτ (φ) around φ0 leads to

0 = D−1
nτ Jnτ (φ0)+AD−1

nτ

(
φ̂ −φ0

)
+op (1), (30)

where A = plim
(
D−1

nτ ∂Jnτ (φ)/∂φ′Dnτ

)
. The elements of the matrix A for the

example are obtained as

A =
[

Ay,θ 0
1√
κ

Aν,θ Aν,ρ

]
,

where the upper right corner of A is zero because the cross-sectional model does
not depend on the time-series parameters ρ. This feature of the model implies that a
plug in estimator using the first-step cross-sectional estimate β̃k for the time-series
problem estimating α(A) is equivalent to an estimator φ̂ obtained jointly on the two
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samples.16 The nonzero elements of the matrix A are defined as

Ay,θ = −plimn−1/2 ∂sy
M (θ)

∂θ ′ , Aν,ρ = −plimτ−1/2 ∂sν
M (θ)

∂ρ′ , Aν,θ = −plimτ−1/2 ∂sν
M (θ)

∂θ ′ .

Let C = σ (ν1, . . . ,νT) be the sigma field generated by the aggregate shocks of
the cross-sectional sample. It can be shown17

D−1
nτ Jnτ (φ0) →d N (0,�) C-stably,

where � = diag
(
�y,�ν

)
is the asymptotic variance covariance matrix of the

moment functions defined in (29).
By the continuous mapping theorem and (30), the limiting distribution of φ̂ then

is characterized by D−1
nτ

(
φ̂ −φ0

)
→d N (0,V) C-stably where V = A−1�

(
A′)−1

.

Suppose that the “conventional” weight matrices are chosen so that plimWC
n =

�−1
f and plimWτ

τ = �−1
g , where �f and �g denote the asymptotic variance

of 1√
n

∑T
t=1

∑n
j=1 f
(

yj,t

∣∣θ0
)

and 1√
τ

∑τ0+τ

s=τ0+1 g( zs|β0,ρ0).18 We would then have

� = diag
(
Ay,θ,Aν,ρ

)
. With straightforward algebra, it can be shown that

V =
[

A−1
y,θ 0
0 A−1

ν,ρ + 1
κ

A−1
ν,ρAν,θA−1

y,θ A′
ν,θA−1

ν,ρ

]
,

which shows that the two sets of estimators are asymptotically independent in
our example. The form of the limiting variance for ρ confirms the intuitive
derivation in Section 5.1. Note in particular that A−1

y,θ = �y when GMM with the
optimal weight matrix is used. In general, V is a random variable measurable with
respect to C. A further application of the continuous mapping theorem shows that

V−1/2D−1
nτ

(
φ̂ −φ0

)
converges to a standard Gaussian random vector.

Standard errors can now be computed based on this distributional approxima-
tion. To this end, use the following estimator V̂ for the asymptotic variance–

covariance matrix V. Let φ̂ =
(
θ̂,ρ̂
)

be the joint solution to the moment conditions

(29). Note that φ̂ =
(
β̂∗

0,1, . . . ,β̂
∗
0,T,β̂k,α̂

(C),α̂(A)
)

. Obtain the residuals ûj,t = y∗
j,t −(

β̂∗
0,t + β̂kkj,t + α̂(C)

(
φt
(
ij,t−1,kj,t−1

)− β̂kkj,t−1

))
as well as ν̂s = Y∗

s − β̂kK∗
s and

ê(A)
s = ν̂s − α̂(A)ν̂s−1 and form the matrices

�̂f = 1

n

T∑
t=1

n∑
j=1

û2
j,tzj,tz

′
j,t, �̂g = 1

τ

τ0+τ∑
s=τ0+1

(
ê(A)

s

)2
ν̂2

s−1. (31)

16In HKM20 and in Section 4.2, we show that these simplifications are not generic features of the problem we study
and that joint estimation is needed except in special cases.
17See Appendix B.
18See (S.41) and (S.42) in Section VI of the Supplementary Material.
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Similarly, obtain

∂ k̂ (β,ρ)

∂θ
= 1

τ

τ0+τ∑
s=τ0+1

∂g
(

zs| β̂,ρ̂
)

∂θ
,

∂ k̂ (β,ρ)

∂ρ
= 1

τ

τ0+τ∑
s=τ0+1

∂g
(

zs| β̂,ρ̂
)

∂ρ

∂ ĥ(θ)

∂θ
= 1

n

T∑
t=1

n∑
j=1

∂f
(

yj,t

∣∣ θ̂)
∂θ

and

Ây,θ = ∂ ĥ(θ)′

∂θ
�̂−1

f

∂ ĥ(θ)

∂θ ′ , Âν,ρ = ∂ k̂ (β,ρ)′

∂ρ
�̂−1

g

∂ k̂ (β,ρ)

∂ρ ′ ,

Âν,θ = ∂ k̂ (β,ρ)′

∂ρ
�̂−1

g

∂ ĥ(θ)

∂θ ′ .

The asymptotic variance–covariance matrix then can be estimated as

V̂ =
[

Â−1
y,θ 0
0 Â−1

ν,ρ + 1
κ

Â−1
ν,ρ Âν,θ Â−1

y,θ Â′
ν,θ Â−1

ν,ρ

]
.

Now let φj be the jth element of φ with estimator φ̂j. Then, a t-ratio for φ̂j based on

the asymptotic approximation for φ̂ can be constructed as φ̂j

/(
dj,j

√
V̂j,j

)
, where

V̂j,j is the jth diagonal element of V̂ and dj,j is the jth diagonal element of D−1
nτ .

Focusing on the time-series parameter α(A), one obtains the following t-ratio:

α̂(A)

/√
1

τ
Â−1

ν,ρ + 1

n
Â−1

ν,ρ Âν,θ Â−1
y,θ Â′

ν,θ Â−1
ν,ρ ,

which corresponds to the asymptotic variance formula obtained in (25).

6. UNIT-ROOT TIME-SERIES MODELS

6.1. Unit-Root Problems

When the simple trend stationary paradigm does not apply, the limiting distribution
of our estimators may be more complicated. A general treatment is beyond the
scope of this paper and likely requires a case-by-case analysis. In this subsection,
we consider a simple unit-root model where initial conditions can be neglected.
We use it to exemplify additional inferential difficulties that arise even in this
relatively simple setting. In Section 6.2, we consider a slightly more complex
version of the unit-root model where initial conditions cannot be ignored. We show
that more complicated dependencies between the asymptotic distributions of the
cross-sectional and time-series samples manifest. The result is a cautionary tale of
the difficulties that may present themselves when nonstationary time-series data
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are combined with cross sections. We leave the development of inferential methods
for this case to future work.

We again consider the model in the previous section, except with the twist
that (i) ρ is the AR(1) coefficient in the time-series regression of zt on zt−1

with independent error and (ii) ρ is at unity. Using intuition similar to (24), we
obtain

√
n
(
θ̂ − θ
)≈ −A−1√n

∂Fn (θ,ρ)

∂θ
−A−1B

√
n

τ
τ (ρ̃ −ρ) .

