
J. Fluid Mech. (2023), vol. 960, A19, doi:10.1017/jfm.2023.198

Polymer and surfactant flows through a
periodically constricted tube
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The flow of three non-Newtonian fluids, comprising polymer and surfactant additives,
in a periodically constricted tube (PCT) are experimentally compared. The radius
of the tube walls is sinusoidal with respect to the streamwise direction. The three
fluids are aqueous solutions of flexible polymers, rigid biopolymers and surfactants,
which are typically used for drag-reduction in turbulent flows. Steady shear viscosity
measurements demonstrate that rigid and flexible polymer solutions are shear-thinning,
while surfactant solutions have a Newtonian and water-like shear viscosity. Capillary
driven extensional rheology demonstrates that only flexible polymer solutions produce
elastocapillary thinning. Particle shadow velocimetry is used to measure the velocity
of each flow within the PCT at five Reynolds numbers spanning roughly 0.5 to 300.
Relative to the Newtonian flows, rigid polymer solutions exhibit a blunt velocity profile.
Flexible polymer solutions demonstrate a distinct chevron-shaped velocity contour and
zones of opposing vorticity when the Deborah number exceeds 0.1. Using the vorticity
transport equation, it is revealed that the opposing vorticity zones are coupled with
a non-Newtonian torque. The PCT reveals that the surfactant solutions have similar
non-Newtonian features as flexible polymer solutions – those being a chevron velocity
pattern, opposing vorticity and a finite non-Newtonian torque. This observation is of
practical importance since conventional shear and extensional rheometric measurements
are not capable of demonstrating non-Newtonian features of the surfactant solutions. The
investigation demonstrates that the PCT serves as a viable geometry for showing the
non-Newtonian traits of dilute surfactant solutions.

Key words: viscoelasticity

1. Introduction

Solutions of polymers and surfactants exhibit non-Newtonian features that depart
dramatically from the behaviours of the solvent alone. The eccentricity of the
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non-Newtonian features are largely driven by: (a) the rheological complexity of the fluid;
and (b) the complexity of the flow (Ewoldt & Saengow 2022). Trivial canonical flow types,
such as viscometric flows, can help decipher the various non-Newtonian traits that are
inherent within complex fluids – some of which include viscoelasticity, shear-thinning,
normal stress differences and extensional strain hardening. At the other extreme, highly
complex flows, such as turbulence, can produce unexplained alterations to the flow
dynamics despite involving fluids of seemingly low rheological complexity. For example,
dilute solutions of surfactants (less than 0.01 % mass concentration) can induce an 80 %
reduction in skin friction drag relative to a Newtonian fluid in a high-Reynolds-number
(Re) turbulent wall flow (Qi & Zakin 2002). Due to the diluteness of these non-Newtonian
solutions, teasing out the rheological feature(s) responsible for drag reduction can be
challenging. In fact, viscometric flows of these dilute surfactant solutions demonstrate
seemingly indistinguishable features from the Newtonian solvent (Lin 2000; Qi & Zakin
2002; Warwaruk & Ghaemi 2021).

To better understand the features of dilute non-Newtonian solutions, there is merit
in considering flows of moderate complexity – those that are not trivial enough to
be considered viscometric, but not overly complex such as turbulence. Bird & Wiest
(1995) referred to these flows as ‘nontrivial flows’, as they involved the laminar flow of
non-Newtonian fluids through complex geometries. Some of these geometries include an
abrupt contraction, periodically constricted tube, porous media and undulating surfaces
(Deiber & Schowalter 1979; Pilitsis, Souvaliotis & Beris 1991; Poole, Escudier & Oliveira
2005; Page & Zaki 2016). Bird & Wiest (1995) referred to a few of these nontrivial
flows as benchmark experiments that could aid in the development of numerical methods
for modelling the flow of non-Newtonian fluids. The features and phenomena observed
from these nontrivial flows, particularly those involving dilute polymer solutions, are also
believed by some to be of significance to polymer drag reduction or related to the onset of
the self-sustaining chaotic state known as elasto-inertial-turbulence (EIT) (Joseph 1990;
Haward et al. 2018a). Experiments of dilute polymer solutions, at relatively low Re, in
pressure-driven contraction and periodic contraction-expansion channels demonstrated an
increased streamwise pressure gradient, near-wall velocity overshoots and an augmented
vorticity, not observed for Newtonian fluids (Poole et al. 2005; Ober et al. 2013; Haward
et al. 2018a). Few experiments have considered dilute surfactant solutions in these
nontrivial flow geometries.

The present investigation explores the flow of three drag-reducing non-Newtonian fluids,
with unique rheology, in a periodically constricted tube. The following introduction serves
to review the rheology of these polymer and surfactant solutions, then to summarize
previous investigations of non-Newtonian fluids in periodic contraction-expansion
channels and over wavy surfaces.

1.1. Polymer and surfactant rheology
Polymers can be classified as having a flexible or rigid molecular structure. Flexible
polymers are long-chain molecules such as polyethylene oxide or polyacrylamide.
Generally, dilute solutions of flexible polymers are shear-thinning, viscoelastic, and
demonstrate normal stress differences and extensional strain hardening (Argumedo, Tung
& Chang 1978; Owolabi, Dennis & Poole 2017; Warwaruk & Ghaemi 2021). However,
sufficiently dilute solutions of flexible polymer have been shown to have a Newtonian
shear rheogram, but an appreciable non-Newtonian first-normal stress coefficient and
Trouton ratio (i.e. the ratio between the extensional and shear viscosities). These solutions
are often called Boger fluids and are popularly studied due to their likeness to the
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Oldroyd-B constitutive model (James 2009). Rigid polymer solutions, however, are
generally naturally occurring biopolymers such as proteins and polysaccharides. The rigid
polymer xanthan gum is abundantly used as a viscosity enhancer in various industrial
and food processing applications (Sanderson 1981). Dilute solutions of rigid polymers
exhibit prevalent shear-thinning and linear viscoelasticity (Pereira, Andrade & Soares
2013; Mohammadtabar, Sanders & Ghaemi 2020). Previous evidence has shown that
rigid polymer solutions have positive first-normal stress differences and a non-Newtonian
Trouton ratio (Fuller et al. 1987; Escudier, Presti & Smith 1999; Zirnsak, Boger &
Tirtaatmadja 1999). Despite rigid polymer solutions having measurable non-Newtonian
extensional properties, these features are small in comparison to the extensional properties
of flexible polymer solutions. Semi-dilute solutions of xanthan gum have been shown
to have a Trouton ratio that is orders of magnitude smaller than those measured for
polyacrylamide solutions (Fuller et al. 1987; Jones, Walters & Williams 1987).

Relative to polymeric solutions, surfactants add an extra level of rheological complexity
due to their ability to evolve and form complex microstructures known as micelles
within the flow (Wunderlich & James 1987). Dilute solutions of surfactants, relevant
to applications involving turbulent drag reduction, can exhibit various rheological
characteristics depending on the type of surfactant, the temperature, and the canonical
flow. Qi & Zakin (2002) summarized the three chemical or rheological features of dilute
surfactant solutions that are of significance to drag reduction: shear-induced structures
(SISs), viscoelasticity and a large Trouton ratio. The latter two properties share similarities
with polymeric solutions, while SISs allude to the structural transformation of micelles
caused by deformation of the fluid. Shear-induced structures are best demonstrated in
shear rheograms (Ohlendorf, Interthal & Hoffmann 1986). At sufficiently low shear rates,
the shear viscosity is Newtonian, but above a critical shear rate, the viscosity increases
(i.e. shear-thickening). After increasing the shear rate further, the viscosity begins to
decrease, becoming shear-thinning. While certain surfactant solutions do show all three
rheological properties (i.e. SISs, viscoelasticity and prevalent extensional features), some
surfactant solutions only show one, or occasionally none, of these rheological traits
(Qi & Zakin 2002). Lin (2000) observed that several dilute surfactant solutions had a
Newtonian shear viscosity distribution (i.e. no SISs or shear-thinning), no first normal
stress differences and a Newtonian Trouton ratio. Yet, the same dilute solutions could
produce a 70 % reduction in the skin friction drag of a turbulent wall flow (Lin 2000).
The implication is that the complex dynamics and conditions of the turbulent flow
stimulates a transition to non-Newtonian fluid features not realized through viscometric
experiments.

