INEQUALITIES FOR THE PERMANENTAL MINORS OF NON-NEGATIVE MATRICES

R. A. BRUALDI AND M. NEWMAN

1. Introduction. Let A be an $n \times n$ non-negative matrix, that is, a matrix whose entries are non-negative numbers. The permanent of A is the scalarvalued function of A defined by

$$
\operatorname{per}(A)=\sum a_{1_{i 1}} \ldots a_{n i_{n}}
$$

where the summation extends over all permutations i_{1}, \ldots, i_{n} of the integers $1, \ldots, n$. The purpose of this paper is to prove several inequalities involving the permanent of A and the permanent of submatrices of A when suitable restrictions are placed on the row sums. One result, for instance, states that when each of the row sums of A does not exceed 1 , then the sum of the permanents of all $r \times r$ submatrices of A does not exceed $\binom{n}{r}$. This improves a result of Marcus and Gordon (1). For such matrices it is also shown that the permanent cannot be greater than the maximum permanent of an $r \times r$ submatrix of A.

If A is an $n \times n$ non-negative matrix with row sums r_{1}, \ldots, r_{n} and column sums s_{1}, \ldots, s_{n}, then A is called row substochastic if $r_{i} \leqslant 1, i=1, \ldots, n$; row stochastic if $r_{i}=1, i=1, \ldots, n$; and doubly stochastic if $r_{i}=s_{i}=1, i=1$, \ldots, n. Doubly stochastic matrices and their permanents have been studied extensively $(2 ; 3 ; 4)$ and it is known that their permanents are always positive.

Let r and n be positive integers with $1 \leqslant r \leqslant n$. Following Marcus and Minc (4) we denote by $Q_{r, n}$ the totality of strictly increasing sequences of r integers chosen from $1, \ldots, n$. Thus the sequence i_{1}, \ldots, i_{r} is in $Q_{r, n}$ if and only if $1 \leqslant i_{1}<\ldots<i_{r} \leqslant n$. $Q_{r, n}$, of course, contains $\binom{n}{r}$ sequences. If i_{1}, \ldots, i_{r} and j_{1}, \ldots, j_{r} are two sequences in $Q_{r, n}$, then $A\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]$ denotes the $r \times r$ submatrix of A formed by rows i_{1}, \ldots, i_{r} and columns j_{1}, \ldots, j_{r} and $A\left(i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right)$ denotes the $(n-r) \times(n-r)$ submatrix of A formed by the rows complementary to i_{1}, \ldots, i_{r} and the columns complementary to j_{1}, \ldots, j_{r}. The permanent of $A\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]$ is called a permanental minor of order r of A. In case i_{1}, \ldots, i_{r} and j_{1}, \ldots, j_{r} are identical, we denote the corresponding submatrices more briefly by $A\left[i_{1}, \ldots, i_{r}\right]$ and $A\left(i_{1}, \ldots, i_{r}\right)$. In this case the permanent of $A\left[i_{1}, \ldots, i_{r}\right]$

[^0]is a principal permanental minor of order r. Suppose the sequences in $Q_{r, n}$ have been ordered lexicographically. Then the r th permanental compound of A, denoted by $P^{r}(A)$, is the $\binom{n}{r} \times\binom{ n}{r}$ matrix whose entries are
$$
\operatorname{per}\left(A\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]\right)
$$
arranged lexicographically in i_{1}, \ldots, i_{r} and j_{1}, \ldots, j_{r}. Observe that $P^{1}(A)=A$ and that $P^{n}(A)$ is the 1×1 matrix whose single entry is per (A).
2. Results. We first observe the following: Let $A=\left(a_{i j}\right)$ be an $n \times n$ non-negative row substochastic matrix. Then
\[

$$
\begin{equation*}
a_{i 1}+\ldots+a_{i n} \leqslant 1 \tag{1}
\end{equation*}
$$

