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TOPOLOGICAL CATEGORIES WITH MANY
SYMMETRIC MONOIDAL CLOSED STRUCTURES

G.M. KELLY AND F. ROSSI

I t would seem from results of Foltz, Lair, and KeI Iy that

symmetric monoldal closed structures, and even monoidal biclosed

ones, are quite rare on one-sorted algebraic or essentially-

algebraic categories. They showed many such categories to admit

no such structures at a l l , and others to admit only one or two;

no such category is known to admit an infinite set of such

structures.

Among concrete categories, topological ones are in some sense at

the other extreme from essentially-algebraic ones; and one is

led to ask whether a topological category may admit many such

structures. On the category of topological spaces itself, only

one such structure - in fact symmetric - is known; although

Greve has shown i t to admit a proper class of monoidal closed

structures. One of our main results is a proof that none of

these structures described by Greve, except the classical one, is

biclosed.

Our other main result is that, nevertheless, there exist

topological categories (of quasi-topological spaces) which admit

a proper class of symmetric monoidal closed structures. Even if
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42 G.M. Kel ly and F. Rossi

we insist (like most authors) that topological categories.must be

wellpowered, we can s t i l l exhibit ones with more such structures

than any small cardinal.

1. Introduction

We r e c a l l tha t a monoidal s t ructure on a category V - given (see

[181) by a "tensor product" functor ® : 1/ x V -+ 1/ and a "unit object" I

of V , together with na tura l isomorphisms a : ( X ® y ) ® Z ^ X ® ( Y ® Z ) ,

I : I ® X = X , and r : X ® I S X , subject to appropriate "coherence

axioms" - i s sa id to be alosed i f each - ® Y : f -*• V has a r igh t adjoint

[Y, -] , and to be biolosed i f moreover each J ® - has a r ight adjoint

{X, - } . A symmetric monoidal s t ructure - given by a monoidal one together

with a na tura l isomorphism c : X ® Y = Y ® X , r e la ted to a, I , and r

by fur ther coherence axioms - i s biclosed i f closed, with

{X, - } = [X, -] .

A merely monoidal closed V may well be of interest in itself - [S]

for instance makes use of the monoidal closed structure on the category of

finitary endofunctors of a locally-finitely-presentable category - but i t

does not seem to give rise to a fruitful l/-enriched category theory. The

la t t e r is most complete and useful when 1/ is symmetric monoidal closed,

and is treated at this level in the recent book [.181; but much of interest

survives (see [171 for an example) when V is merely monoidal biclosed.

One is accordingly led to ask whether symmetric monoidal closed

structures, or at least monoidal biclosed ones, are common on naturally-

occurring categories V , or not. For one-sorted algebraic or essentially-

algebraic 1/ , the results of [101 suggest that such structures are quite

rare; seven familiar such V are shown to admit no monoidal biclosed

structure, while the categories of abelian groups and abelian monoids admit

one each, and the category of categories admits two; a l l of these four

structures being in fact symmetric.

Of course one expects a many-sorted algebraic V to admit more such

structures. Indeed the functor-category V = [K, Set] is many-sorted

algebraic for small K , and has by Day [41 as many biclosed monoidal

structures as K has "promonoidal structures". The set of these is surely
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small, but by suitable choice of K (see for instance Section 6 below)

even the set of symmetric ones can be made larger than any small cardinal.

The same is true if we take instead 1/ = [K, Ab] . But now V , being

additive, has a one-object strong generator, and hence a faithful, indeed

conservative, right-adjoint functor U : V •*• Set . So the existence of

such a U does not in itself impose any restriction, other perhaps than

smallness, on the number of symmetric monoidal closed structures. On the

other hand, the present 1/ , in spite of its one-object generator, cannot

be seen as one-sorted algebraic, so long as "algebraic" connotes "finitary

operations"; for U is not finitary. No examples seem to be known of

one-sorted essentially-algebraic 1/ with more than a finite number of

monoidal biclosed structures.

There is a sense in which what some authors (see [J6]) call

topological categories are at the other extreme from algebraic categories,

and it is of interest to ask what the situation is for them. Even merely

monoidal closed structures on a topological 1/ necessarily have a very

special form: J must be the terminal object, and X ® Y must have the

same underlying set as the cartesian product X x y ; see Section 3 below.