For simplicity, again assume that the two terms on the right are asymptotically
independent. The first term converges in distribution to a normal distribution
N
(
0,A−1�yA−1

)
, but with ρ = 1 and i.i.d. AR(1) errors, the second term con-

verges to

ξA−1B
W (1)2 −1

2
∫ 1

0 W (r)2 dr
,

where ξ ≡ lim
√

n
/

τ and W (·) is the standard Wiener process. In contrast to the
result in (28) when ρ is away from unity,

√
n/τ rather than n/τ is assumed to

converge to a constant. Because ρ̃ is superconsistent under the unit-root scenario,
from a theoretical point of view, the correction term is relevant only in cases where
n is much larger than τ such that ξ > 0 in the limit. The result is formalized in
Section 6.2.

The fact that the limiting distribution of θ̂ is no longer Gaussian complicates
inference. This discontinuity is mathematically similar to Campbell and Yogo’s
(2006) observation, which leads to a question of how uniform inference could
be conducted. In principle, the problem here can be analyzed by modifying the
proposal in Phillips (2014, Sect. 4.3).19 First, construct the 1 − α1 confidence
interval for ρ using Mikusheva (2007). Call it [ρL,ρU]. Second, compute θ̂ (ρ) ≡
argmaxθ Fn (θ,ρ) for ρ ∈ [ρL,ρU]. Assuming that ρ is fixed, characterize the
asymptotic variance �(ρ), say, of

√
n
(
θ̂ (ρ)− θ (ρ)

)
, which is asymptotically

normal in general. Third, construct the 1 − α2 confidence region, say CI (α2;ρ),
using asymptotic normality and �(ρ). Our confidence interval for θ1 is then given
by
⋃

ρ∈[ρL,ρU] CI (α2;ρ). By Bonferroni, its asymptotic coverage rate is expected

to be at least 1−α1 −α2.
There are some cases where standard asymptotics obtain for certain parameters

in nonstationary scenarios (see, for example, Inoue and Kilian, 2020). We expect
that such results will carry over to the case of joint cross-sectional and time-series
inference, in which case the results in Section 4.2 could be applied. We leave the
detailed technical analysis of these cases for future research.

19A rigorous proof of the validity of the proposed uniform inference procedure is beyond the scope of this paper and
left for future research.
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6.2. Unit-Root Limit Theory

In this section, we consider the special case where νt follows an autoregressive
process of the form νt+1 = ρνt +ηt. As in Hansen (1992) and Phillips (1987, 1988,
2014) we allow for nearly integrated processes where ρ = exp

(
γ
/

τ
)

is a scalar
parameter localized to unity such that

ντ,t+1 = exp
(
γ
/

τ
)
ντ,t +ηt+1 (32)

and the notation ντ,t emphasizes that ντ,t is a sequence of processes indexed by τ .
We assume that τ0 = 0 is fixed and

τ−1/2ντ, min(1,τ0) = V (0) a.s.,

where V (0) is a potentially nondegenerate random variable. In other words, the
initial condition for (32) is ντ, min(1,τ0) = τ 1/2V (0). We explicitly allow for the case
where V (0) = 0, to model a situation where the initial condition can be ignored.
This assumption is similar to, although more parametric than, the specification
considered in Kurtz and Protter (1991). We limit our analysis to the case of
maximum likelihood criterion functions. Results for moment-based estimators can
be developed along the same lines as in Section 4.2, but for ease of exposition,
we omit the details. For the unit-root version of our model, we assume that νt is
observed in the data and that the only parameter to be estimated from the time-
series data is ρ. Further assuming a Gaussian quasi-likelihood function, we note
that the score function now is

gρ,t (β,ρ) = ντ,t−1
(
ντ,t −ντ,t−1ρ

)
. (33)

The estimator ρ̂ solving sample moment conditions based on (33) is the conven-
tional ordinary least squares estimator given by

ρ̂ =
∑τ

t=τ0+1 ντ,t−1ντ,t∑τ
t=τ0+1 ν2

τ,t−1

.

We continue to use the definition for fθ,it (θ,ρ) in Section 4.2, but now consider the
simplified case where θ0 = (β,V (0)). We note that in this section, V (0) rather than
ντ, min(1,τ0) is the common shock used in the cross-sectional model. The implicit
scaling of ντ, min(1,τ0) by τ−1/2 is necessary in the cross-sectional specification to
maintain a well-defined model even as τ → ∞.

Consider the joint process
(
Vτn (r),sy

ML

)
where Vτn (r) ≡ τ−1/2ντ [τ r], and

sy
ML ≡ sML (θ0,ρ0) ≡

T∑
t=1

n∑
i=1

fθ,it√
n

.

Note that∫ r

0
Vτn (u)dWτn (u) = τ−1

τ0+[τ r]∑
t=τ0+1

ντ,t−1ηt
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with Wτn (r) ≡ τ−1/2∑τ0+[τ r]
t=τ0+1 ηt. We define the limiting process for Vτn (r) as

Vγ,V(0) (r) = eγ rV (0)+
∫ r

0
σeγ (r−s)dWν (s), (34)

where Wν is defined in Theorem 1. When V (0) = 0, Theorem 1 directly implies
that e−γ [rτ ]/τ Vτn (r) ⇒ ∫ r

0 σe−sγ dWν (s)C-stably noting that in this case �ν (s) =
σ 2 (1− exp (−2sγ ))/2γ and �̇ν (s)1/2 = σe−sγ . The familiar result (cf. Phillips,
1987) that Vτn (r) ⇒ ∫ r

0 σeγ (r−s)dWν (s) then is a consequence of the continuous
mapping theorem. The case in (34) where V (0) is a C-measurable random variable
now follows from C-stable convergence of Vτn (r). In this section, we establish joint
C-stable convergence of the triple

(
Vτn (r),sy

ML,
∫ r

0 Vτn (u)dWτn (u)
)

.

Let φ = (θ ′,ρ
)′ ∈ R

kφ,θ ∈ R
kθ , and ρ ∈ R. The true parameters are denoted by

θ0 and ρτ0 = exp (γ0/τ) with γ0 ∈ R and both θ0 and γ0 bounded. We impose the
following modified assumptions to account for the specific features of the unit-root
model.

Condition 7. Define C = σ (V (0)). Define the σ -fields Gn,(t−min(1,τ0))n+i in
the same way as in (14) except that here τ = κn such that dependence on τ is
suppressed and that νt is replaced with ηt as in

Gn,(t−min(1,τ0))n+i

= σ
({

yjt−1,yjt−2, . . . ,yjmin(1,τ0)

}n
j=1 ,
{
ηt,ηt−1, . . . ,ηmin(1,τ0)

}
,
(
yj,t
)i

j=1

)
∨C.

Assume that:

(i) fθ,it is measurable with respect to Gn,(t−min(1,τ0))n+i.
(ii) ηt is measurable with respect to Gn,(t−min(1,τ0))n+i, for all i = 1, . . . ,n.

(iii) For some δ > 0 and C < ∞, supit E
[∥∥fθ,it∥∥2+δ

]
≤ C.