\]

for $i=1, \ldots, n$. Hence for any sequence of integers k_{1}, \ldots, k_{τ} in $Q_{r, n}$

$$
\Pi\left(a_{i 1}+\ldots+a_{i n}\right) \leqslant 1,
$$

where the product is taken over all $i=k_{1}, \ldots, k_{r}$; or

$$
\begin{equation*}
\sum_{\sigma} a_{k_{1} \sigma\left(k_{1}\right)} \ldots a_{k_{r} \sigma\left(k_{r}\right)} \leqslant 1 \tag{2}
\end{equation*}
$$

the summation extending over all n^{τ} mappings σ of k_{1}, \ldots, k_{τ} into $1, \ldots, n$. Put $N=\binom{n}{r}$. Suppose the N sequences in $Q_{r, n}$ have been ordered lexicographically, say $\alpha_{1}, \ldots, \alpha_{N}$. For $i=1, \ldots, N$, let σ_{i} run over all one-to-one mappings of k_{1}, \ldots, k_{r} onto α_{i}. Then inequality (2) can be written as

$$
\begin{align*}
& \sum_{\sigma_{1}} a_{k_{1 \sigma_{1}\left(k_{1}\right)} \ldots a_{k r \sigma_{1}\left(k_{r}\right)}+\ldots}+\ldots \sum_{\sigma_{N}} a_{k_{1} \sigma_{N}\left(k_{1}\right)} \ldots a_{k_{r} \sigma_{N}\left(k_{r}\right)} \tag{3}\\
& +\sum_{\tau} a_{k_{1} \tau\left(k_{1}\right)} \ldots a_{k r \tau\left(k_{r}\right)} \leqslant 1
\end{align*}
$$

where τ runs over all mappings of k_{1}, \ldots, k_{τ} into $1, \ldots, n$ such that

$$
\tau\left(k_{i}\right)=\tau\left(k_{j}\right)
$$

for at least one pair i, j with $1 \leqslant i<j \leqslant r$. We can now write inequality (3) as

$$
\begin{equation*}
\sum \operatorname{per}\left(A\left[k_{1}, \ldots, k_{r} \mid j_{1}, \ldots, j_{r}\right]\right)+\sum_{r} a_{k_{1} \tau\left(k_{1}\right)} \ldots a_{k_{r} \tau\left(k_{r}\right)} \leqslant 1 \tag{4}
\end{equation*}
$$

the first summation extending over all sequences j_{1}, \ldots, j_{r} in $Q_{\tau, n}$. Since A is also a non-negative matrix, we may conclude from inequality (4) that

$$
\begin{equation*}
\sum \operatorname{per}\left(A\left[k_{1}, \ldots, k_{r} \mid j_{1}, \ldots, j_{r}\right]\right) \leqslant 1 \tag{5}
\end{equation*}
$$

In equality (5) k_{1}, \ldots, k_{r} is an arbitrary but fixed sequence in $Q_{r, n}$ and the summation extends over all sequences j_{1}, \ldots, j_{r} in $Q_{r, n}$. Equality occurs in (5) if and only if equality occurs in (1) for $i=k_{1}, \ldots, k_{r}$ and

$$
a_{k_{1} \tau\left(k_{1}\right)} \ldots a_{k_{r} \tau\left(k_{r}\right)}=0
$$

for each τ. We can now state and prove the following two theorems.

Theorem 1. Let A be an $n \times n$ non-negative row substochastic matrix. Then for $r=1, \ldots, n$ the r th permanental compound of $A, P^{r}(A)$, is an $\binom{n}{r} \times\binom{ n}{r}$ non-negative row substochastic matrix. $P^{1}(A)$ is row stochastic if and only if A is row stochastic. For $r=2, \ldots, n, P^{r}(A)$ is row stochastic if and only if A is a permutation matrix.

Proof. Since A is non-negative, $P^{r}(A)$ is clearly non-negative. The fact that $P^{\tau}(A)$ is row substochastic is immediate from inequality (5). Since $P^{1}(A)=A$, $P^{1}(A)$ is row stochastic if and only if A is. Let r be a positive integer with $2 \leqslant r \leqslant n$. By the preceding remarks, a necessary condition for $P^{r}(A)$ to be row stochastic is that A be row stochastic. Hence assume that A is row stochastic. Then $P^{r}(A)$ is row stochastic if and only if equality occurs in (5) for each sequence k_{1}, \ldots, k_{r} in $Q_{r, n}$, which in turn happens if and only if