Creative experiments have been performed to pre-shear surfactant solutions and reveal
these non-Newtonian features in more controlled settings. For example, Wunderlich &
James (1987) demonstrated that sufficiently pre-shearing a surfactant solution produced a
significant enhancement in the extensional viscosity measured through an axisymmetric
contraction. Bhardwaj et al. (2007), and recently Fukushima et al. (2022), pre-sheared
surfactant solutions using a parallel plate rheometer, then separated the plates rapidly
to instil extension on the fluid sample. Both works observed evidence of an enhanced
extensional viscosity in the surfactant solution after pre-shearing, similar to Wunderlich &
James (1987). This demonstrated that SISs are indeed present in most surfactant solutions
and their formation may promote an enhanced extensional viscosity, in addition to the
shear-thickening commonly observed in shear viscosity measurements. Examining flows
with combined shear and extension might help to decode the shear-induced dynamics of
dilute surfactant solutions.
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1.2. Laminar flows over undulating walls
Several experimental and numerical investigations have examined the pressure-driven flow
of non-Newtonian fluids through axisymmetric tubes with periodic contraction–expansions
or wavy-walls. Forrester & Young (1970a,b) investigated this canonical flow for its
relevance in blood flows through a stenosis caused from the build up of plaque along artery
walls. Several other works have considered the wavy-walled tube a suitable analogue for
the flow of complex fluids in porous media (Deiber & Schowalter 1979, 1981; Lahbabi
& Chang 1986; Pilitsis & Beris 1991; Pilitsis et al. 1991). Lastly, Yoo & Joseph (1985)
and De Gennes (1990) suggested that the dynamics of non-Newtonian fluids through an
undulating tube might be of particular significance to turbulent drag reduction. Most of the
antiquated experimental investigations of non-Newtonian flows through undulating tubes
have focused on measuring the streamwise pressure gradient and mapping the Re in which
secondary inertial instabilities and transition to turbulence first appear (Forrester & Young
1970b; Deiber & Schowalter 1979, 1981; Phan-Thien & Khan 1987). The relevant works
that have investigated undulating wall flows are summarized below.

For a Newtonian fluid, Deiber & Schowalter (1979) used qualitative flow visualization
and pressure drop measurements to demonstrate that inertial secondary flows (realized
by a toroidal vortex in the expanding portion of the undulating tube) and transition to
turbulence largely depended on the amplitude and wavelength of the tube oscillations.
As expected, large amplitudes and short wavelengths promote flow separation. In a
follow-up publication, Deiber & Schowalter (1981) demonstrated that dilute aqueous
solutions of polyacrylamide had a larger streamwise pressure drop than Newtonian fluids
at a similar Re. The implication was that an elastically driven flow instability might be
at play. They also observed that toroidal secondary flows and transition to turbulence
occurred at lower Re for the polyacrylamide solutions compared to the Newtonian fluids –
consistent with modern observations of EIT (Samanta et al. 2013). Pilitsis et al. (1991)
and Pilitsis & Beris (1991) used computational fluid dynamics to model the flow of
inelastic and elastic non-Newtonian solutions in an undulating tube using generalized
Newtonian and viscoelastic constitutive equations. Simulations involving shear-thinning
models yielded higher amounts of flow resistance (streamwise pressure drop divided by
volumetric flow rate) when elasticity was present as opposed to when it was absent.
However, these simulations severely under-predicted the flow resistance demonstrated
experimentally by Deiber & Schowalter (1981), regardless of the chosen constitutive
model (elastic or inelastic). Inconsistencies between experiments of non-Newtonian
solutions and simulations using non-Newtonian constitutive models are common in
various pressure-driven non-uniform flow problems; even in modern simulations that use
constitutive models of higher rheological complexity. In a recent publication, Boyko &
Stone (2022) provided a thorough review of the inconsistencies among the pressure-drop
versus flow rate relationship derived from experimental findings, numerical simulations
and analytical works involving non-Newtonian flows through contractions, rectifiers
and periodic contraction–expansion geometries. To our knowledge, the problem of
non-Newtonian fluids through an axisymmetric wavy-walled tube has not been revisited
experimentally since the pressure drop measurements of Deiber & Schowalter (1981), little
over 40 years ago. Experiments that use particle image velocimetry (PIV) can provide
better insight into the dynamics of these flows, especially in flow regimes where elastic
irregularities take hold.

Although few recent experiments exist for flows in axisymmetric undulating tubes,
there are experimental observations of plane Poiseuille flow with one wavy-walled
surface (Haward et al. 2018a,b). These experiments were motivated by the numerical
investigations done by Page & Zaki (2016), which explored the structure of the vorticity
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field in a Couette flow of an Oldroyd-B fluid over a wavy surface of small amplitude.
These small amplitude wall oscillations induce spanwise vorticity within the flow. Page &
Zaki (2016) demonstrated that elasticity can amplify the vorticity and inject it farther into
the core of the channel. Subsequent experiments by Haward et al. (2018a,b) using dilute
solutions of polyethylene oxide supported these observations, albeit using a penetration
depth parameter derived from an integration of the wall-normal velocity. We should
note that Page & Zaki (2016) and Haward et al. (2018a,b) focus on small amplitude
wall perturbations, where the amplitude of the wall oscillations are significantly smaller
than the channel height. However, experiments by Deiber & Schowalter (1981) and the
simulations of Pilitsis et al. (1991) and Pilitsis & Beris (1991) focus on much larger wall
oscillations, perceived to be more relevant to flows through porous media. The present
investigation involves relatively large wall oscillations similar to those reported by Deiber
& Schowalter (1981), and much greater than those of Haward et al. (2018a,b). It is unclear
if the canonical flows are related – those by Haward et al. (2018a,b) are likely more
shear dominated, while experiments by Deiber & Schowalter (1981) have considerable
extensional deformation. Nonetheless, one area of focus for the present investigation
considers the amplification of vorticity.

1.3. Outline
The objective of the present investigation is to quantify the distorted state of velocity and
vorticity caused by trace amounts of polymer and surfactant additives within a laminar, but
geometrically non-trivial flow – that being flow in a periodically constricted tube (PCT).
We consider three aqueous non-Newtonian solutions, each of which are derived from an
additive with a unique chemical microstructure: a flexible polymer, a rigid biopolymer
and a cationic surfactant. Five concentrations are considered for each non-Newtonian
fluid (15 solutions in total). Steady and dynamic shear viscosity measurements are used
to characterize the steady shear viscosity and linear viscoelasticity of the non-Newtonian
solutions. A dripping-onto-substrate apparatus is used to measure the extensional rheology
of the solutions. Particle shadow velocimetry is used to directly measure the velocity of
each fluid in the PCT at five different flow rates. Lastly, we experimentally derive profiles
of the non-Newtonian torque from a deficit in the equation for conservation of angular
momentum. Despite similar amounts of shear-thinning and linear viscoelasticity (i.e.
storage and loss moduli), flexible polymers and rigid polymers react incredibly different in
the PCT. However, viscometric flows for surfactants are almost water-like. Yet surfactants
share a similar response as flexible polymers to the PCT, implying the PCT promotes some
SIS with a similar end-effect as the flexible polymer.