(iv) For some δ > 0 and C < ∞, supt E
[‖ηt‖2+δ

]≤ C.
(v) E

[
fθ,it|Gn,(t−min(1,τ0))n+i−1

]= 0.
(vi) E

[
ηt|Gn,(t−min(1,τ0)−1)n+i

]= 0, for t > T and all i = {1, . . . ,n}.
(vii) For any 1 > r > s ≥ 0 fixed, let �r,s

τ,η = τ−1∑τ0+[τ r]
t=min(1,τ0)+[τ s]+1

E
[
η2

t |Gn,(t−min(1,τ0))n
]

. Then, �r,s
τ,η →p (r − s)σ 2.

(viii) Assume that 1
n

∑n
i=1 fθ,itf ′

θ,it
p→ �ty where �ty is positive definite a.s. and

measurable with respect to C. Let �y =∑T
t=1 �ty.

Condition 7(i)–(vi) is the same as Condition 1(i)–(vi) adapted to the unit-root
model. Condition 7(vii) replaces Condition 2. It is slightly more primitive in
the sense that if η2

t is homoskedastic, Condition 7(vii) holds automatically and
convergence of τ−1∑τ0+[τ r]

t=min(1,τ0)+[τ s]+1 η2
t → (r − s)σ 2 follows from an argument

given in the proofs rather than being assumed. On the other hand, Condition 7
(vii) is somewhat more restrictive than Condition 2 in the sense that it limits
heteroskedasticity to be of a form that does not affect the limiting distribution.
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In other words, we essentially assume τ−1∑τ0+[τ r]
t=min(1,τ0)+[τ s]+1 η2

t to be proportional
to r − s asymptotically. This assumption is stronger than needed but helps to
compare the results with the existing unit-root literature.

For Condition 7(viii), we note that typically �ty (φ) = E
[
fθ,itf ′

θ,it

]
and �ty =

�ty (φ0) where φ0 = (β ′
0,V0 (0),ρτ0

)
. Thus, even if �ty (.) is nonstochastic, it

follows that �ty is random and measurable with respect to C because it depends on
V (0), which is a random variable measurable with respect to C.

The following results are established by modifying arguments in Chan and Wei
(1987) and Phillips (1987) to account for C-stable convergence and by applying
Theorem 1.

Theorem 3. Assume that Condition 7 hold. With τ0 = 0 and as τ,n → ∞ and
T fixed with τ = κn, for some κ ∈ (0,∞), it follows that(

Vτn (r),sy
ML,

∫ s

0
Vτn (u)dWτn (u)

)
⇒
(

Vγ,V(0) (r),�
1/2
y Wy (1),

∫ s

0
σVγ,V(0) (u)dWν (u)

)
(C-stably)

in the Skorohod topology on DRd [0,1] .

Proof. In Appendix A. �

We now employ Theorem 3 to analyze the limiting behavior of θ̂ when the
common factors are generated from a linear unit-root process. To derive a limiting
distribution for φ̂, we impose the following additional assumption.

Condition 8. Let θ̂ = argmax
∑T

t=1

∑n
i=1 f
(
yit|θ,ρ̂

)
. Assume that

(
θ̂ − θ0

)
=

Op
(
n−1/2
)
.

Condition 9. Let κ = limn/τ 2. Let Ay,θ (φ) =∑T
t=1 E
[
∂fθ,it/∂θ ′], Ay,ρ (φ) =∑T

t=1 E
[
∂fθ,it/∂ρ

]
, and define Ay (φ) = [ Ay,θ (φ)

√
κAy,ρ (φ)

]
where A(φ) is a

kθ ×kφ-dimensional matrix of nonrandom functions φ →R. Assume that Ay,θ (φ0)

is full rank almost surely. Assume that, for some ε > 0,

sup
φ:‖φ−φ0‖≤ε

∥∥∥∥∂ s̃y (φ)

∂φ′ Dnτ −Ay (φ)

∥∥∥∥= op (1) .

We make the possibly simplifying assumption that A(φ) only depends on the
factors through the parameter θ .

Theorem 4. Assume that Conditions 7–9 hold. It follows that
√

n
(
θ̂ − θ0

)
d→ −A−1

y,θ�
1/2
y Wy (1)

−√
κA−1

y,θAy,ρ

(∫ 1

0
V2

γ,V(0) (r)dr

)−1(∫ 1

0
σVγ,V(0) (r)dWν (r)

)
(C-stably).
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Proof. In Appendix A. �

Note that the term
(∫ 1

0 V2
γ,V(0) (r)dr

)−1
corresponds to A−1

ν,ρ in the stationary

case when the time-series model does not depend on cross-sectional parameters.
The result in Theorem 4 is an example that shows how common factors affecting
both time-series and cross-sectional data can lead to nonstandard limiting distri-
butions. In this case, the initial condition of the unit-root process in the time-
series dimension causes dependence between the components of the asymptotic
distribution of θ̂ because both �y and Vγ,V(0) in general depend on V (0). Thus,
the situation encountered here is generally more difficult than the one considered
in Campbell and Yogo (2006) and Phillips (2014). In addition, because the
limiting distribution of θ̂ is not mixed asymptotically normal, simple pivotal test
statistics as in Andrews (2005) are not readily available contrary to the stationary
case.

7. SUMMARY

We develop a new limit theory for combined cross-sectional and time-series
datasets. We focus on situations where the two datasets are interdependent because
of common factors that affect both. The concept of stable convergence is used
to handle this dependence when proving a joint CLT. Our analysis is cast in a
generic framework of cross-sectional- and time-series-based criterion functions
that jointly, but not individually, identify the parameters. Within this framework,
we show how our limit theory can be used to derive asymptotic approximations
to the sampling distribution of estimators that are based on data from both
samples. We explicitly consider the unit-root case as an example where particularly
difficult to handle limiting expressions arise. Our results are expected to be
helpful for the econometric analysis of rational expectation models involving
individual decision-making as well as general equilibrium settings. We inves-
tigate these topics, and related implementation issues, in a companion paper
HKM20. The question of efficient inference in the context of our model is
an interesting topic for future research, but beyond the scope of the current
paper.

APPENDIX A: Proofs for the Stable Functional CLT

The proof of the functional CLT is given in Appendix A.2. Our proof is self-contained but
follows the strategy of Billingsley (1968) for the case of conventional weak convergence
adapted to our setting of stable convergence. The proof consists of three steps: (a) estab-
lishing finite-dimensional convergence through a stable CLT, (b) establishing tightness of
the empirical process, and (c) providing a stochastic process representation of the limiting
distribution. Tightness is established by extending techniques developed by Billingsley
(1968) to our setting. Finally, the characterization of the limiting distribution is based on a
proof strategy in Rootzen (1983), which we again adapt to our setting.
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A.1. Auxiliary Results

For ease of reference, we present two results that are used in the proof of Theorem 1. The
first result is Theorem 1 of Kuersteiner and Prucha (2013).