$$
\begin{equation*}
a_{k_{1} \tau\left(k_{1}\right)} \ldots a_{k_{r} \tau\left(k_{r}\right)}=0 \tag{6}
\end{equation*}
$$

for all sequences k_{1}, \ldots, k_{r} in $Q_{\tau, n}$ and all mappings τ of k_{1}, \ldots, k_{r} into $1, \ldots, n$ such that $\tau\left(k_{i}\right)=\tau\left(k_{j}\right)$ for at least one pair i, j with $i \neq j$. Holding k_{1}, \ldots, k_{r} fixed, we may allow the $\tau\left(k_{p}\right), p \neq i, j$, to vary independently over $1, \ldots, n$. By repeated summation of (6), using the fact that A is row stochastic, we obtain

$$
a_{k i \tau(k i)} a_{k_{j} \tau\left(k_{i}\right)}=0
$$

for all $i \neq j$ and for $\tau\left(k_{i}\right)=1, \ldots, n$. Summarizing, we have shown that

$$
a_{i k} a_{j k}=0, \quad i \neq j, k=1,2, \ldots, n
$$

This means that A has at most one non-zero element in each column. Since A is row stochastic, there must be at least n non-zero elements in A, one in each row. Hence by the pigeon-hole principle each column has precisely one non-zero element and A is a permutation matrix. This completes the proof of the theorem.

Theorem 2. Let A be an $n \times n$ non-negative row substochastic matrix. For $r=1, \ldots, n$ let $p_{r}(A)$ be the sum of all the permanental minors of A of order r. Then

$$
\begin{equation*}
p_{r}(A) \leqslant\binom{ n}{r} \tag{7}
\end{equation*}
$$

For $r=1$, equality occurs in (7) if and only if A is row stochastic. For $r=2, \ldots, n$ equality occurs in (7) if and only if A is a permutation matrix.

Proof. Inequality (7) follows from Theorem 1 and the observation that $p_{r}(A)$ is the sum of all the elements of the r th compound of $A, P^{r}(A)$. For $r=1, p_{1}(A)$ is the sum of the elements of A and equals n if and only if A is row stochastic. For $r=2, \ldots, n$ equality occurs in (7) if and only if $P^{r}(A)$ is row stochastic, which, by Theorem 1, will happen if and only if A is a permutation matrix. This concludes the proof.

Inequality (7) improves a result of M. Marcus and W. R. Gordon who obtained in (1) by entirely different methods that for A an $n \times n$ non-negative doubly stochastic matrix

$$
s_{r}(A) \leqslant\binom{ n}{r}
$$

where $s_{\tau}(A)$ is the sum of the squares of all permanental minors of order r. Their condition for equality is the same as ours, namely A a permutation matrix.

The next two theorems are concerned with the principal permanental minors of row stochastic matrices.

Theorem 3. Let $A=\left(a_{i j}\right)$ be an $n \times n$ non-negative row stochastic matrix. Then for $r=1, \ldots, n-1$
(8) $\sum \operatorname{per}\left(A\left[i_{1}, \ldots, i_{r}\right]\right)\left(1-\operatorname{per}\left(A\left(i_{1}, \ldots, i_{r}\right)\right)\right) \leqslant\binom{ n-1}{r}(1-\operatorname{per}(A))$ where the summation extends over all sequences i_{1}, \ldots, i_{τ} in $Q_{r, n}$.

Proof. We first make the following observation. Since A is row stochastic,

$$
\binom{n-1}{r}=\binom{n-1}{r} \prod_{i=1}^{n}\left(a_{i 1}+\ldots+a_{i n}\right)
$$

or

$$
\begin{equation*}
\binom{n-1}{r}=\binom{n-1}{r} \operatorname{per}(A)+\binom{n-1}{r} \sum_{\tau} a_{1 \tau(1)} \ldots a_{n \tau(n)} \tag{9}
\end{equation*}
$$

where τ runs over all mappings of $1, \ldots, n$ into itself such that $\tau(i)=\tau(j)$ for at least one pair i, j with $i \neq j$.