2. Experimental methodology

The laminar flow of water and three non-Newtonian fluids in an axisymmetric PCT were
experimentally quantified using a flow measurement technique known as particle shadow
velocimetry (PSV) (Santiago et al. 1998; Estevadeordal & Goss 2006; Khodaparast
et al. 2013). Flow measurements were supplemented with rheological measurements that
quantify the steady shear, dynamic shear and extensional rheology of the different fluids.
Details pertaining to the flow facility, non-Newtonian solutions and flow measurement
technique are described in the following sections.

2.1. Periodically constricted tube
Figure 1(a) demonstrates a two-dimensional (2-D) cross-section of the flow setup used for
the experiments. The flow consists of several stages. Each stage is detailed starting from
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Figure 1. Two-dimensional schematic of the (a) complete acrylic test section and (b) the periodically
constricted tube.

the farthest upstream location on the left-hand side of figure 1(a) and moving downstream
or to the right. The entrance region was of radius Ro = 1.07 mm, and was 68Ro in length
– a sufficient length to ensure a fully-developed Poiseuille flow entered the sections to
follow. Farther downstream of the entrance, the flow entered the PCT, where the radius of
the tube wall, Rw, varied sinusoidally along the streamwise direction, x, according to

Rw = Ro + ε

(
cos

(
2πx
λ

)
− 1

)
, (2.1)

where the sinusoidal amplitude of wall radius was ε = 0.14 mm, and the wavelength,
λ, was 4.7 mm. The maximum radius of the PCT was Ro, the minimum radius Ri was
0.79 mm and the average radius R was 0.93 mm. The length of the PCT section was 7λ.
Figure 1(b) demonstrates a magnified depiction of the PCT portion of the test section. The
cylindrical coordinate system is shown for reference in figure 1(b). The streamwise, radial
and azimuthal directions are denoted as x, r and θ , respectively. The radius of the tube
downstream of the PCT returned to Ro for a length of 28Ro. The radius then gradually
increased to 5.5 mm via a 3-degree axisymmetric conical expansion farther downstream
from the PCT.

The three-dimensional (3-D) axisymmetric tube was built from two halves of 12.7 mm
thick acrylic. The radial profile shown in figure 1 was cut into the two acrylic halves using
a computer numerical control router with a precision ball nose end mill. The scallop height
– the height of the surface imperfections caused by the curvature and step length of the
ball nose tool – was less than 1 μm or 0.1 % of Ri. The two halves were pressed together to
form the 3-D axisymmetric tube without using any adhesive. Custom milled steel flanges
with lag bolts and nuts were used to apply sufficient compression to the two halves, such
that fluid did not expel out the sides of the test section.

Fluid entered the test section from a straight, 1.2 m long stainless-steel tube with an
inner radius of Ro that was face-sealed to the left-hand side of the test section shown in
figure 1(a). Fluid that exited the test section entered a 0.3 m long stainless-steel tube with
an inner radius of 5.5 mm that was joined to the downstream portion of the test section.
Fluid temperature was monitored using a K-type thermocouple and a data logger (HH506,
Omega Engineering). The average fluid temperature of all experiments was 20.1 ◦C ±
0.2 ◦C. A syringe pump (Legacy 200, KD Scientific Inc.) with an accuracy of ±1 % was
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used to propel fluid through the flow facility. Glass syringes (Micro-Mate, Popper & Sons
Inc.) with 10 and 30 ml volumes were equipped in the syringe pump; the choice in the
syringe volume depended on the required volumetric flow rate Q. Flexible PVC tube with
an inner radius of 3.18 mm connected the syringe to the 1.2 m long stainless-steel tube.
Five flow rates were considered for each Newtonian and non-Newtonian fluid: 1, 3, 6, 9
and 12 ml min−1.

The Reynolds number was defined based on Re = 2〈U0〉R/νw, where νw = ηw/ρ is
the kinematic wall viscosity, ηw is the dynamic wall viscosity and ρ is the density. This
definition of Re is similar to that used by Ahrens, Yoo & Joseph (1987), where the flow
of viscoelastic fluids was simulated through a wavy-walled tube. Within the PCT, the
centreline velocity U0 oscillates with respect to x. As such, the average centreline velocity
〈U0〉 along x was determined from flow measurements in the PCT. Here, angle brackets
〈· · · 〉 are used to denote spatial averaging along the x direction. Within the straight-walled
development region, where Rw = Ro, U0 does not vary along x and the Reynolds number
is defined as Red = 2U0Ro/νw. For the flow of water, Red was between 13 and 184,
which was laminar. The wall shear rate within the straight-walled development region
can be derived from a differentiation of the parabolic Poiseuille profile for Newtonian
fluids, γ̇w = 2U0/Ro. Within the PCT, the fluid is subjected to a combination of shear and
extensional deformation. A characteristic near-wall shear rate within the PCT was defined
similar to the straight-walled section as γ̇w = 2〈U0〉/R. A characteristic extensional strain
rate ε̇ was defined as the range in U0 (maximum subtracted by minimum) divided by λ/2.
In the present investigation, γ̇w was between 13 and 300 s−1 and ε̇ was between 2 and
58 s−1 depending on the fluid and Re. The dynamic wall viscosity ηw was derived from
shear rheograms for non-Newtonian fluids and using γ̇w, as detailed in § 2.3. For water,
ηw = ηs, where ηs is the viscosity of the solvent and was considered to be 1.00 mPa s
according to Cheng (2008).

2.2. Test fluids
Three non-Newtonian additives, with drag-reducing capabilities (Warwaruk & Ghaemi
2021), were chosen for the experiments: a flexible polymer, a rigid biopolymer and a
cationic surfactant. Additives in their solid powder form were weighed using a digital scale
(Explorer Analytical, OHAUS Corporation) with a 1 mg resolution. Solid powders were
then gradually added to 15 l of distilled water and agitated for 8 h using a stand mixer
equipped with a 100 mm diameter impeller (Model 1750, Arrow Engineering Mixing
Products). After mixing, the aqueous non-Newtonian solutions were left to rest for 16 h.
Fluid samples were then collected for rheology measurements and experiments in the PCT.
Experiments in the PCT for the non-Newtonian fluids were conducted at the same flow
rates as water, Q between 1 and 12 ml min−1. For some of the fluids, their viscosities were
different than water, therefore, a similar Q did not constitute a similar Re.

The flexible polymer used in the present experiment was polyacrylamide (PAM) from a
sample batch contributed by SNF Floerger (6030S, molecular weight of 30–35 Mg mol−1).
The rigid biopolymer was xanthan gum (XG) (43708, MilliporeSigma). Both polymers,
PAM and XG, have been readily used in various experimental investigations involving
rheology and turbulent drag reduction (Escudier et al. 1999; Mohammadtabar et al.
2020; Warwaruk & Ghaemi 2021). Cationic surfactants are quarternary ammonium
salts of the form CnH2n+1N+(CH3)3Cl, where n is an integer, generally between 12
and 18 (Qi & Zakin 2002). When paired with a counterion, such as sodium salicylate
(NaSal), the molecules combine to form complex micellar structures (Bewersdorff &
Ohlendorf 1988; Zhang et al. 2005). We found in previous experimental campaigns that
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trimethyltetradecylammonium chloride (n = 14) (T0926, Tokyo Chemical Industry Co.,
Ltd.) combined with NaSal (71945, MilliporeSigma) at a molar ratio of 1:2, produced
considerable amounts of drag reduction (Warwaruk & Ghaemi 2021). Therefore, the
same additives and molar ratios were used in the present investigation. Much like
other investigations, we abbreviate and refer to the surfactant additive as TTAC for the
remainder of the manuscript (Roelants & De Schryver 1987). A parametric sweep of
five concentrations were considered for each additive (i.e. PAM, XG and TTAC). The
concentrations, c, were the same for all additives: 0.01 %, 0.02 %, 0.03 %, 0.04 % and
0.05 %.