The paradigmatic topological category is the category Top of

topological spaces; Greve [12] has shown that Top admits a large set

(that is, a proper class) of monoidal closed structures. Yet no monoidal

biclosed structure on Top is known except the one symmetric one in which

[Y, Z] is Top(y, Z) with the topology of pointwise convergence. Cincura

[3] claims to prove that Top admits no other symmetric monoidal closed

structure than this one; but his proof seems to us to contain a gap.

Our present results are as follows. We show that none of the monoidal

closed structures on Top constructed by Greve, except the classical one,

is biclosed. At this point one might begin to suspect that biclosed

monoidal structures are as rare on topological categories as on one-sorted

essentially algebraic ones , since very few are known on such other

topological categories as uniform spaces or compactly-generated spaces. We

dispel this suspicion by showing that a certain topological category <?Top

of "quasi-topologieal spaces" admits a large set of symmetric monoidal

closed structures (as well as a large set of biclosed non-symmetric ones).

It is true that <?Top is not quite a topological category in the sense of
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[76], lacking the wellpoweredness requirement imposed there. For any small

cardinal a , however, one can so choose a small full subcategory A of

Top that the wellpowered topological qk has more than a symmetric

monoidal closed structures.

2. Isomorphic monoidal structures

If we are to speak of the number of different structures on V , we

must know when we count two monoidal structures as "the same". We do so

when they are isomorphic, in the sense that we have isomorphisms ® = ®'

and 1=1' respecting a, I , and v . No more is required if these

structures are closed or biclosed: we automatically have induced

isomorphisms [ , ] = [ , ]' and { , } = { , }' .

Symmetric monoidal structures, however, do not count as the same

unless the isomorphisms above also respect o . This is truly an extra

requirement in general; for the classical monoidal structure on the

category of graded abelian groups admits ([9], page 559) two different

symmetries o and a' . This distinction vanishes, however, when J is a

generator of V , as it always is in our topological examples below. We

recall the reasons for this.

LEMMA 2.1. Let 1/ be monoidal closed with I a generator of V .

Then any f,f : X ® Y •* Z coincide if f(x ® y) = fix ® y) : I ® J •*• Z

for all x : I •*• X and all y : I -*• Y .

Proof. Let /, f correspond under the adjunction to

g, g' : X -*• [Y, Z] ; so that the composite

' ^ r * V [Y-z] T p - ^ r [ I ' z ]

is unchanged if g is replaced by g' . In other words, the composite

« x )

is unchanged if g is replaced by g' . Using the isomorphism

(2.1) I/(J, [J, Z]) S 1/(1 ® y , Z) s V(Y, Z)

and the fact that the l/(j/, Z) : V{Y, Z) •* 1/(1, Z) are jointly monomorphic

because I is a generator, we conclude that f(J, g) = V[I, g') , giving

g = g' since J is a generator; whence f = f . 0
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PROPOSITION 2.2 ( [ 9 ] , Chapter I I I , Proposi t ion 6 . 1 ) . Any two

symmetries c, c' on the monoidal closed V coincide if I is a

generator of V .

Proof. The naturality of a gives a commutative diagram

X® Y • Y ® X

(2.2) ajgj/j |J/«B

I ® I • I ® I
c

for a l l maps x, y ; and s ince the coherence axioms requ i re

e : J ® J - » - J ® J to be the i d e n t i t y , we have c{x ® y) - c'(x ® y) for

a l l x, y ; whence c - c' by Lemma 2 . 1 . D

COROLLARY 2.3. If V has two symmetric monoidal closed structures,

any isomorphism of the monoidal structures is an isomorphism of the

symmetric monoidal structures, when I is a generator of V .

Proof. Transport the symmetry of the ®'-structure along the

isomorphism to give a second symmetry on the ®-structure, and use

Proposition 2.2. •

3. Monoidal closed structures on topological categories

Given a category V with a faithful functor U : V -*• Set , we may

always so replace V by an isomorph that each U : V(X, Y) -*• Set(UX, UY)

is an inclusion of se ts ; then we may call (V, U) a concrete category,

and speak of a function / : UX -»• UY as a V-morphism i f i t l ies in

V{X, Y) - as we speak of continuous functions, and so on. An object X

of V may then be thought of as a V-structure on the set UX , counting

X and Y with UX = UY as the same l/-structure i f both 1 : I + J and

1 : Y -*• X are l/-morphisms; on replacing V by an equivalent full sub-

category, we may suppose that X = Y in these circumstances.