Theorem 5 (Kuersteiner and Prucha, 2013, Thm. 1). Let
{
Snq,Fnq,1 ≤ q ≤ kn,n ≥ 1

}
be

a zero-mean, square integrable martingale array with differences Xni. Let F0 = ∩∞
n=1Fn0

withFn0 ⊆Fn1 for each n and E
[
Xn1|Fn0

]= 0, and let η2 be an a.s. finite random variable

measurable w.r.t. F0. If maxq
∣∣Xnq
∣∣ p→ 0,

∑kn
q=1 X2

nq
p→ η2, and E

(
maxq X2

nq

)
is bounded

in n, then

Snkn =
kn∑

v=1

Xnv
d→ Z (F0-stably),

where the random variable Z has characteristic function E
[
exp
(
− 1

2η2t2
)]

. In particular,

Snkn

d→ ηξ (F0-stably), where ξ ∼ N(0,1) is independent of η (possibly after redefining all
variables on an extended probability space).

The second result is Theorem 8.3 of Billingsley (1968). To state the theorem, the
following notation is needed (see Billingsley, 1968, pp. 19–20, 55). Let C be the space
of continuous functions on [0,1] with the uniform metric. Let C be the class of Borel sets
in C. Let Pn be a sequence of probability measures on (C,C).

Theorem 6 (Billingsley, 1968, Thm. 8.3). The sequence {Pn} is tight if these two
conditions are satisfied:

(i) For each positive c, there exists an a such that Pn (x : |x (0)| > a) ≤ c,n ≥ 1.
(ii) For each positive c and ε, there is a δ, with 0 < δ < 1 and an integer n0 such that

1

δ
Pn

(
x : sup

t≤s≤t+δ

|x (s)− x (t)| ≥ c

)
≤ ε, n ≥ n0,

for all t.

A.2. Proof of Theorem 1

We first establish that the stable functional CLT follows from establishing finite-
dimensional convergence and tightness. To see this, note that JS (p. 512, Defn. 5.28)
define stable convergence for sequences Zn defined on a Polish space as in (19). We adopt
the definition in JS to our setting, noting that by JS (p. 328, Thm. 1.14), D

R
kθ ×R

kρ [0,1]
equipped with the Skorohod topology is a Polish space. Following Billingsley (1968, p.
120), let r1 < r2 < · · · < rk be an arbitrary finite partition of [0,1] and πr1,...,rk Zn =(
Zn

r1
, . . . ,Zn

rk

)
be the coordinate projections of Zn. By Proposition VIII.5.33(iv) of JS, C-

stable convergence of Zn to Z is equivalent to the following two statements: (1) Zn is tight
and (2) for any bounded continuous function H with domain D

R
kθ ×R

kρ [0,1] and for all A∈C
and letting 1A be the indicator function of the set A, it follows that E

[
1AH
(
Zn)]converges.

Part (1) is established by noting that by Billingsley (1968, Thm. 15.5), convergence under
the uniform metric implies tightness for partial sum processes in D

R
kθ ×R

kρ [0,1] that have
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stochastically bounded initial conditions (see Billingsley, 1968, Cond. 15.17, which is
satisfied in our case). Part (2) is established as follows. First, prove stable convergence
of the finite-dimensional vector of random variables Zn

r1
, . . . ,Zn

rk
defined on R

k using a
multivariate stable CLT. This is shown in Step (a) of the proof below. Second, use an
argument based on the proof of Theorems VIII5.7 and VIII5.14 of JS and JS (p. 509) as
follows: For P defined in (18), define the new probability measure P̃(dω) = P(dω)1A (ω)

such that E
[
1AH
(
Zn)] = Ẽ

[
H
(
Zn)], where Ẽ is the expectation with respect to P̃. Then,

by the stable coordinatewise CLT, the finite-dimensional distributions of Zn converge
under P̃. Furthermore, for any compact subset K of D

R
kθ ×R

kρ [0,1], it follows that

P̃
(
Zn ∈ K

)≤ P
(
Zn ∈ K

)
such that it is sufficient to show that Zn is tight under the measure

P. This shows that a tightness argument following Billingsley (1968, Thm. 8.3) is sufficient
to establish Part (2) above. This is done in Step (b) of the proof below, where we show that
Billingsley (1968, Thm. 8.3(ii)) holds.

We now proceed by first establishing finite-dimensional stable convergence in Step (a)
and tightness in Step (b). Finally, in Step (c), we give a stochastic process representation for
the limiting distribution.

(a) Finite-Dimensional Convergence. For finite-dimensional convergence, fix r1 <

r2 < · · · < rk ∈ [0,1]. We use the notational convention r0 = 0 below. Define the increment

�Xnτ (ri) = Xnτ (ri)−Xnτ

(
ri−1
)

. (35)

Since there is a one-to-one mapping between Xnτ (r1), . . . ,Xnτ (rk) and Xnτ (r1),

�Xnτ (r2), . . . ,�Xnτ (rk), we establish joint convergence of the latter. The proof proceeds
by checking that the conditions of Theorem 1 in Kuersteiner and Prucha (2013) hold. For the
convenience of the reader, Kuersteiner and Prucha (2013, Thm. 1) is stated in Appendix A.1.
Let kn = max(T,τ )n, where both n → ∞ and τ → ∞ such that clearly kn → ∞ (this is a
diagonal limit in the terminology of Phillips and Moon, 1999). Let d = kφ = kθ +kρ . To han-
dle the fact that Xnτ ∈ R

d , we use Lemmas A.1–A.3 in Phillips and Durlauf (1986). Define

λj =
(
λ′

j,y,λ
′
j,ν

)′
and let λ = (λ1, . . . ,λk) ∈ R

dk with ‖λ‖ = 1. Define t∗ = t −min (1,τ0).

For each n and τ0, define the mapping q(t,i) : N2+ → N+ as q(i,t) ≡ t∗n + i and note
that q(i,t) is invertible, in particular for each q ∈ {1, . . . ,kn}, there is a unique pair t,i such
that q(i,t) = q. We often use shorthand notation q for q(i,t). Let

ψ̈q(i,t) ≡
k∑

j=1

λ′
j

(
�ψ̃it
(
rj
)−E
[
�ψ̃it
(
rj
) |Gτn,t∗n+i−1

])
, (36)

where

�ψ̃it
(
rj
)= ψ̃it

(
rj
)− ψ̃it

(
rj−1
) ; �ψ̃it (r1) = ψ̃it (r1) . (37)

Note that �ψ̃it
(
rj
)= (�ψ̃

y
it

(
rj
)
,�ψ̃ν

t
(
rj
))′

with

�ψ̃
y
it

(
rj
)= { ψ̃

y
it, for j = 1,

0, otherwise,
(38)

https://doi.org/10.1017/S0266466622000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000391


200 JINYONG HAHN ET AL.

and

�ψ̃ν
it
(
rj
)= { ψ̃ν

τ,t
(
rj
)
, if

[
τ rj−1

]
< t − τ0 ≤ [τ rj

]
and i = 1,

0, otherwise.
(39)

Using this notation and noting that
∑max(T,τ0+τ)

t=min(1,τ0+1)

∑n
i=1 ψ̈q(i,t) =∑kn

q=1 ψ̈q, we write

λ′
1Xnτ (r1)+

k∑
j=2

λ′
j�Xnτ

(
rj
)