2.3. Fluid rheology
Steady and dynamic shear rheology measurements were performed using a
controlled-stress single-head torsional rheometer (HR-2, TA Instruments). A single-gap
concentric cylinder was used for all viscosity measurements, both steady and dynamic.
The radius of the inner rotating cylinder Rmin was 14 mm, while the radius of the
outer fixed cylinder Rmax was 15.2 mm. The immersion height L was 42.04 mm. Steady
shear viscosity measurements involved a logarithmic sweep in the shear rate γ̇ from
0.1 to 1000 s−1 with 10 data points per decade, and the corresponding stress τ was
monitored. Note that the rotational velocity in rad s−1, Ω , can be converted to γ̇

using γ̇ = Fγ Ω , where Fγ = Rmax/(Rmax − Rmin) is the strain coefficient derived for
Taylor–Couette flow (Barnes, Hutton & Walters 1989; Ewoldt, Johnston & Caretta 2015).
Similarly, the torque measurements, T , can be converted to stress, τ , using τ = Fτ T ,
where Fτ = (2πR2

oL)−1 is the stress coefficient. The shear viscosity was derived based
on η = τ/γ̇ = (Fτ /Fγ )(T/Ω) (Barnes et al. 1989; Ewoldt et al. 2015). The maximum
shear rate limit of the steady shear viscosity measurements was determined based on
the Taylor number limitation, Ta = ρ2Ω2(Rmax − Rmin)

3Rmin/η
2 < 1700 (Ewoldt et al.

2015). Usually, the minimum shear rate limit can be determined from the lower torque
limit prescribed by the manufacturer of the rheometer. The lower limit in T provided by
TA instrument was 10 nN m, or τ = 0.2 mPa. In practice, we found that the lower limit for
steady shear viscosity measurements was higher, T = 100 nN m, or τ = 2 mPa. Lastly,
a power-law model was fit to shear rheograms for fluids that exhibited shear thinning
tendencies. The power law was of the form:

η = Kγ̇ n−1, (2.2)

where K is called the consistency and n is the flow index. Fits were performed on profiles
of η(γ̇ ) with τ > 2 mPa and Ta < 1700 using nonlinear least square regression. The values
of K and n for the solutions that were shear-thinning are reported in Appendix A. Recall
from § 2.1 that Re = ρ2〈U0〉R/ηw, where ηw is the viscosity evaluated at γ̇w = 2〈U0〉/R. In
other words, using (2.2) produces ηw = Kγ̇ n−1

w = K2n−1〈U0〉n−1R1−n, and the Reynolds
number in the PCT flow can be equally represented as Re = ρ22−n〈U0〉2−nRn/K for
shear-thinning fluids.

Dynamic shear viscosity measurements were also performed on select PAM and
XG solutions. Limitations of the rheometer made performing these measurements only
possible for high-concentration solutions. The details and results of the dynamic shear
viscosity measurements are provided in Appendix B.

The extensional rheology of the solutions was evaluated using a custom
dripping-onto-substrate (DoS) apparatus, depicted in figure 2(a). In this measurement
technique, a small droplet was discharged from a blunt-end nozzle with a diameter D0
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Figure 2. (a) Isometric view of a 3-D model depicting the DoS setup. (b) A sample image taken for PAM
with c = 0.05 % in elastocapillary thinning.

of 1.27 mm. A syringe pump (Legacy 200, KD Scientific Inc.) was used to expel the
droplet from the nozzle at a rate of 0.02 ml min−1. Pumping was terminated once the
droplet made contact with a glass substrate that was situated 3D0 or 3.81 mm below the
blunt-end of the nozzle outlet. An apparatus with similar features was used by Dinic et al.
(2015), Dinic, Jimenez & Sharma (2017) and Zhang & Calabrese (2022). After the droplet
made contact with the substrate, a liquid bridge was formed between the nozzle outlet
and the substrate. The diameter of the liquid bridge Dmin decayed rapidly due to capillary
forces. Images of the liquid bridge were collected using a high-speed camera (v611, Vision
Research) and back-lit illumination from a light-emitting diode (LED). Figure 2(b) shows
a sample image of the liquid bridge for the PAM solution with c = 0.05 %. The camera
had a 1280 × 800 pixel complementary metal-oxide semiconductor sensor with pixels
that were 20 × 20 μm2 in size and had a bit-depth of 12 bit. A zoom lens was used to
achieve a magnification of 3.8 and a scale of 5.16 μm pixel−1. Images were collected at an
acquisition rate of 2 kHz. The minimum diameter Dmin of the liquid bridge was determined
using a script developed in MATLAB (Mathworks Inc.).

The pinch-off dynamics of the liquid bridge in the DoS apparatus depends on forces
attributed to inertia, surface tension, viscosity and elasticity (Dinic et al. 2017). The
Ohnesorge number, Oh = tv/tR, relates the time scale associated with viscous forces to the
Rayleigh time tR, which pertains to surface tension and inertial forces. Here, tv = ηD0/2σ

is the characteristic time scale of viscocapillary thinning, tR = (ρD3
0/8σ)1/2, and σ is

the surface tension. Low-viscosity fluids typically have Oh < 1 and a necking process
dominated by inertial and capillary forces. In this regime, inertiocapillary (IC) thinning is
described by a 2/3 power law:

Dmin(t)
D0

= α

(
tb − t

tR

)2/3

, (2.3)

where tb is the filament break-up time, and α is a multiplicative pre-factor between 0.4 and
1 (Zhang & Calabrese 2022). If Oh > 1, viscous forces are significant, and the evolution of
Dmin is described by viscocapillary thinning, Dmin(t)/D0 = 0.0709(tb − t)/tv (McKinley
& Tripathi 2000). For elastic fluids, the Deborah number, De = te/tR, describes the ratio
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of the extensional relaxation time te and the Rayleigh time (Tirtaatmadja, McKinley &
Cooper-White 2006). If De > 1, the necking process is dominated by elastic and capillary
forces. This elastocapillary (EC) regime is described by

Dmin(t)
D0

= A exp
(

− t
3te

)
, (2.4)

where A = (GD0/2σ)1/3. The fluids in the present investigation exhibit thinning in an IC
(Oh < 1) or EC regime (De > 1). Nonlinear least-square regression was used to establish
te for fluids that exhibited EC thinning using measurements of Dmin and (2.4). Values of te
are listed in Appendix A.

2.4. Particle shadow velocimetry
Particle image velocimetry (PIV) with backlight illumination, denoted as particle shadow
velocimetry (PSV), was used to measure the velocity of the fluid within the test section. In
PSV, the thickness of the measurement domain is driven largely by the depth of focus
(DOF) of the imaging system. Provided a sufficient magnification and lens aperture,
images can be acquired with a thin focal plan that enables 2-D planar flow measurements
along a select and narrow region of interest (Santiago et al. 1998; Estevadeordal & Goss
2006; Khodaparast et al. 2013).