Such a (V, U) admits initial structures if, given any family

(perhaps large) of functions f : S -»• UX with 5 small, there is some

l/-structure Y on S such that each f is a l/-morphism Y -*• X and

such that any g : UZ -*• UY is a l/-morphism if each f g is one. Then

(I/, U) admits final structures as well, the final structure on S for the
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family h~ : UW^ •*• S being the initial structure for the family of all

functions / : S -*• UX for which each fJ^o is a l/-morphism. In

particular the empty families give discrete and chaotic structures on any

small set S , providing left and right adjoints to U . Clearly such a

(V, U) admits transport of structure along any bijection, while V admits

small limits and arbitrary intersections of monomorphisms, as does l/°p .

Both wellpoweredness and cowellpoweredness of V are equivalent to the

smallness of the set of structures on any small set S .

I t is convenient (and clearly possible) to suppose of our category

Set of small sets that a function s : 1 •*• S from the one-element set

1 = {0} is the same thing as an element s of S ; so that we have not

merely an isomorphism but an equality Set(l, S) = S . We call a concrete

category (V, U) admitting ini t ia l structures topologiaal if the chaotic

and discrete structures - and hence all structures - on this set 1

coincide, the corresponding object of V being also called 1 . Then 1

is a terminal object of V , and U = V(l, -) : V •* Set . Since V is

thus essentially determined by 1/ , it is usual to speak of a topologiaal

category V , without explicit reference to U .

The following result , in a version applying to a somewhat wider class

of categories, is attributed by Cincura [3] to an (apparently unpublished)

art icle of Niederle, and has been discussed in greater detail by Pedicchio

and Rossi [J9].

PROPOSITION 3.1 . Any monoidal closed structure on a topological
category V is isomorphic to one with the following properties: 1 = 1;
U(X ® Y) = UX x in ; a, I, r are the usual isomorphisms at the level of
the underlying sets, and so is a if the structure is synrnetric;
U[Y, Z] = l/(Y, Z) ; and the isomorphism l/U ® ?, Z) s V(X, [Y, Z]) is
the restriction of the usual isomorphism

Set(ra x in, uz) ^SBt[ux, Set(yy, uz)} .

Any isomorphism between two such structures in this canonical form is

necessarily the identity.

Proof. In any monoidal V , i t follows from the naturality of the

isomorphisms I and r along with the coherence condition

I = r : I ® I -»• I that the monoid V{I, I) is commutative. Since in a
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topological V we have UI = 1/(1, I) and V(I, 1 ) S 1 , we have for each

x € UI the constant map x! : I -*• I , with (x!)(j/!) = x! ; so tha t the

commutativity of V(I, I) forces UI to be 0 (empty) or isomorphic to

1 . We can rule out UI = 0 , for then (2.1) gives

V(Y, z ) s l / ( J , [ Y , z ] ) c s e t ( o , y [ l , z ] ) a i ,

making 1/ a pre-order , which a topological category i s not . So I f f s s l ,

giving J = 1 ; and we may as well take J = 1 .

For any monoldal V we have (C9], Chapter I I , Proposition 8.1) a

s t ruc ture of monoidal functor on V(I, -) : V •*• Set ; so tha t in our case

we have a monoidal functor (U, U, U°) :!/->- Set . Here U° : 1 •+ UI i s

of course the i d e n t i t y ; while 1/ : UX x UY •+ U(X ® Y) sends (x , y) t o

the composite of x ® i / : l ® l - > - Z ® Y with 1 2* 1 ® 1 . We sha l l show

that U i s I nve r t i b l e , so tha t we may as wel l , by t ranspor t of s t r u c t u r e ,

take i t to be the i d e n t i t y . Since, as a monoidal functor, (U, U, U°)

respects a, I , and r (and c too in the symmetric case, as (2.2)

shows), the asser t ions about a, I, r , a w i l l then follow.

Let W be the i n i t i a l s t ruc ture on UX x UY with respect to the

function Jj : UX * UY + U(X ® Y) , so tha t ~U i s a l/-morphism

W -*• X ® Y . By Lemma 2 . 1 , t h i s i s an epimorphism in f ; whence, since U

has a r ight adjoint , U : UX x UY + U(X ® Y) i s an epimorphism in Set .