Consider now the expression

$$
\begin{equation*}
\operatorname{per}\left(A\left[i_{1}, \ldots, i_{r}\right]\right)\left(1-\operatorname{per}\left(A\left(i_{1}, \ldots, i_{r}\right)\right)\right) \tag{10}
\end{equation*}
$$

for a fixed sequence i_{1}, \ldots, i_{r} in $Q_{r, n}$. Set $s=n-r$ and let j_{1}, \ldots, j_{s} be the complementary sequence in $Q_{s, n}$. Then (10) may be written as

$$
\begin{equation*}
\operatorname{per}\left(A\left[i_{1}, \ldots, i_{r}\right]\right)\left(1-\operatorname{per}\left(A\left[j_{1}, \ldots, j_{s}\right]\right)\right) \tag{11}
\end{equation*}
$$

Since A is row stochastic, we may replace the number 1 in (11) by

$$
\Pi\left(a_{j 1}+\ldots+a_{j n}\right)
$$

where the product is taken over all $j=j_{1}, \ldots, j_{s}$. Hence (11) may be written as

$$
\begin{equation*}
\sum_{\rho} \sum_{\sigma} a_{i_{1 \rho} \rho\left(i_{1}\right)} \ldots a_{i_{r} \rho\left(i_{r}\right)} a_{j_{1 \sigma}\left(j_{1}\right)} \ldots a_{j_{s \sigma\left(j_{s}\right)}} \tag{12}
\end{equation*}
$$

where ρ runs over all permutations of i_{1}, \ldots, i_{r} and σ runs over all mappings of j_{1}, \ldots, j_{s} into $1, \ldots, n$ such that σ is not a permutation of j_{1}, \ldots, j_{s}. All of the terms in (12) are formally distinct. Every term in (12) occurs as a term in

$$
\begin{equation*}
\sum_{\tau} a_{1 \tau(1)} \ldots a_{n \tau(n)} \tag{13}
\end{equation*}
$$

where τ runs over all mappings of $1, \ldots, n$ into itself such that $\tau(i)=\tau(j)$ for at least one pair i, j with $i \neq j$. A term $a_{1 \tau(1)} \ldots a_{n \tau(n)}$ in the sum (13) may occur as a term in the double sum (12) for more than one sequence i_{1}, \ldots, i_{r} in $Q_{r, n}$. We may write such a term as

$$
\begin{equation*}
a_{1 l_{1}} \ldots a_{n l_{n}} \tag{14}
\end{equation*}
$$

where $l_{p}=l_{q}$ for some pair p, q with $p \neq q$. There is then an integer k such that $l_{i} \neq k$ for $i=1, \ldots, n$. Define D to be that subset of $Q_{r, n}$ consisting of those sequences i_{1}, \ldots, i_{r} for which (14) occurs as a term in the corresponding double sum (12). Then for all sequences i_{1}, \ldots, i_{r} in D we have that $i_{j} \neq k$ for $j=1, \ldots, r$. Hence the number of sequences in D cannot exceed the number of sequences in $Q_{r, n-1}$, which is $\binom{n-1}{r}$. Hence each term (14) occurs as a term in (12) for at most $\binom{n-1}{r}$ sequences in $Q_{r, n}$. Therefore

$$
\begin{aligned}
& \sum \operatorname{per}\left(A\left[i_{1}, \ldots, i_{r}\right]\right)\left(1-\operatorname{per}\left(A\left(i_{1}, \ldots, i_{r}\right)\right)\right) \leqslant\binom{ n-1}{r} \sum_{\tau} a_{1 \tau(1)} \ldots a_{n \tau(n)} \\
&=\binom{n-1}{r}-\binom{n-1}{r} \operatorname{per}(A)
\end{aligned}
$$

the equality following from our initial observation (9). This proves the theorem.
Lemma 1. Let A be an $n \times n$ non-negative matrix. Let r be an integer with $1 \leqslant r \leqslant n-1$. Suppose that per $(A)>0$ and that for all sequences i_{1}, \ldots, i_{r} in $Q_{T, n}$

$$
\begin{equation*}
\operatorname{per}(A)=\operatorname{per}\left(A\left[i_{1}, \ldots, i_{\tau}\right]\right) \operatorname{per}\left(A\left(i_{1}, \ldots, i_{\tau}\right)\right) \tag{15}
\end{equation*}
$$

Then there exists a permutation matrix P such that

$$
P^{\prime} A P=\left[\begin{array}{lll}
x_{1} & & \\
& \cdot & 0 \\
& \cdot & \\
* & \cdot & \\
& & x_{n}
\end{array}\right]
$$

where $\operatorname{per}(A)=x_{1} \ldots x_{n}$. Here 0 denotes all 0 's while * denotes arbitrary elements.