The PSV system consisted of a digital camera (Imager Pro X, LaVision GmbH) with a
2048 × 2048 pixel charged-coupled device sensor. Each pixel was 7.4 × 7.4 μm2 in size
and had a 14-bit digital resolution. A Nikon lens with a focal length of f = 105 mm was
equipped to the camera with an aperture diameter of f /2.8. The camera focus was adjusted
such that images were focused on the radial mid-span of the test section. Two fields of view
(FOVs) were considered, as shown in figure 3(a). The first FOV, i.e. FOV1, considered the
entrance or development region immediately upstream of the PCT, as demonstrated in
the left-hand side of figure 3(a). The FOV1 captured the complete tube radius, Ro, and
approximately 3λ along the x direction and immediately upstream of the first oscillation
in the PCT. Only the Newtonian flow of water was considered in FOV1. The objective
was to determine if the flow entering the PCT was a fully-developed laminar Poiseuille
flow. Experimental results for FOV1 are presented separately in Appendix C. The second
field of view, FOV2, measured the velocity between the second and fifth oscillation
of the PCT, that is, from x ≈ 2λ to 5λ. For FOV2, flows of the three non-Newtonian
fluids through the PCT were measured. Both FOVs were approximately the same size,
(
x, 
r) = 3.24 × 14.1 mm2, with a scale of 6.88 μm pixel−1 after the sensor was
cropped to remove unnecessary data for r/Ro > 1. The magnification was 1.07 and the
DOF was 87 μm, which was approximately 10 % the minimum radius in the PCT, Ri.

Backlight illumination of the PIV recordings was achieved using a 15 mJ pulse−1

Nd:YAG laser (Solo I-15, New Wave Research Inc.) equipped with a diffuser. A diffuser
expanded the laser beam, made the incident light incoherent and changed the wavelength
to 610 nm using fluorescent disks. A programmable timing unit (PTU-9, LaVision GmbH)
and DaVis 8.4 software (LaVision GmbH) were used to synchronize the camera and
laser. Silver coated hollow glass spheres, with diameter dp = 10 μm, were used as tracer
particles in the flow (S-HGS-10, Dantec Dynamics). These particles were opaque, which
was ideal for projecting a shadow on the camera in backlight illumination. The density of
the particles, ρp, was 1400 kg m−3. As a result the particle response time, tp = ρpd2

p/18ηs,
and particle settling velocity, up = (ρp − ρ)d2

pg/18ηs, could be established. Here, g is
the gravitational acceleration. The particle response time, tp, was 7.8 μs and the particle
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Figure 3. (a) A two-dimensional schematic showing the different PSV fields of view. (b) Sample PSV image
(TTAC at c = 0.04 %) for FOV2. (c) An enhanced version of the sample image in panel (b) for TTAC at
c = 0.04 % and FOV2.

settling velocity, up, was 21.8 μm s−1. We estimated the Stokes number to be St = tpγ̇w,
and the Froude number to be Fr = 2up/U0. The largest St was 0.003 and the largest Fr
was 0.005, depending on Q. Both the Stokes and Froude numbers are small (less than 0.1)
and errors attributed to particle inertia and particle settling are negligible.

For FOV1, five sets of measurements were performed for water, each for the different
values of Q listed in § 2.1. The results for FOV1 are presented in Appendix C. The
measurements of velocity within the entrance region show good agreement with the
theoretical expectations for all values of Q, providing good confidence in PSV to produce
reasonable measurements. For FOV2, measurements were performed for three different
non-Newtonian fluids, each having five different concentrations, and five flow rates Q (75
datasets in total). Additionally, five measurements were performed for distilled water at
FOV2 for each value of Q. Each dataset consisted of 600 pairs of double-frame images
recorded at an acquisition frequency of 7.3 Hz. A sample image of the first frame for
TTAC at a mass concentration of 0.04 % is shown in figure 3(b). The time delay, 
t,
between image frames was between 500 and 7000 μs depending on the value of Q, such
that the maximum particle displacement between the image frames was no greater than
15 pixel.

Image processing was performed using DaVis 8.4 software (LaVision Gmbh). First, the
images were inverted; the intensity signal at each pixel was subtracted from a constant
intensity value. Next, the minimum intensity within each pixel and along the complete
image ensemble was determined and subtracted from all images in each dataset. Third, the
intensity signals at each pixel were normalized by the average intensity of the ensemble. A
sample image (TTAC at a mass concentration of 0.04 %) after performing the previously
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detailed processing steps can be seen in figure 3(c). Compared to the native image, seen
in figure 3(b), the processed image has more clearly defined bright particles for all values
of r.

Vector fields were established using the ensemble-of-correlation method with an initial
interrogation window (IW) size of 64 × 64 pixel (0.44 × 0.44 mm2 or 0.41R × 0.41R) and
a final IW size of 16 × 16 pixel (0.11 × 0.11 mm2 or 0.10R × 0.10R) with 75 % overlap
between neighbouring IWs (Meinhart, Wereley & Santiago 2000). The velocity vector was
denoted as u, with components in cylindrical coordinates being ur, uθ , ux, corresponding
to the velocity along the r, θ, x directions, respectively. The flow is laminar and steady,
with presumably no swirl, i.e. uθ = 0, given the geometric dimensions of the PCT and the
Reynolds numbers of the flows in the present investigation (Deiber & Schowalter 1979).
We also did not observe evidence of secondary flow re-circulations, turbulence or swirl.

Sources of uncertainty in the PSV measurements were assumed to include: (i) errors due
to subpixel interpolation of the correlation function; (ii) the finite DOF; and (iii) optical
distortion near the walls of the tube from radial curvature and differences in the refractive
index. Each source of uncertainty was conservatively estimated, the details for which are
listed below.

(i) Errors from subpixel interpolation are conservatively estimated to be 0.1 pixels
according to Raffel et al. (2018). A 0.1 pixel error in displacement translates to an
error in velocity of 0.1–1.4 mm s−1 depending on 
t. If this error is normalized
by the average centreline velocity, 〈U0〉, the largest velocity error among all flow
conditions was 0.012〈U0〉.

(ii) Quantifying the uncertainties attributed to radial distortion and differences in the
refractive index was challenging and would require ray tracing analysis (Minor,
Oshkai & Djilali 2007). Instead, errors from radial distortion were conservatively
estimated based on how well the velocity within FOV1 could match the theoretical
Poiseuille profile, as discussed in Appendix C. The results of the analysis in
Appendix C demonstrated that the largest deviation from the parabolic velocity
profile was 0.04〈U0〉.

(iii) Slower moving particles within the DOF but outside the centre plane of the tube will
bias velocity vectors to lower values. If we consider a parabolic velocity profile when
the wall radius Rw is equal to Ri, a DOF that is 0.1Ri in thickness would produce a
relative error in ux of approximately 0.003〈U0〉 near the centreline of the PCT and
0.1〈U0〉 near the wall of the PCT. These errors reduce when considering regions of
the PCT with a larger wall radius.

The total uncertainty in measurements of u from PSV was estimated to be the root sum
squared value of the three previously listed sources of uncertainty. This was approximately
0.042〈U0〉 near the PCT centreline and 0.108〈U0〉 near the PCT walls, when considering
regions of the PCT where Rw = Ri. In subsequent plots of velocity within the PCT, error
bars are used to display the uncertainty in the velocity measurements from PSV.