=
kn∑

q=1

ψ̈q +
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

k∑
j=1

λ′
jE
[
�ψ̃it
(
rj
)∣∣∣Gτn,t∗n+i−1

]
. (40)

First analyze the term
∑kn

q=1 ψ̈q. Note that ψ
y
n,it is measurable with respect to Gτn,t∗n+i by

construction. Note that by (36), (38), and (39), the individual components of ψ̈q are either 0

or equal to ψ̃it
(
rj
)−E
[
ψ̃it
(
rj
) |Gτn,t∗n+i−1

]
, respectively. This implies that ψ̈q is measur-

able with respect to Gτn,q, noting in particular that E
[
ψ̃it
(
rj
) |Gτn,t∗n+i−1

]
is measurable

w.r.t. Gτn,t∗n+i−1 by the properties of conditional expectations and Gτn,t∗n+i−1 ⊂ Gτn,q.
By construction, E

[
ψ̈q|Gτn,q−1

]= 0. This establishes that for Snq =∑q
s=1 ψ̈s,{

Snq,Gτn,q,1 ≤ q ≤ kn,n ≥ 1
}

is a mean-zero martingale array with differences ψ̈q.
To establish finite-dimensional convergence, we follow Kuersteiner and Prucha (2013)

in the proof of their Theorem 2. To establish the limiting distribution of
∑kn

q=1 ψ̈q, we check
that

kn∑
q=1

E
[∣∣ψ̈q
∣∣2+δ
]

→ 0, (41)

kn∑
q=1

ψ̈2
q

p→
∑

t∈{1,...,T}
λ′

1,y�ytλ1,y +
k∑

j=1

λ′
j,ν�ν

(
rj − rj−1

)
λj,ν, (42)

and

sup
n

E

⎡⎢⎣
⎛⎝ kn∑

q=1

E
[
ψ̈2

q

∣∣∣Gτn,q−1

]⎞⎠1+δ/2
⎤⎥⎦< ∞, (43)

which are adapted to the current setting from Conditions (A.26)–(A.28) in Kuersteiner and
Prucha (2013). (These conditions in turn are related to conditions of Hall and Heyde (1980)
and are shown by Kuersteiner and Prucha (2013) to be sufficient for their Theorem 1.)
We check these conditions in Sections III.1–III.3 of the Supplementary Material, which
establishes that (41)–(43) hold and thus establishes the CLT for

∑kn
q=1 ψ̈q. In Section III.4

of the Supplementary Material, we also show that the second term in (40) can be neglected.
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We therefore have

λ′
1Xnτ (r1)+

k∑
j=2

λ′
j�Xnτ

(
rj
)= kn∑

q=1

ψ̈q +op (1) . (44)

We have shown that the conditions of Theorem 1 of Kuersteiner and Prucha (2013) hold by
establishing (41)–(44). Applying the Cramer–Wold theorem to the vector

Ynt = (Xnτ (r1)′ ,�Xnτ (r2)′ , . . . ,�Xnτ (rk)
′)′ ,

and Theorem 1 in Kuersteiner and Prucha (2013), we obtain that for all fixed r1, . . . ,rk and
using the convention that r0 = 0,

E
[
exp
(
iλ′Ynt

)]
(45)

→ E

⎡⎣exp

⎛⎝−1

2

⎛⎝ ∑
t∈{1,...,T}

λ′
1,y�ytλ1,y +

k∑
j=1

λ′
j,ν
(
�ν

(
rj
)−�ν

(
rj−1
))

λj,ν

⎞⎠⎞⎠⎤⎦ .

When �ν (r) = r�ν for all r ∈ [0,1] and some �ν positive definite and measurable w.r.t. C,
this result simplifies to

k∑
j=1

λ′
j,ν
(
�ν

(
rj
)−�ν

(
rj−1
))

λj,ν =
k∑

j=1

λ′
j,ν�νλj,ν

(
rj − rj−1

)
.

(b) Tightness. The second step in establishing the functional CLT involves proving
tightness of the sequence λ′Xnτ (r) . By Lemma A.3 of Phillips and Durlauf (1986) and
Proposition 4.1 of Wooldridge and White (1988) (see also Billingsley, 1968, p. 41), it is
enough to establish tightness componentwise. This is implied by establishing tightness for
λ′Xnτ (r) for all λ ∈ R

d such that λ′λ = 1. In the following, we make use of Theorem
8.3 in Billingsley (1968) (see Appendix A.1 for a statement of Theorem 8.3). The fact that
tightness in our case can be established using Criterion (8.5) in Billingsley (1968, Thm. 8.3)
follows from Billingsley (1968, Thm. 15.5) and the proof of Billingsley (1968, Thm. 8.3).

Recall the definition

Xnτ,y (r) = 1√
n

T∑
t=1

n∑
i=1

ψ
y
n,it, Xnτ,ν (r) = 1√

τ

τ0+[τ r]∑
t=τ0+1

ψν
τ,t.

and note that∣∣λ′ (Xnτ (s)−Xnτ (t))
∣∣≤ ∣∣∣λ′

y
(
Xnτ,y (s)−Xnτ,y (t)

)∣∣∣+ ∣∣λ′
ν

(
Xnτ,ν (s)−Xnτ,ν (t)

)∣∣,
where

∣∣∣λ′
y
(
Xnτ,y (s)−Xnτ,y (t)

)∣∣∣= 0 uniformly in t,s ∈ [0,1] because of the initial condition

Xnτ (0) given in (17) and the fact that Xnτ,y (t) is constant as a function of t. Thus, to show
tightness, we only need to consider λ′

νXnτ,ν (t).
Billingsley (1968, pp. 58–59) constructs a continuous approximation to λ′Xnτ (r) . We

denote it as λ′
νXc

nτ,ν (r) and define it analogously to Billingsley (1968, eqn. (8.15)) as

λ′
νXc

nτ,ν (r) = 1√
τ

τ0+[τ r]∑
t=τ0+1

λ′
νψν

τ,t +
(τ r − [τ r])√

τ
λ′
νψν

τ,[τ r]+1.
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First, note that, for ε > 0, supτ,r |τ r − [τ r]| ≤ 1 such that

P

(
max

r∈[0,1]

∣∣∣∣ (τ r − [τ r])√
τ

λ′
νψν

τ,[τ r]+1

∣∣∣∣> ε

)
≤ supt E

[∥∥ψν
τ,t
∥∥]

ε
√

τ
→ 0

and consequently, Xc
nτ,ν (r) = Xnτ,ν (r) + op (1) uniformly in r ∈ [0,1]. To establish

tightness, we need to establish that the “modulus of continuity”

ω
(
Xc

nτ ,δ
)= sup

|t−s|<δ

∣∣λ′ (Xc
nτ (s)−Xc

nτ (t)
)∣∣, (46)

where t,s ∈ [0,1] satisfies

lim
δ→0

limsup
n,τ

P
(
ω
(
Xc

nτ ,δ
)≥ ε
)= 0.

Let Sτ,k = 1√
τ

∑τ0+k
t=τ0+1 λ′

νψν
τ,t. By the inequalities in Billingsley (1968, p. 59), it follows

that, for k such that k/τ < t < (k +1)/τ ,

sup
t≤s≤t+δ/2

∣∣λ′ (Xc
nτ (s)−Xc

nτ (t)
)∣∣≤ 2 max

0≤i≤τ

∣∣Sτ,k+i −Sτ,k
∣∣ .