Proof. The lemma is true for $n=1$. Suppose we have shown it for all $m \times m$ non-negative matrices with $m<n$ and all integers r with $1 \leqslant r \leqslant m-1$. We proceed by induction.

Partition the matrix A as

$$
\left[\begin{array}{ll}
A_{r r} & A_{r s} \\
A_{s r} & A_{s s}
\end{array}\right]
$$

where $A_{r r}$ and $A_{s s}$ are $r \times r$ and $s \times s$ matrices respectively. If $A_{r s}$ is a zero matrix, then A has an $r \times s$ submatrix of 0 's with $r+s=n$. Otherwise $A_{r s}$
contains a non-zero element. Since by hypothesis per $(A)=\operatorname{per}\left(A_{r r}\right) \operatorname{per}\left(A_{s s}\right)$, it follows that the $(n-1) \times(n-1)$ matrix obtained by crossing out the row and column of this non-zero element must have a zero permanent. Hence, by the Frobenius-König theorem, it contains a $p \times q$ submatrix of 0 's with $p+q=(n-1)+1$. Thus in either case A has a $p \times q$ submatrix of 0 's with $p+q=n$.

Suppose

$$
a_{1 j_{1}} \ldots a_{n j_{n}} \neq 0
$$

where j_{1}, \ldots, j_{n} is a permutation of $1, \ldots, n$ other than the identical permutation. Then the permutation j_{1}, \ldots, j_{n} contains a cycle (k_{1}, \ldots, k_{t}) of length $t>1$. Choose a sequence i_{1}, \ldots, i_{r} in $Q_{r, n}$ such that at least one, but not all, of the integers k_{1}, \ldots, k_{t} is included among the integers i_{1}, \ldots, i_{r}. For such a sequence i_{1}, \ldots, i_{r} it is easily seen that relation (15) does not hold. This contradicts our hypothesis and so

$$
a_{1 j_{1}} \ldots a_{n j_{n}}=0
$$

for all permutations j_{1}, \ldots, j_{n} of $1, \ldots, n$ other than the identical permutation. Since per $(A) \neq 0$ by assumption, it follows that per $(A)=a_{11} \ldots a_{n n} \neq 0$ and no diagonal element of A is zero.

Let the zeros of the $p \times q$ zero submatrix of A occur in positions $\left(i_{\alpha}, j_{\beta}\right)$, $1 \leqslant \alpha \leqslant p, 1 \leqslant \beta \leqslant q$. Then $i_{\alpha} \neq j_{\beta}$ since no diagonal element is zero. Hence there exists a permutation matrix Q such that

$$
Q^{\prime} A Q=\left[\begin{array}{ll}
B & 0 \\
D & C
\end{array}\right]
$$

where B is a $p \times p$ matrix and C a $q \times q$ matrix. If $p=1$, then C must satisfy relation (15) with A replaced by C and for r replaced by $r-1$ if $r>1$ or for r unchanged if $r=1$. The lemma then follows by applying the induction hypothesis to C. We argue similarly if $q=1$. Otherwise $p>1$ and $q>1$ and B and C will both satisfy (15) for appropriate r. In this case the lemma follows by applying the induction hypothesis to both B and C.

Theorem 4. Let $A=\left(a_{i j}\right)$ be an $n \times n$ non-negative row stochastic matrix. Then

$$
\begin{equation*}
e_{r}(A) \leqslant\binom{ n-1}{r}+\binom{n-1}{r-1} \operatorname{per}(A) \quad \text { for } r=1, \ldots, n-1 \tag{16}
\end{equation*}
$$

where $e_{r}(A)$ is the sum of the principal permanental minors of order r of A. If A is doubly stochastic, equality occurs in (16) if and only if A is the $n \times n$ identity matrix.