On the other hand the maps 1 ® ! : X®Y^X®1^X and

I ®1 : X ® Y + 1® Y '£ Y g ive a map t : X ® Y ->• X * Y , whose composite

with x ® z / : l S l ® l - > - * ® Y i s c lear ly (x, y) : 1 •* X x Y . In other

words Ut.U : UX * UY •* U{X ® Y) •* U(X x y) ^ (JX * UY i s the i den t i t y , so

that U i s a monomorphism in Set . Hence U i s a b i j e c t i on .

The isomorphism (2.1) here gives U[Y, Z] 3= V(Y, Z) , and by transport

of s t ructure we may suppose th i s to be an equal i ty . Because (2.1) i s

na tura l , we also have U[h, k] = V(h, k) for maps. I f / : X ® Y -*• Z

corresponds under the adjunction to g : X -*• [Y, Z] , then by na tu ra l i ty

the composite

corresponds to

1-~»X—+[Y,Z] r 7 i > [ 1 , Z] .
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The value of (Uf){x, y) ? UZ i s the composite z of fix ® y) with

1 = 1 ® 1 . Our forcing the isomorphism above to be an equal i ty (in the

spec i a l case 7 = 1 ) ensures tha t {U[y, Z].Ug)x i s t h i s element z of

U[l, Z] = 1/(1, Z) = UZ . Since U[y, Z] = \){y, Z) , t h i s gives

U[iUg)x)y = (Uf)(x, y) , as desired.

I f (<(> : ® •*• ® ' , ty : 1 •* l ) is an isomorphism between two such

s t r u c t u r e s , we necessar i ly have i|J = 1 ; while the na tu ra l i t y of <|> and

the compatibi l i ty with I give commit at iv i ty in

-+ X ®' 7

x®'y

, - 1 (IT1

I t follows tha t t/<t> i s the ident i ty of UX * UY . Since the same is t rue

of u{$ ) , we have X ® 7 = X ®' 7 with <(> the i d e n t i t y . •

4. Categories of quasi-objects

Call a local ly-smal l A pretopological i f i t has a terminal object 1

which i s a generator. We may as well simplify by taking A , with the

fa i th fu l functor V = A( l , - ) : A -*• Set , to be concrete, in the sense of

the f i r s t paragraph of Section 3 , and supposing that Vl = 1 . Every

topo log ica l category i s of course pretopological; while the following

well-known construction (see for instance Day [5]) produces from any

pretopological A a topological category qk of "quasi-A-objects".

A quasi-A-object X i s a small se t S = UX with a quasi-k-struature

on UX . The l a t t e r i s given by the se lec t ion , for each A € A , of a

subset Ad(/4, X) of Set(7i4, UX) - the admissible maps - subject to the

following two axioms:

ADI Ad(l , X) = S e t ( l , UX) ;

AD2 if <(> € Ad(S, X) and f (. A(A, B) then Q.Vf (. A d U , X) .

A morphism g : X -*• 7 of quasi-objects i s a function g : UX -* UY such
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that g4> € Ad(/1, Y) whenever <}> € Ad(4, X) . I t is immediate that

{qk, U) is a topological category.

To each object B of A we associate an object JB of qk with

UJB = VB by setting AdU, JB) = AU, B) c Set(K4, VB) . On taking 4 = B

here we see that qk(JB, Y) = Ad(B, Y) ; so that in particular

qk(JB, JC) = A(B, C) . Thus J identifies A with a full subcategory of

qk , with V = UJ .

Note tha t <?A i s wellpowered when A i s small , while i t follows from

Example 3-6.6 of [71] tha t qtop i s not wellpowered.

We have the functor K : qk •* [A , Set] given by

KX = qk{J-, X) = Ad(-, X) . Since KJC = qk{J-, JC) = A(-, C) , we have

KJ = Y , the Yoneda embedding A -»• [A°P, Set] . I t is clear from the

definition of morphism in qk that K is fully faithful; so that A is

dense in qk .