By Billingsley (1968, Thm. 8.4) and the comments in Billingsley (1968, p. 59) to establish
tightness, it is enough to show that, translated to our notation, for each positive ε, there
exists a positive c > 1 and an integer τ0 such that, for τ ≥ τ0 and for all k, it follows that

P

(
max
s≤τ

∣∣Sτ,k+s −Sτ,k
∣∣> c

)
≤ ε

c2
. (47)

We note that we normalized the scaling factor σ = 1 relative to the expression in Billingsley
(1968) (see also Billingsley, 1968, p. 58). Using properties of limsup and lim, Condition
47 is implied by Condition 48, which states that

lim
c→∞ limsup

τ→∞
c2P

(
max
s≤τ

∣∣Sτ,k+s −Sτ,k
∣∣> c

)
= 0 (48)

holds for all k ∈ N. A proof of (48) is given in Section III.5 of the Supplementary Material.

(c) Characterization of the limit distribution. We now identify the limiting distri-
bution using the technique of Rootzen (1983). Tightness together with finite-dimensional
convergence in distribution in (45), Condition 2, and the fact that the partition r1, . . . ,rk is

arbitrary implies that, for λ ∈ R
d with λ =

(
λ′

y,λ
′
ν

)′
,

E
[
exp
(
iλ′Xnτ (r)

)]→ E

[
exp

(
−1

2

(
λ′

y�yλy +λ′
ν�ν (r)λν

))]
(49)

with �y = ∑t∈{1,...,T} �yt. The final step of the argument consists in representing the

limiting process in terms of stochastic integrals over isonormal Gaussian processes.20 By
the law of iterated expectations and the fact that by Assumptions (2) and (3) the matrices

20We are grateful to an anonymous referee for suggesting a simplified method of proof for this step.
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�y and �ν (r) are C-measurable, it follows that

E

[
exp

(
−1

2

(
λ′

y�yλy +λ′
ν�ν (r)λν

))]
(50)

= E

[
E

[
exp

(
−1

2
λ′

y�yλy

)∣∣∣∣C]E

[
exp

(
−1

2
λ′
ν�ν (r)λν

)∣∣∣∣C]] .

Let W (r) = (Wy (r),Wν (r)
)

be a vector of mutually independent standard Brownian motion
processes in R

d, independent of any C-measurable random variable. We note that the first
term on the RHS of (50) satisfies

E

[
exp

(
−1

2
λ′

y�yλy

)∣∣∣∣C]= E
[

exp
(

iλ′
y�

1/2
y Wy (1)

)∣∣∣C] (51)

by the properties of the standard Gaussian characteristic function. To analyze the second

conditional expectation E
[
exp
(
− 1

2λ′
ν�ν (r)λν

)
|C
]
, note that by Kallenberg (1997, p.

210), it follows from the isometry of the stochastic integral that there exists a standard
Brownian process Wν (r) such that

E

[(∫ r

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)2
∣∣∣∣∣C
]

=
∫ r

0
λ′
ν

(
�̇ν (t)

)
λνdt = λ′

ν�ν (r)λν .

By linearity of the stochastic integral, conditional on C,
∫ r

0 λ′
ν

(
�̇ν (t)

)1/2 dWν (t) is a
centered Gaussian process with conditional (on C) characteristic function

E

[
exp

(
−1

2
λ′
ν�ν (r)λν

)∣∣∣∣C]= E

[
exp

(
i
∫ r

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)∣∣∣∣C] . (52)

Combining (50)–(52) gives

E

[
exp

(
−1

2

(
λ′

y�yλy +λ′
ν�ν (r)λν

))]
(53)

= E

[
E
[

exp
(

iλ′
y�

1/2
y Wy (1)

)∣∣∣C]E[exp

(
i
∫ r

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)∣∣∣∣C]] .

Since by construction,
(
Wy (r),Wν (r)

)
are mutually independent conditional on C, it

follows that the RHS of (53) can be written as

E

[
E
[

exp
(

iλ′
y�

1/2
y Wy (1)

)∣∣∣C]E[exp

(
i
∫ r

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)∣∣∣∣C]]
= E

[
E

[
exp

(
iλ′

y�
1/2
y Wy (1)+ i

∫ r

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)∣∣∣∣C]]
= E

[
exp

(
iλ′

y�
1/2
y Wy (1)+ i

∫ r

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)]
,

where the last equality follows from the law of iterated expectations.
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A.3. Proof of Corollary 1

We note that finite-dimensional convergence established in the proof of Theorem 1 implies
that

E
[
exp
(
iλ′Xnτ (1)

)]→ E

[
exp

(
−1

2

(
λ′

y�yλy +λ′
ν�ν (1)λν

))]
.

We also note that because of (52), it follows that

E

[
exp

(
i
∫ 1

0
λ′
ν

(
�̇ν (t)

)1/2 dWν (t)

)]
= E

[
exp

(
−1

2
λ′
ν�ν (1)λν

)]
,

which shows that
∫ 1

0
(
�̇ν (t)

)1/2 dWν (t) has the same distribution as �ν (1)1/2 Wν (1).

APPENDIX B: Proofs for Trend Stationary Models

B.1. Proof of Theorem 2

Let sy
it (θ,ρ) = fθ,it (θ,ρ) and sνt (ρ,β) = gρ,t (ρ,β) in the case of maximum likelihood

estimation and sy
it (θ,ρ) = fit (θ,ρ) and sνt (ρ,β) = gt (ρ,β) in the case of moment-based

estimation, and where we assume exact identification to simplify the notation. The overi-
dentified case follows by the same arguments and with straight forward adjustments to the
notation. Using the notation developed before, we define

s̃y
it (θ,ρ) =

{
sy
it(θ,ρ)√

n
, if t ∈ {1, . . . ,T}

0, otherwise

analogously to (16) and

s̃νit (β,ρ) =
{

sνt (β,ρ)√
τ

, if t ∈ {τ0 +1, . . . ,τ0 + τ } and i = 1

0, otherwise

analogously to (15). Stack the moment vectors

s̃it (φ) ≡ s̃it (θ,ρ) =
(

s̃y
it (θ,ρ)′ , s̃νit (β,ρ)′

)′
(54)

and define the scaling matrix Dnτ = diag
(

n−1/2Iy,τ
−1/2Iν

)
, where Iy is an identity matrix

of dimension kθ and Iν is an identity matrix of dimension kρ . For the maximum likelihood
estimator, the moment conditions (21) and (22) can be directly written as

max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

s̃it

(
θ̂,ρ̂
)

= 0.

For moment-based estimators, we have by Condition 4(i) and (ii) that

sup
‖φ−φ0‖≤ε

∥∥∥∥∥∥
(

sy
M (θ,ρ)′ ,sνM (β,ρ)′

)′ − max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

s̃it (θ,ρ)

∥∥∥∥∥∥= op (1) .
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It then follows that for the moment-based estimators

0 = s
(
φ̂
)

=
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

s̃it

(
θ̂,ρ̂
)

+op (1) .