2.5. Flow field analysis
The steady flow of complex and Newtonian fluids in the PCT are governed by the following
equations for mass and momentum conservation:

∇ · u = 0,

ρu · ∇u = −∇p + ∇ · τ ,

}
(2.5)
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where p is the indeterminate component of the Cauchy stress tensor and τ is the deviatoric
stress tensor. The velocity gradient tensor, L = ∇u, can be decomposed into the symmetric
rate of deformation tensor, D = (L + L†)/2, and anti-symmetric rate of rotation tensor,
W = (L − L†)/2, where † represents the matrix transpose. The components of D and W
are listed:

Drr = ∂ur

∂r
, Dθθ = ur

r
, Dxx = ∂ux

∂x
,

Drx = Dxr = 1
2

(
∂ur

∂x
+ ∂ux

∂r

)
,

⎫⎪⎬
⎪⎭ (2.6)

ωθ = −2W xr = ∂ur

∂x
− ∂ux

∂r
, (2.7)

where ω is the vorticity vector, whose only non-zero component is ωθ . Undisclosed
components of D and W are zero. Equation (2.5) reduces to the Navier–Stokes
equation for Newtonian fluids when the deviatoric stress tensor is represented by the
constitutive equation τ = 2ηsD. For non-Newtonian fluids, the constitutive relation is
much more complex and can be a partial differential equation with nonlinear terms (e.g.
Phan–Thien–Tanner and Giesekus models). For most non-Newtonian constitutive models,
it is common to segregate the deviatoric stress tensor into a solvent and non-Newtonian
stress, i.e. τ = τ s + τnn (Alves, Oliveira & Pinho 2020). Here, τ s = 2ηsD is the solvent
stress and τnn is the non-Newtonian stress introduced from the polymers or micelles. Note
that if τnn = 0, then τ = τs and the constitutive equation is Newtonian. When substituted
into (2.5), the divergence of the non-Newtonian stress, ∇ · τnn, acts as an additional
forcing term and for polymeric flows is often referred to as a ‘polymer force’ (Kim et al.
2007).

Equations (2.6) and (2.7) can be explicitly evaluated using the measured ux and ur.
To circumvent the need for pressure, p, we considered the vorticity transport equation
obtained from taking the curl of the momentum transport equation, shown in (2.5). The
only non-zero component of the vorticity in the PCT flow is ωθ ; therefore, we consider the
vorticity transport equation along the azimuthal direction alone:

ur
∂ωθ

∂r
+ ux

∂ωθ

∂x
− urωθ

r︸ ︷︷ ︸
VA

= νs

(
∂2ωθ

∂r2 + 1
r

∂ωθ

∂r
+ ∂2ωθ

∂x2 − ωθ

r2

)
︸ ︷︷ ︸

VSD

+ Tθ . (2.8)

The additional term on the right-hand side of (2.8), is the azimuthal component of the
non-Newtonian torque, T = (∇ × ∇ · τnn)/ρ. The non-Newtonian torque is a vector,
whose only non-zero component in the PCT is Tθ . Previous numerical investigations have
denoted T the ‘polymer torque’ as it can be represented as the curl of the polymer force
(Kim et al. 2007, 2008; Kim & Sureshkumar 2013; Page & Zaki 2015, 2016; Biancofiore,
Brandt & Zaki 2017; Lee & Zaki 2017). Its simplified units are s−2 – when multiplied
by moment of inertia, the units are force times unit distance, consistent with the true
torque definition. The under-braces shown in (2.8) isolate the different combinations of
terms within the vorticity transport equation. On the left-hand side of (2.8), VA denotes
the azimuthal vorticity advection. The first term on the right-hand side of (2.8), VSD,
represents vorticity solvent diffusion, where νs = ηs/ρ. For each flow, the azimuthal
non-Newtonian torque was calculated based on the deficit between VA and VSD, i.e.
Tθ = VA − VSD.
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To establish the first-order spatial gradients of velocity, a moving second-order
polynomial surface was fit on profiles of ux and ur. The size of the second-order
polynomial filter was 20 × 20 pixels, 138 × 138 μm2 or 0.15R × 0.15R. Coefficients of
the polynomial surface were used to establish first-order spatial derivatives of ux and ur.
Azimuthal vorticity, ωθ , was then established using (2.7). To determine the higher order
spatial gradients in the flow, a moving third-order polynomial surface was fit on profiles
of ux and ur. The size of the cubic polynomial filter was 76 × 76 pixels, 522 × 522 μm2,
or 0.56R × 0.56R. Coefficients of the third-order polynomial were used to the determine
the second- and third-order spatial derivatives of ux and ur. Three orders of differentiation
in u are required due to the VSD term in (2.8). These higher-order derivatives were then
used to calculate the azimuthal non-Newtonian torque Tθ using (2.8). Polynomial filters
that overlapped with the PCT wall were neglected, and results of ωθ and Tθ were not
considered close to the wall.

All parameters including u, ωθ and Tθ exhibited symmetry about r = 0. Therefore, u, ωθ

and Tθ on the lower half of the domain (r < 0) were averaged with the upper half (r > 0).
When comparing u, ωθ and Tθ in one oscillation to prior or subsequent oscillations, the
parameters are not dramatically different for all flow conditions and fluids. Therefore, u,
ωθ and Tθ were periodically averaged over three oscillations, i.e. for x-coordinates that
share the same wall radius, Rw.

The volumetric flow rate, Q can be determined from flow measurements based on
a volume integration of ux, i.e. Q = 2π

∫ Rw
0 uxr dr. The bulk velocity can be defined

according to U = Q/(πR2
w). Because of mass conservation and the variation of Rw along x,

the bulk velocity U changes along the streamwise x direction. Therefore, an average value
of U along x was determined, and angle brackets 〈· · · 〉 were used to denote the spatial
averaging along the x direction, i.e. 〈U〉. Recall from § 2.1 that the same angle brackets
were used to define the average centreline velocity along x, 〈U0〉. An average shape factor
can be determined from the ratio of centreline to bulk velocity, SF = 〈U0〉/〈U〉. For
Poiseuille flow in a straight-walled tube, SF = 2. Lastly, distributions of u, ωθ and Tθ

for flows within the PCT (i.e. FOV2) were normalized by 〈U0〉, γ̇w and γ̇ 2
w , respectively.

Spatial variables x and r were normalized by λ and R, respectively. Normalization of the
parameters was denoted using the superscript +.

3. Characterization of fluid rheology

3.1. Shear rheology
Figure 4 displays measurements of η as a function of γ̇ for the Newtonian and
non-Newtonian fluids. Shear viscosity distributions of distilled water are shown in
figure 4(a). Measurements of η for water are constant with respect to γ̇ provided τ >

2 mPa and Ta < 1700. For τ < 2 mPa, measurements of η for water are noisy and
scattered. When Ta > 1700, measurements of η for water increase abruptly and are no
longer constant with respect to γ̇ ; Taylor vortices have corrupted the measurements of η.
The average viscosity of water for τ > 2 mPa and Ta < 1700 is 0.97 mPa s. This is 3 %
lower than the theoretical shear viscosity of water at 20.1 ◦C, 1.00 mPa s.

Figure 4(b) shows profiles of η for the five PAM solutions. All five concentrations
of PAM exhibit larger values of η than water. They also exhibit shear-thinning, where
η decreases monotonically with increasing γ̇ . At the higher values of γ̇ , η appears to
increase sharply for γ̇ with a Ta less than 1700. Nonetheless, the trend by which η reduces
with respect to γ̇ is well represented by the power law model (2.2) for measurements with
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Figure 4. Steady shear viscosity distributions for (a) the baseline Newtonian fluids, (b) flexible polymer
solution PAM, (c) rigid biopolymer solution XG and (d) cationic surfactant solution TTAC. The horizontal
black solid line is η for water determined from the empirical correlation of Cheng (2008). Dashed black lines
indicate the lower torque limit (τ < 2 mPa) and the onset of Taylor vortices (Ta > 1700). In panels (b,c), solid
coloured lines represent the power-law fits for shear-thinning fluids given by (2.2) and with values provided in
Appendix A.

γ̇ > 0.1 s−1 and γ̇ < 100 s−1 – sufficiently below the shear rate that η increases abruptly.
Values of the consistency, K, and flow index, n, for PAM are provided in Appendix A.

Figure 4(c) demonstrates profiles of η for the five XG solutions. Similar to PAM, all
concentrations of XG exhibit larger values of η than water and prevalent shear-thinning.
Unlike PAM, η appears to increase sharply for γ̇ with a Ta equal to 1700. The
shear-thinning trend is well represented by the power law model (2.2) for measurements
with γ̇ > 0.1 s−1 and Ta < 1700. Values of the consistency, K, and flow index, n, for XG
are provided in Appendix A.