Write E : [A°P, Set] -* Set for evaluation at 1 € A , noting that

EK = U . A lef t adjoint for E is given by the diagonal functor A , and

a right adjoint by T , where TS = Set(F-, S) . The counit of the

adjunction E -H T i s the identity ET = 1 ; write r\ : 1 -*• TE for the

unit. Then the F-component x)* : F -*• TEF = Set(F-, FX) of r\ has as i ts
r

d-component {.^p)/\ '• ̂  "* Set(W, Fl) the function corresponding to

VA = A ( l , A) •+ Set(FA, FX) .

When F = KX = Ad(-, X) for X € qk , i t is clear that nf is a

monomorphism, (jlf^ being the inclusion Ad(4, X) c Set(M4, UX) .

Conversely, i f r|_ is a monomorphism, F is isomorphic to KX , where

UX = Fl and Ad{A, X) is the image of (jlp)* • I t follows at once that a

presheaf F is isomorphic to some KX precisely when there is a

monomorphism F -*• TS for some S . The TS themselves are in effect the

quasi-objects with chaotic structure.

If we write

P »• RF • TEF
PF °F
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for the epimorphism-monomorphism factorization of n , taking a_ to be

actually an inclusion, then p : 1 -»• R is a reflexion of [A°p, Set] onto

the full subcategory qk . We have URF = Fl , while Ad(i4, RF) is just

the image of ( 0 , in Set(VA, Fl) .

5. Some monoidal biclosed structures on categories of quasi-objects

By Proposition 3.1, a monoidal structure (®, I, . . . ) on the

pretopological A cannot admit an extension to a biclosed monoidal

structure on the topological category qk unless J = 1 and the canonical

V : VA * VB + V{A ® B) , where V = A(l, -) , is an isomorphism. These

conditions are in fact sufficient: for convenience we suppose the

isomorphisms above to be equalities, which they are in our applications.

Note that , as in the proof of Proposition 3.1, this forces a, I, r (and

a in the symmetric case) to be the usual isomorphisms at the level of

underlying sets.

THEOREM 5 .1 . Let (®, 1 , . . . ) be a monoidal structure on the

pretopological A , for which the canonical V -. VA x VB -+ V(A ® B) is an

equality. Then the monoidal structure extends to one on qk which is

biclosed, and which is symmetric if the original one is so.

Proof. Suppose f i r s t tha t A is small. Then by Day [4] we have a

"convolution" monoidal b ic losed s t ructure (®' , J ' , . . . ) on [A , Set] ,

symmetric i f the o r ig ina l one i s , given by

(5.1) I' = A(- , 1) ,

rA,B
( 5 . 2 ) F <&' G = \ FA x GB x A ( - , A ® B) ,

(5 -3 ) [G, BY = { Set(CB, H(- ® B)) ,
>B

( 5 . U ) IG, B}' = { S e t [GB, H(B ® - ) ) ;
JB

t h e smal lness of A ensu r ing t h e ex i s tence of the r i g h t s ides of

( 5 - 2 ) - ( 5 - 1 t ) . When F and G a r e rep resen tab les A(- , C) and A ( - , D) ,

the Yoneda lemma app l i ed t o (5-2) gives A( - , C) ®' A( - , D) S A( - , C ® D) .

T h i s , wi th ( 5 . 1 ) , shows t h a t ( ® f , I ' , . . . ) i s an extension of
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(®, 1, ...) - at least when we verify that these isomorphisms respect

a, I, r and (in the symmetric case) c , which follows trivially from the

definition of these for ®' .

When G in (5-3) is the representable A(-, A) , the Yoneda lemma

gives [A(-, A), H]' ̂  H(A ® -) . If H = KZ = Ad(-, Z) for Z in qk ,

we have

[A(- , A), KZ]' S A d U ® - , Z) c Set(y(i4 ® - ) , uz) = Set(VA x v-, UZ)

sSet(v-, Set(K4, uz)} = T[Set(vA, uz)} ;

so tha t [A(-, A), H]' i s isomorphic by Section k to an object of qk .

Similarly for (A(-, A), H}' .

I t now follows from Day [5] (see [6] for the non-symmetric case) tha t

we have a monoidal biclosed s t ructure (®", I", ...) - again symmetric i f

the or ig inal one i s - on the re f lec t ive qk c [A , Set] , where

X®" Y = R(KX ®' KY) , I" = RI' = 1 , [X, Y]" = [KX, KY]' which in fact

l i e s in qk , and {X, Y)" = ta, KY)' . This i s s t i l l an extension of

(®, 1, . . . ) s ince , when X,Y=A,BZk,we have

R(KX ® ' KY) = i ? ( A ( - , A ) ® ' A ( - , B ) ) S J ? ( A ( - , A ® B ) } ^ A ® B .