A first-order mean value expansion around φ0 where φ = (θ ′,ρ′)′ and φ̂ =
(
θ̂ ′,ρ̂′)′ leads to

op (1) =
max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

s̃it (φ0)+
⎛⎝ max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

∂ s̃it
(
φ̄
)

∂φ′ Dnτ

⎞⎠D−1
nτ

(
φ̂ −φ0

)
or

D−1
nτ

(
φ̂ −φ0

)
= −
⎛⎝ max(T,τ0+τ)∑

t=min(1,τ0+1)

n∑
i=1

∂ s̃it
(
φ̄
)

∂φ′ Dnτ

⎞⎠−1 max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

s̃it (φ0)+op (1),

where φ̄ satisfies
∥∥φ̄ −φ0

∥∥ ≤
∥∥∥φ̂ −φ0

∥∥∥ and we note that with some abuse of notation we

implicitly allow for φ̄ to differ across rows of ∂ s̃it
(
φ̄
)
/∂φ′. Note that

∂ s̃it
(
φ̄
)

∂φ′ =
[

∂ s̃y
it (θ,ρ)/∂θ ′ ∂ s̃y

it (θ,ρ)/∂ρ′
∂ s̃νit,ρ (β,ρ)/∂θ ′ ∂ s̃νit,ρ (β,ρ)/∂ρ′

]
,

where s̃νit,ρ denotes moment conditions associated with ρ. From Condition 4 and Theorem 1,
it follows that (note that we make use of the continuous mapping theorem which is
applicable because Theorem 1 establishes stable and thus joint convergence)

D−1
nτ

(
φ̂ −φ0

)
= −A(φ0)−1

max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

s̃it (φ0)+op (1) .

It now follows from the continuous mapping theorem and joint convergence in Corollary 1
that

D−1
nτ

(
φ̂ −φ0

)
d→ −A(φ0)−1 �1/2W (C-stably).

B.2. Proof of Corollary 3

Partition

A(φ0) =
[

Ay,θ
√

κAy,ρ
1√
κ

Aν,θ Aν,ρ

]
with inverse

A(φ0)
−1 =

⎡⎢⎣A−1
y,θ +A−1

y,θ Ay,ρ

(
Aν,ρ −Aν,θ A−1

y,θ Ay,ρ

)−1
Aν,θ A−1

y,θ −√
κA−1

y,θ Ay,ρ

(
Aν,ρ −Aν,θ A−1

y,θ Ay,ρ

)−1

− 1√
κ

(
Aν,ρ −Aν,θ A−1

y,θ Ay,ρ

)−1
Aν,θ A−1

y,θ

(
Aν,ρ −Aν,θ A−1

y,θ Ay,ρ

)−1

⎤⎥⎦
=
[

Ay,θ √
κAy,ρ

1√
κ

Aν,θ Aν,ρ

]
.
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It now follows from the continuous mapping theorem and joint convergence in Corollary 1
that

D−1
nτ

(
φ̂ −φ0

)
d→ −A(φ0)−1 �1/2W (C-stably),

where the right-hand side has a mixed normal distribution,

A(φ0)−1 �1/2W ∼ MN
(

0,A(φ0)−1 �A(φ0)′−1
)

and

A(φ0)
−1 �A(φ0)

′−1 =
[

Ay,θ�yAy,θ ′ +κAy,ρ�ν (1)Ay,ρ′ 1√
κ

Ay,θ�yAν,θ ′ +√
κAy,ρ�ν (1)Aν,ρ′

1√
κ

Aν,θ�yAy,θ ′ +√
κAν,ρ�ν (1)Ay,ρ′ 1

κ
Aν,θ�yAν,θ ′ +Aν,ρ�ν (1)Aν,ρ′

]
.

The form of the matrices �y and �ν follows from Condition 5 in the case of the maximum
likelihood estimator. For the moment-based estimator, �y and �ν follow from Condition 6,
the definition of sy

M (θ,ρ) and sνM (β,ρ), and Condition 4(i) and (ii).

APPENDIX C: Proofs for Section 6

C.1. Proof of Theorem 3

We first establish the joint stable convergence of
(

Vτn (r),sy
ML

)
. Recall that

τ−1/2ντ,t = exp ((t −min (1,τ0))γ /τ)V (0)+ τ−1/2
t∑

s=min(1,τ0)+1

exp((t − s)γ /τ)ηs

and Vτn (r) = τ−1/2ντ,τ0+[τ r]. Define Ṽτn (r) = τ−1/2∑τ0+[τ r]
s=min(1,τ0)+1 exp(−sγ /τ)ηs. It

follows that

τ−1/2ντ,τ0+[τ r] = exp ((t −min (1,τ0))γ /τ)V (0)+ exp ([τ r]γ /τ) Ṽτn (r) .

We establish joint stable convergence of
(

Ṽτn (r),sy
ML

)
and use the continuous mapping

theorem to deal with the first term in τ−1/2ντ [τ r]. By the continuous mapping theorem (see
Billingsley, 1968, p. 30), the characterization of stable convergence on D [0,1] (as given in
Theorem VIII. 5.33(ii) of JS) and an argument used in Kuersteiner and Prucha (2013, p.

119), stable convergence of
(

Ṽτn (r),sy
ML

)
, implies that(

exp([τ r]γ /τ) Ṽτn (r),sy
ML

)
also converges jointly and C-stably. Subsequently, this argument will simply be referred to

as the “continuous mapping theorem.” In addition, exp(([τ r]−min(1,τ0))γ /τ)V (0)
p→

exp(rγ )V (0), which is measurable with respect to C. Together these results imply joint

stable convergence of
(

Vτn (r),sy
ML

)
. We thus turn to

(
Ṽτn (r),sy

ML

)
. To apply Theorem 1,

we need to show that ψτ,s = exp (−sγ /τ)ηs satisfies Conditions 1(iv) and 2. Since

|exp(−sγ /τ)ηs|2+δ = |exp(−s/τ)|γ (2+δ) |ηs|2+δ = e−γ s(2+δ)/τ |ηs|2+δ ≤ |ηs|2+δ

(55)
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such that

E
[
|exp(−sγ /τ)ηs|2+δ

]
≤ C

Condition 1(iv) holds. Note that E
[
|ηt|2+δ

]
≤ C holds since we impose Condition 7. Next,

note that E
[
exp(−2sγ /τ)η2

s

]
= σ 2 exp (−2sγ /τ). Then, it follows from the proof of Chan

and Wei (1987, eqn. (2.3))21 that

τ−1
τ0+[τ r]∑

t=τ0+[τ s]+1

(
ψτ,s
)2 = τ−1

τ0+[τ r]∑
t=τ0+[τ s]+1

exp (−2γ t/τ)η2
t

p→ σ 2
∫ r

s
exp(−2γ t)dt.