Lastly, figure 4(d) demonstrates shear rheograms for the five TTAC solutions. All five
solutions have values of η similar to water (approximately 1.00 mPa s) and independent of
γ̇ . A similar water-like shear rheogram was observed by Warwaruk & Ghaemi (2021)
for a 0.015 % and 0.02 % TTAC solution, despite the solutions being able to induce
upwards of a 70 % reduction in skin friction drag and attenuate velocity fluctuations in
a high-Reynolds-number, turbulent channel flow. Although the solutions have a proclivity
to induce complex dynamics in other canonical flows, the TTAC solution does not reflect
non-Newtonian features in a steady Couette flow with γ̇ between 2 and 100 s−1.
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Figure 5. Normalized minimum filament diameter with respect to time for the PAM solutions, as determined
from the DoS system. The inset figure demonstrates a zoomed in distribution along time for PAM with c =
0.01 %. Coloured solid lines indicate the fits of the EC regime using (2.4). The solid black line in the inset
denotes the fit of the IC regime using (2.3).

3.2. Extensional rheology
Measurements of Dmin/D0 from the DoS apparatus are shown in figure 5 for the PAM
solutions – the only solutions that demonstrated EC thinning. For t less than the inertial
break-up time tb, the evolution of Dmin is in an IC regime and well described by (2.3).
The inertial break-up time tb was not significantly different among the PAM solutions
of different c and was approximately 7.2 ms ± 0.6 ms. Measurements of Dmin/D0 for
PAM with c = 0.01 % are shown in the inset axes of figure 5. The IC thinning represented
by (2.3), and shown by the black solid line in the inset axes of figure 5, has α = 0.5
and tR = 1.9 ms. This value of α is between 0.4 and 1, which is within the margin of
experimental expectations (Zhang & Calabrese 2022). The theoretical Rayleigh time tR =
(ρD3

0/8σ)1/2 should be 1.89 ms (assuming σ ≈ 72 mN m−1) – not significantly different
than tR derived from fitting (2.3) onto measurements of Dmin/D0 in the IC regime. Recall
that the Ohnesorge number is defined as Oh = tv/tR, where tv = ηD0/2σ . If η in the
equation for tv is taken to be the largest measured viscosity in figure 4 (approximately
0.1 mPa s for PAM with c = 0.05 %), then tv ≈ 0.9 ms and the largest Oh is approximately
0.5.

For t > tb, all PAM solutions demonstrate EC thinning, well represented by (2.4)
and the coloured lines shown in figure 5. As the concentration grows, the extensional
relaxation time te increases. Values of te are provided in Appendix A. If we assumed that
tR = 1.89 ms for all PAM solutions, De was between 1.2 and 25.7 depending on c. For
the high concentration PAM solutions, the 2 kHz image acquisition rate coupled with the
spatial resolution of the camera results in repetitive measurements of Dmin/D0 over several
time instances (i.e. the small horizontal lines).

Solutions of TTAC and XG do not demonstrate EC thinning and therefore, De < 1.
A lack of EC thinning is either a result of a low te or a large tR, by definition of the
Deborah number De = te/tR. It is well known that surfactant solutions have a much lower
σ than the solvent and hence, a large tR (Zhang et al. 2005). It is possible that the lack
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of EC thinning in TTAC could be attributed to low surface tension. Surface tension σ is
generally 40 % lower for large concentration solutions of cationic surfactants relative to
water (i.e. 35–45 mN m−1). This would mean that tR could be approximately 30 % larger
for surfactants. We suspect that a 30 % increase in tR is not sufficient to explain the lack
of EC thinning for TTAC. The present investigation does not measure σ , and hence no
definitive conclusion can be made in this regard. However, we suspect that the lack of EC
thinning is attributed to low te at the conditions imposed by the DoS rheometer. This is
another example of how difficult it is to measure te using capillary-driven extensional
rheometers for drag-reducing surfactant solutions, as previously seen by Warwaruk &
Ghaemi (2021) and Fukushima et al. (2022). It also highlights a need to develop other
techniques for measuring extensional features of non-Newtonian solutions, as done by
Wunderlich & James (1987). Ultimately, PAM solutions have relatively large te that could
be derived from the DoS rheometer, while TTAC and XG solutions have te that could not
measured using the DoS apparatus.

4. Flows in the periodically constricted tube

The following section provides the results of the flow measurements within the PCT (i.e.
FOV2). Experimental results are presented for different fluids, in the order: (1) water; (2)
XG; (3) PAM; and (4) TTAC. Statistics including contours of the velocity magnitude,
radial profiles of u+

x , streamlines and vorticity are provided for the various Re and additive
concentrations c. The final subsection is dedicated to presenting and comparing the
azimuthal non-Newtonian torque T+

θ of the different non-Newtonian flows within the PCT.

4.1. Newtonian flow
Figure 6 demonstrates contours of the velocity magnitude ‖u‖+ = (u2

x + u2
r )

0.5/〈U0〉
along with streamlines for the flow of water at five different Re within the PCT. All flows
with unique Re have a centreline velocity U0 that attains a maximum value around x+ =
0.5. When x+ = 0.5, the wall radius of the PCT Rw is at its smallest value, Rw = Ri. For the
lowest Re flow (i.e. Re = 15.7), the centreline velocity at x+ = 0.5 attains 1.25〈U0〉. The
lowest magnitude in U0 occurs when x+ = 0 and 1, and is approximately equal to 0.7〈U0〉
for Re = 15.7. At larger Re, the centreline velocity at x+ = 0.5 is smaller in magnitude –
approximately 1.1〈U0〉. Values of U0 are also slightly larger for the high-Re cases when
x+ = 0 and 1 compared to the case with Re = 15.7 – approximately equal to 0.8〈U0〉.
Therefore, when Re increases, the normalized centreline velocity decreases. In all flow
conditions, streamlines at large r+ tend to follow the sinusoidal profile of the wall. Near
the core, streamlines are more parallel with respect to the streamwise x direction.

Profiles of u+
x with respect to r+ at different points of x+ are shown in figure 7(a) for

water at Re = 15.7, 106 and 203. Sample error bars are shown for the flow condition with
Re of 15.7 and at x+ = 0.5. Relative errors were conservatively estimated to be 0.042〈U0〉
near the centreline of PCT and 0.108〈U0〉 near the wall at x+ = 0.5, as discussed in § 2.4.
As noted in the discussion pertaining to figure 6, the low-Re flow of 15.7 has a large
variation in U0. When x+ = 0, U0 becomes 0.75〈U0〉 and when x+ = 0.5, U0 equals
1.25〈U0〉. Newtonian flows with larger Re of 106 and 203 have a centreline velocity
of approximately 0.81〈U0〉 when x+ = 0 and 1.1〈U0〉 when x+ = 0.5. Within the PCT
contractions and expansions (i.e. x+ = 0.25 and 0.75, respectively), radial profiles of u+

x
are approximately the same. In other words, the velocity is symmetric about x+ = 0.5.
Figure 7(b) demonstrates that the streamlines of the Newtonian flows also depend on Re.
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Figure 6. Velocity magnitude normalized by the average centreline velocity 〈U0〉 for different Re of water.
Solid black lines overlaid on filled contours are streamlines. The solid black line at the limit of the filled
contour is the sinusoidal wall profile.
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Figure 7. (a) Velocity profiles of water at Re = 15.7, 106 and 203 at different x locations along the PCT. Down
sampled error bars are shown for the flow of water at Re = 15.7 and x+ = 0.5. (b) Overlaid streamlines of the
water flows at different Re. The black line in panel (b) indicates the wall profile Rw. Symbol colours in panel
(a) correspond to the different Re as indicated in panel (b).