The above completes the proof for small A.. When A is large, we

can imitate the above with Set replaced by a category SET of sets in a

higher universe with respect to which A is small, getting an extension of

the monoidal structure on A to a biclosed monoidal one on the category

Qk of quasi-objects with underlying set in SET . We regard Set as a

full subcategory of SET , so that qk is the full subcategory of Qk

given by the quasi-objects whose underlying set is small.

We complete the proof by showing that qk is closed in Qk for the

monoidal biclosed structure. This follows from Proposition 3.1, since

U(X ®" Y) = UX x UY , U[Y, Z]" = Qk(Y, Z) <= Set(OT, UZ) , and

U{Y, Z}" c Set(i/J, UZ) ; and all of these are small if UX, UY, UZ are

small. •

6. Some monoidal closed and symmetric monoidal structures on Top

We intend to apply Theorem 5.1 in the case where A is Top , or a

full subcategory of Top ; accordingly we use V : Top ->• Set for the

forgetful functor. We construct monoidal structures on Top using
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techniques of Brown [ 2 ] , as modified (apparently independently) by Booth

and TiIlotson [7] and Greve [72] so as to apply to non-hausdorff spaces.

Let K and L be small ( to within isomorphism) se t s of compact

hausdorff spaces, each closed under f i n i t e products and hence containing

the space 1 . For A, B € Top consider the family of a l l continuous

f : K~ •*• A with domain in K and the family of a l l continuous g : L •*• B
• y

with domain in L . Write A ® B for the topological space with under-

lying set VA x VB = V(A x B) , but with the final topology with respect to

the family given by a l l f * B : K. x B •*• A x 5 and a l l

A * g : A * L •+ A x S . Clearly the map i : A ® B ->• A x B , given by the

identity on the underlying se t , is continuous. I t is immediate that ® is

a functor and i : ® •* x a natural transformation.

LEMMA 6 . 1 . For K in K the identity map i : K ® B •+ K x B is

invertible, and in particular l®B = l*BszB . Similarly

A ® L = A x L for L in L , and A®l = A * \ e £ A .

P r o o f . The map i~ = 1 * B : K*B-+K®B i s c o n t i n u o u s by t h e

d e f i n i t i o n o f K ® B . Q

PROPOSITION 6.2. The identity a : (A ® S) ® C •* A ® (B ® C) and

its inverse are continuous, so that (®, 1, . . . ) is a monoidal structure

on Top satisfying the hypotheses of Theorem 5 .1 . This structure is

symmetric if L = K .

Proof. To say tha t A ® B has the f inal topology with respect to the

maps f * B and A x g above i s equally to say tha t these maps exhibi t

A ® B as a quotient space of £f[Kf x s) + £ [A X L ] . Since product

with a compact hausdorff space preserves quotient maps, i t follows that

(A ® B) x i' h a s , for L' € L , the f inal topology with respect to the

maps ( f x B) x £ ' and (4 x g) x £' . Because (A ® B) ® C has the

f ina l topology with respect to the maps h x C : X ' x C ^ - ( / 4 ® S ) x C and

(4 ® S) x fe : (4 ® B) x L£ + (A ® B) ® C where X^ € K and L^ € L , i t

equal ly has the f ina l topology with respect to the maps

h x C : K ^ x C + A x B x C , t h e m a p s f x B x k : Kf x B x £ ' -»- A x B x C ,

a n d t h e m a p s /I K j x !; ; 4 x i x L ' + A x B x C . T O s h o w t h a t a i s
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continuous i s to show that a l l of these maps are continuous when the i r

codomain is taken to be A ® (B ® C) .

Let us dismiss the l a t t e r ones f i r s t . Since

K- x B x L' = K ® [B ® LJ) by Lemma 6 . 1 , / x B x fc i s the continuous

map f ® {B ®k) : Kf ® {B ® L^} ->- A ® (B ® C) ; and since

A x £ x £ ' = A ® (L ® £ ' ) by Lemma 6.1 and the closedness of L under
9 * 3 *•'

f in i t e products, A *• g x k i s the continuous map

A ® (g ® k) : A ® (L ® LJ) -f il ® (B ® C) .