(56)

In this case, �ν (r) = σ 2 (1− exp (−2rγ ))/2γ and
(
�̇ν (r)

)1/2 = σ exp (−γ r). By the
relationship in (53) and Theorem 1, we have that(

Ṽτn (r),sy
ML

)
⇒
(

σ

∫ r

0
e−sγ dWν (s),�1/2

y Wy (1)

)
C-stably,

which implies, by the continuous mapping theorem and C-stable convergence, that(
Vτn (r),sy

ML

)
⇒
(

exp(rγ )V (0)+σ

∫ r

0
e(r−s)γ dWν (s),�1/2

y Wy (1)

)
C-stably. (57)

Note that σ
∫ r

0 e(r−s)γ dWν (s) is the same term as in Phillips (1987), whereas the limit given
in (57) is the same as in Kurtz and Protter (1991, p. 1043).

We now square (32) and sum both sides as in Chan and Wei (1987, eqn. (2.8)) or Phillips
(1987) to write

τ−1
τ+τ0∑

s=τ0+1

ντ s−1ηs = e−γ /τ

2
τ−1
(
ν2
τ,τ+τ0

−ν2
τ,τ0

)
(58)

+ τe−γ /τ

2

(
1− e2γ /τ

)
τ−2

τ+τ0∑
s=τ0+1

ν2
τ s−1 − e−γ /τ

2
τ−1

τ+τ0∑
s=τ0+1

η2
s .

We note that e−γ /τ → 1 and τe−γ /τ
(

1− e2γ /τ
)

→ −2γ . Furthermore, note that, for all

α,ε > 0, it follows by the Markov and triangular inequalities and Condition 7(iv) that

P

⎛⎝∣∣∣∣∣∣τ−1
τ+τ0∑

t=τ0+1

E
[
η2

s 1
{
|ηt| > τ1/2α

}
|Gn,t∗n

]∣∣∣∣∣∣> ε

⎞⎠
≤ 1

τε

τ+τ0∑
t=τ0+1

E
[
η2

s 1
{
|ηt| > τ1/2α

}]
≤

supt E
[
|ηt|2+δ

]
αδτδ/2

→ 0 as τ → ∞

such that Condition 1.3 of Chan and Wei (1987) holds. Let U2
τ,k = τ−1∑k+τ0

t=τ0+1

E
[
η2

s |Gn,t∗n

]
. Then, by Holder’s and Jensen’s inequality,

21See Section V of the Supplementary Material for details.
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E
[∣∣Uτ,τ

∣∣2+δ
]

≤ τ−1
τ+τ0∑

t=τ0+1

E

[∣∣∣E[η2
s |Gn,t∗n

]∣∣∣1+δ/2
]

≤ sup
t

E
[
|ηt|2+δ

]
< ∞ (59)

such that U2
τ,τ is uniformly integrable. The bound in (59) also means that by Theorem 2.23

of Hall and Heyde (1980), it follows that E
[∣∣∣U2

τ,τ − τ−1∑τ+τ0
s=τ0+1 η2

t

∣∣∣]→ 0 and thus, by

Condition 7(vii) and by Markov’s inequality,

τ−1
τ+τ0∑

s=τ0+1

η2
t

p→ σ 2.

We also have

τ−1ν2
τ,τ+τ0

= Vτn (1)2 , (60)

τ−1ν2
τ,τ0

p→ V (0)2 ,

and

τ−2
τ+τ0∑

s=τ0+1

ν2
τ s−1 = τ−1

τ∑
s=1

V2
τn

( s

τ

)
=
∫ 1

0
V2

τn (r)dr

such that by the continuous mapping theorem and (57) it follows that

τ−1
τ+τ0∑

s=τ0+1

ντ s−1ηs ⇒ 1

2

(
Vγ,V(0) (1)2 −V (0)2

)
−γ

∫ 1

0
Vγ,V(0) (r)

2 dr − σ 2

2
. (61)

An application of Ito’s calculus to Vγ,V(0) (r)
2 /2 shows that the RHS of (61) is equal to

σ
∫ 1

0 Vγ,V(0)dWν , which also appears in Kurtz and Protter (1991, eqn. (3.10)). However,
note that the results in Kurtz and Protter (1991) do not establish stable convergence and
thus do not directly apply here. When V (0) = 0, these expressions are the same as in
Phillips (1987, eqn. (8)). It then is a further consequence of the continuous mapping theorem
that⎛⎝Vτn (r),sy

ML,τ−1
τ+τ0∑

s=τ0+1

ντ s−1ηs

⎞⎠
⇒
(

Vγ,V(0) (r),�
1/2
y Wy (1),σ

∫ 1

0
Vγ,V(0) (r)dWν (r)

)
(C-stably).

C.2. Proof of Theorem 4

For s̃it (φ) =
(

s̃y
it (θ,ρ)′ , s̃νit,ρ (ρ)

)′
, we note that in the case of the unit-root model

∂ s̃it (φ)

∂φ′ =
[

∂ s̃y
it (θ,ρ)/∂θ ′ ∂ s̃y

it (θ,ρ)/∂ρ′
0 ∂ s̃νit,ρ (ρ)/∂ρ′

]
.
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Defining

Ay
τn (φ) =

⎛⎝ max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

∂ s̃y
it (φ)

∂φ′ Dnτ

⎞⎠
and partitioning Ay

τn (φ) =
(

Ay,θ
τn (φ),Ay,ρ

τn (φ)
)

where Ay,θ
τn (φ) and Ay,ρ

τn (φ) contain the

partial derivatives with respect to θ and ρ, we have as before for some
∥∥∥φ̃ −φ

∥∥∥≤
∥∥∥φ̂ −φ

∥∥∥
that for

Aτn (φ) =
[

Ay,θ
τn (φ) Ay,ρ

τn (φ)

0 −τ−2∑τ0+τ
t=τ0

ν2
τ,t

]
,

we have

D−1
nτ

(
φ̂ −φ0

)
= −Aτn

(
φ̃
)−1

max(T,τ0+τ)∑
t=min(1,τ0+1)

n∑
i=1

s̃it (φ0) .

Using the representation

τ−2
τ0+τ∑
t=τ0

ν2
τ,t =

∫ 1

0
Vτn (r)2 dr,

it follows from the continuous mapping theorem and Theorem 3 that⎛⎝Vτn (r),sy
ML,Ay

τn (φ0),

∫ 1

0
Vτn (r)2 dr,τ−1

τ+τ0∑
s=τ0+1

ντ s−1η

⎞⎠ (62)

⇒
(

V (r),�1/2
y Wy (1),Ay (φ0),

∫ 1

0
Vγ,V(0) (r)

2 dr,
∫ s

0
σVγ,V(0)dWν

)
(C-stably).

The partitioned inverse formula implies that

A(φ0)−1 =
⎡⎢⎣ A−1

y,θ A−1
y,θ Ay,ρ

(∫ 1
0 Vγ,V(0) (r)

2 dr
)−1

0 −
(∫ 1

0 Vγ,V(0) (r)
2 dr
)−1

⎤⎥⎦ . (63)

By Condition 9, (62), and the continuous mapping theorem, it follows that

D−1
nτ

(
φ̂ −φ0

)
⇒ −A(φ0)−1

[
�

1/2
y Wy (1)∫ s

0 σVγ,V(0)dWν

]
. (64)

The result now follows immediately from (63) and (64).
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