Proof. The inequality (16) follows from inequality (8) and the obvious inequality

$$
\begin{equation*}
\operatorname{per}(A) \geqslant \operatorname{per}\left(A\left[i_{1}, \ldots, i_{r}\right]\right) \operatorname{per}\left(A\left(i_{1}, \ldots, i_{r}\right)\right) \tag{17}
\end{equation*}
$$

for each sequence i_{1}, \ldots, i_{r} in $Q_{r, n}$. If equality occurs in (16), it must also occur in (17). If A is doubly stochastic, it follows by the preceding lemma that there is a permutation matrix P such that $P^{\prime} A P=I_{n}$ or $A=I_{n}$ where I_{n} is the $n \times n$ identity matrix. This establishes the theorem.

Our last theorem is also concerned with relationships between the permanent and permanental minors of a matrix.

Theorem 5. Let $A=\left(a_{i j}\right)$ be an $n \times n$ non-negative row substochastic matrix. For $r=1,2, \ldots, n$, let m_{r} be the maximum of the permanental minors of A of order r. Then

$$
\operatorname{per}(A) \leqslant m_{r}, \quad r=1, \ldots, n
$$

In particular the permanent of a non-negative row substochastic matrix does not exceed its maximum element.

Proof. By the Laplace expansion for permanents for any sequence i_{1}, \ldots, i_{τ} in $Q_{r, n}$,

$$
\operatorname{per}(A)=\sum \operatorname{per}\left(A\left[i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right]\right) \operatorname{per}\left(A\left(i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right)\right)
$$

where the summation extends over all sequences j_{1}, \ldots, j_{r} in $Q_{r, n}$. Hence

$$
\operatorname{per}(A) \leqslant m_{r}\left(\sum \operatorname{per}\left(A\left(i_{1}, \ldots, i_{r} \mid j_{1}, \ldots, j_{r}\right)\right)\right)
$$

the summation again extending over all sequences j_{1}, \ldots, j_{r} in $Q_{r, n}$. By Theorem 1, this sum does not exceed one and the inequality follows.

Corollary 1. For A an $n \times n$ non-negative row substochastic matrix,

$$
\operatorname{per}\left(P^{s}(A)\right) \leqslant m_{s}, \quad s=1,2, \ldots, n
$$

Proof. This follows by applying Theorem 5 to $P^{s}(A)$ for the case $r=1$.
Corollary 2. Let A be an $n \times n 0,1$ matrix with k 1's in each row. Then

$$
\operatorname{per}(A) \leqslant k^{n}\left(k!/ k^{k}\right)
$$

Proof. The matrix $k^{-1} A$ is a non-negative row stochastic matrix and we may apply Theorem 5 to it. For this matrix $m_{k} \leqslant k!/ k^{k}$. Since

$$
\operatorname{per}(A)=k^{n}\left(\operatorname{per} k^{-1} A\right)
$$

the inequality follows.
A generalization of Theorem 4 to $n \times n$ non-negative matrices A with row sums s_{1}, \ldots, s_{n} can be obtained using the same methods. The inequality analogous to (16) is

$$
s_{1} \ldots s_{n} \sum \frac{1}{s_{i_{1} \ldots . s_{i_{r}}}} \operatorname{per}\left(A\left[i_{1}, \ldots, i_{r}\right]\right) \leqslant\binom{ n-1}{r} s_{1} \ldots s_{n}+\binom{n-1}{r-1} \operatorname{per}(A)
$$

where the summation extends over all sequences i_{1}, \ldots, i_{r} in $Q_{r, n}$.

References

1. M. Marcus and W. R. Gordon, Inequalities for subpermanents, Illinois J. Math., 8 (1964), 607-614.
2. M. Marcus and M. Newman, Inequalities for the permanent function, Ann. Math., 75 (1962), 47-62.
3. On the minimum of the permanent of a doubly stochastic matrix, Duke Math. J., 26 (1959), 61-72.
4. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities (Boston, 1964).

National Bureau of Standards, Washington, D.C.

[^0]: Received February 18, 1965. This work was done while the first author was a National Research Council-National Bureau of Standards Postdoctoral Research Associate, 1964-1965.