We turn to h * C where /z : X/ -»• A ® B . Let ih : K' •+ A x B have

components u : KJ -*• A and v : KJ -*• B , and l e t d : K' + K' * K' be the

diagonal. Since d * C : KJ * C + K' * KJ * C i s continuous, i t suffices

to prove the continuity of u x v x C : KJ x KJ x C -»• A ® (B ® C) . By

Lemma 6 . 1 , however, th i s i s the continuous

u ® (u ® C) : #^ ® (X^ ® C) -* A ® (B ® C) .

Thus a i s continuous; and s imilar ly a i s continuous. I t i s

t r i v i a l tha t c: Ax-B+BxA i s continuous as a map A ® B -»• B ® 4

when L = K . D

We need below an extension of Lemma 6 . 1 . Let us say tha t a space A

i s locally-K i f every point of A has a neighbourhood tha t l i e s in K .

The following i s par t of [ J ] , Proposition 3-3.

LEMMA 6.3 . The map i : A ® B ->• A *• B is invertible if A is

locally-K .

Proof. For each a € A we have a € W c K c A , where W i s open

in A and K € K i s a subspace of A . By Lemma 6 . 1 , the inclusion

Wa x- B •+ Ka *• B = Ka® B + A ® B i s continuous. Thus i f U i s open in

A ® B , we have £/ n ((/ x 5) open in W * B , and hence open in A x B .

So i/ = U (y n (V x B)) i s open in A x B . O
aa(A a

For a cardinal a that is either infinite or 1 , write C for the
a
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set of compact hausdorff spaces of cardinality less than or equal to a ;

i t is clearly closed under finite products. If 3 and a are two such

cardinals, write ®R for the monoidal structure on Top given as above

by taking K = C. and L = C ; it is symmetric by Proposition 6.2 if
fcs a

3 = a .

REMARK 6.4. A g> B is A * B with the "topology of separate

continuity"; this symmetric monoidal structure on Top is closed, [B, C]

being Top(S, C) with the topology of pointwise convergence. As we said

in Section 1, no other monoidal blclosed structure on Top is known. Both

Booth and TiIlotson [7] and Greve [72] observe that each monoidal structure

® is closed, [B, C] being Top(S, C) with the "C -open topology".

Greve goes further, in showing that the 0. for different a are

distinct; he has similar results, at least under the hypothesis that there

are no measurable cardinals, for other naturally-occurring topological

categories ([73], [74], [75]). We now show that the ® for different

reqular a are distinct; observe that the identity A ®DD B -*• A ® B is
pp act

continuous for 3 - oc .

PROPOSITION 6.5. For 3 < a and a a regular cardinal, let A be

the compact hausdorff space given by the ordinals less than or equal to a

with the order-topology. Then the identity A ®OQ A •* A ® A is not
p p OtOt

invertible.

Proof. Lemma 6.1 gives A ® A = A x A , since A € C . The set

B c: A x A given by the (y, Y) with y < c is not closed in A x A , for

(a, a) lies in its closure; but we show B to be closed in A ®o o A .
PP

By symmetry, i t suffices to show that ( / x A) B is closed in K x A for

each / : K •* A with X € Cg . Since the subspace f{K) of A is s t i l l

in C_ , we may as well suppose that K c A with / the inclusion. If

a € K , the regularity of a shows that K - {a} c [0, y] for some

y < a ; so that K = L u {a} for some L c A with L € C. . If a £ X ,

set L = K . Then ( / x y})"^ = (K * A) n B is the diagonal A of

L x L ; which is closed in L x £ and hence in X x /I . D
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THEOREM 6.6. There is a large set of symmetric monoidal closed
structures on qTop , as well as a large set of non-symmetric monoidal
biclosed ones. For any regular cardinal a , there is a small full sub-
category A of Top such that the wellpowered topological qk has at
least a symmetric monoidal closed structures.

Proof. The symmetric monoidal closed structures ®" on qTop given

by Theorem 5-1 are distinct for different regular a , by Proposition 3.1
and Proposition 6.5. Similarly the ®" are distinct by Remark 6.It; that

these are indeed non-symmetric for a > 1 follows from Theorem 7-1 below.
For the las t statement, let A be the set of topological spaces of
cardinal less than or equal to a ; then A is closed under ®gg for all

$ , while by Proposition 6.5 the ®gg for regular 0 5 a are distinct -

and there are a such regular cardinals. O

7. Greve's monoidal closed structures on Top are not biclosed

THEOREM 7.1. None of the monoidal structures ®. on Top for

infinite a is biclosed.

Proof. I t suffices to exhibit a topological space C such that
C® - does not preserve topological quotient maps; for then i t cannot

have a right adjoint. Write w for the f i rs t infinite cardinal. We

construct below a quotient map f : K -> L where L is in C and K is

locally-C , such that not every Cxf:C*K-*-CxL is a quotient map.

Since K and L are a fortiori locally-C , Lemma 6.1 gives

C x K - C gL K and C * L = C g) L, which completes the proof.

LEMMA 7.2. Let j : A -*• L be a monomorphism (that is, a continuous
injection) in Top , and let L . be the set L with a new and finer

J

topology: namely that generated by the sets G which are open in L and

the sets j{H) where H is open in A . Then this generating set is

actually a basis for the topology it generates, and the function j is a

continuous map j' : A ->• L . .
3

Proof. Since L itself is a generator, and intersections G n G'
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and j{H) n j(H') = j(H n H') of generators are again generators , we have

a b a s i s i f G n j(H) i s a union of generators. But i f y € G n j'(fl) then

U € J (j (G) n //) , and j (G) n H i s open in A . As for the continuity

of j ' , 3'~X{G) = fX(G) i s open, and fX3'{H) = ff i s open. D

LEMMA 7.3. J / A and L in Lemma 7.2 are compact hausdorff, L.
3

is locally-compact hausdorff.

Proof. L. is hausdorff since its topology is finer than that of L .
3

Let y € L . . If y € j(4) , it has the compact neighbourhood j(A) ; for
3

j{A) is open in L. , and being j'(/4) is also compact. If
3

y € L - 3(A) , there is a compact neighbourhood B of 1/ in L not

meeting j'(-d) ; and B is a fortiori a neighbourhood of y in L. .

Moreover B is still compact as a subset of L . , since a covering of it
3

by bas i c opens must involve a covering by opens of L . D

We now take for A the compact subspace of the reals given by 0 and

the l/n for i n t eg ra l n > 1 , and for L the compact subspace of the

r e a l s given by 0 , the l /n for in tegra l n > 1 , and the l /n + l/m for

i n t e g r a l n, m 2 1 . Let J be the se t of order-preserving continuous

in j ec t ions 3 : A ->• L with j ( 0 ) = 0 ; such a 3 i s in effect a

s t r i c t l y - d e c r e a s i n g sequence in L - {0} converging to 0 . We wri te K

for the coproduct Y, L • i-n ^OP , and f : K -*• L for the map whose

j-component i s the iden t i t y L . -*• L . Obviously L 6 C ; and K i s

loca l ly -C since every element x of K has some L. as a countable

neighbourhood, which contains by Lemma 7-3 a countable compact hausdorff

neighbourhood of x .

LEMMA 7 . 4 . f : K -*• L is a quotient map.

Proof. We have to show tha t W c L i s open in L i f i t i s open in

each L . with 3 € J . Let y € W with y ± 0 . Then there i s some
3

3' € J with y If j{A) ; so a bas ic open in L. containing y and
3

contained in W must be of the form G for some open G in L , whence

y is in the interior of W in L . It remains to show that, if 0 € W ,

https://doi.org/10.1017/S0004972700002264 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002264


Topological categories 57

then 0 lies in the interior of W in L . Suppose not; then there is

some j 6 J with j{A) n W = {o} - which is contradictory since W is

open in L. but contains neither a j'(fl) with // open in A nor a G

open in L with 0 € G . •

LEMMA 7.5. There is a topologiaal space C such that

C * f : C * K + C * L is not a quotient map.

Proof. The sets j{A) c L. for j £ J form an open covering in K
J

of / (0) . For any finite {j , . . . , j } in J , the set

D = j.(A) u . . . u j (A) is not a neighbourhood of 0 in L ; since D

contains for each n only a finite number of elements exceeding 1/n ,

while any neighbourhood of 0 in L contains, for some n , an infinite

number of elements exceeding l/n . The result now follows from Theorem 3

and Proposition k of [7]. D
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