When Re is low, streamlines are more curved and their radial position is closer to the PCT
centreline at x+ = 0.5.

As noted with regards to figure 7(a), the velocity in the PCT for water demonstrates
a dependence on Re most notable by the differences in the amplitude of the centreline
velocity U0. The standard deviation in the centreline velocity R(U0) was computed
for each Re and normalized by their respective average centreline velocities 〈U0〉. The
normalized standard deviation in U0 is denoted as R(U0)

+ = R(U0)/〈U0〉. Values of 〈U0〉
and R(U0)

+ are listed in table 1 for the different water flows. The inverse proportionality
between the amplitude of U0 and Re is clearly demonstrated by the decreasing trend in
R(U0)

+ as Re grows. In addition to centreline velocity, table 1 also lists the average
bulk velocity 〈U〉 and shape factor SF = 〈U0〉/〈U〉 for the flows of water in the PCT.
For Newtonian Poiseuille flow in a straight-walled pipe, SF equals 2. Although the PCT
is not straight-walled, values of SF for all water flows are approximately 2.1 and not too
different from the theoretical SF for straight-walled Poiseuille pipe flow.
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Re 〈U0〉 (mm s−1) R(U0)
+ 〈U〉 (mm s−1) SF

15.7 8.4 0.18 4.0 2.1
53.3 28.6 0.14 13.5 2.1
105.6 56.8 0.10 26.5 2.1
170.5 91.7 0.08 42.1 2.2
202.7 109.0 0.09 51.1 2.1

Table 1. Bulk and centreline velocity statistics for the flow of water within the PCT at different Re.
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Figure 8. Vorticity normalized by average wall shear rate γ̇w for different Re of water. The solid black line is
the sinusoidal wall profile.

Contours of azimuthal vorticity, ω+
θ , are shown in figure 8 for water within the PCT.

Near the centreline, ω+
θ is approximately equal to zero. For all radial and streamwise

coordinates, ωθ is positive. The maximum ω+
θ is situated near the wall and at x+ = 0.5 for

all Re. Recall from §2.5 that measurements of ω+
θ within close proximity (15 % of Rw) of

the wall were not calculated. This is because the differentiation filter conflicted with the
wall.

4.2. Xanthan gum solutions
Velocity contours and streamlines are shown in figure 9 for XG solutions at different Re.
For brevity, only the results of two concentrations, c = 0.02 % and 0.05 %, are shown.
Similar to water, both of the XG solutions with c = 0.02 % and 0.05 % have magnitudes
of ‖u‖+ that are lowest when x+ = 0 and 1, and largest when x+ = 0.5. Compared to
Newtonian water flows seen in figure 6, the zone with larger values of ‖u‖+ is extended
farther towards the tube wall. As c increases from 0.02 % to 0.05 %, ‖u‖+ also increases
at r+ > 0 locations. Streamlines at large r+ take on a similar sinusoidal profile as the wall
pattern. Similar to the water flows, the streamlines for XG at c = 0.02 % and 0.05 % are
approximately symmetric with respect to x+ = 0.5.

Streamwise velocity profiles u+
x at different x+ coordinates are shown in figure 10(a) for

XG with c = 0.05 % and at Re = 10.2. For comparison, the profiles of water at a similar
Re are presented alongside those of XG. Relative to water at the same x+ coordinates, XG
has larger u+

x values. The distributions of u+
x are more flat in the PCT centre; a blunted

profile that is common in shear-thinning fluids (Bird, Stewart & Lightfoot 2007). Despite
the differently shaped velocity profile, the range of U0 appears to be similar among water
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Figure 9. Velocity magnitude normalized by the average centreline velocity 〈U0〉 for different c and Re of XG.
Solid black lines overlaid on filled contours are streamlines. The solid black line at the limit of the filled contour
is the sinusoidal wall profile.
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Figure 10. (a) Velocity profiles along different x locations for XG with c = 0.05 % at Re = 10.2 and water at
Re = 15.7. Down sampled error bars are shown for the flow of water at Re = 15.7 and x+ = 0.5. (b) Overlaid
streamlines of XG and water. The black line in panel (b) indicates the wall profile Rw. Red symbols in panle
(a) correspond to the water flow with Re = 15.7, while blue symbols represent the XG flow with c = 0.05 %
and Re = 10.2.

and XG. For the XG flow, U0 = 0.75〈U0〉 at x+ = 0 and U0 = 1.25〈U0〉 at x+ = 0.5 – the
same as water. Lastly, figure 10(b) compares the streamlines of the same flows of XG and
water seen in figure 10(a). Despite having different velocity profiles with respect to r+, the
streamlines for water and XG are approximately the same.

Based on figure 10(a), it was shown that the shape of u+
x profiles with respect to r+ were

different, but the relative variations in U0 were the same among the flows of water and
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Figure 11. (a) Standard deviation in the centreline velocity divided by the mean centreline velocity, and
(b) the shape factor with respect to different Re for XG solutions and water.

XG at similar Re. Figure 11(a) demonstrates the standard deviation in U0 normalized by
the average centreline velocity, R(U0)

+, for XG and water. Low-concentration solutions
of XG (c < 0.03 %) appear to have R(U0)

+ values that overlap with water at high Re.
However, for Re < 20 and high XG concentrations, the values of R(U0)

+ appear to be
independent of the Reynolds number and relatively constant. The higher concentration
XG solutions of 0.04 % and 0.05 % appear to have subtly larger values of R(U0)

+ than
water and the other XG solutions; however, the difference is not substantial. Generally,
R(U0)

+ for XG appears to be independent of concentration and similar to water at higher
Re values. Figure 11(b) presents the average shape factor SF = 〈U0〉/〈U〉 for water and
XG at different Re and c within the PCT. Relative to water, XG flows at all c and Re have
lower SF values. As the c of XG increases, SF decreases. The reducing trend in SF aptly
summarizes how shear-thinning makes the profile more blunt as the concentration of XG
increases.

Vorticity contours for the XG flows with c = 0.02 % and 0.05 % are shown in figure 12.
Similar to the flows of water in the PCT, ω+

θ attains a maximum value near the wall and
at x+ = 0.5. Both the XG flows with c = 0.02 % and 0.05 % have a noticeably attenuated
ω+

θ in regions farther from the tube centreline. In other words, the thickness (along r+)
of the region near the pipe centreline with ω+

θ = 0 is larger for XG relative to water. The
thickness also grows with increasing c. The attenuated ω+

θ is attributed to the more uniform
profiles of u+

x caused by shear-thinning.

4.3. Polyacrylamide solutions
Relative to water and XG, different patterns in the velocity are encountered for the flow
of PAM within the PCT. Figure 13 demonstrates contours of ‖u‖+ for PAM at different
c and Re. In this figure, c increases from bottom to top, and Re increases from left to
right. Despite the low-Re flows showing some visual resemblance to the results for water,
flows at high c and large Re are asymmetric about x+ = 0.5. For these cases, the large
velocity contours take on a triangular or half-chevron appearance leaning towards the
upstream direction. Therefore, within the contraction regions (i.e. from x+ = 0 to 0.5),
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Figure 12. Vorticity normalized by the average wall shear rate γ̇w for different c and Re of XG. The solid
black line is the sinusoidal wall profile.

the maximum velocity is not necessarily situated at the centreline of the PCT. Within
the tail of the chevron, streamlines appear to be tilted farther towards the centreline and
non-conforming to the sinusoidal profile of the walls. Despite the PAM solutions having
seemingly comparable steady shear rheology as the XG solutions (figure 4), the flow of
PAM within the PCT produces an entirely different velocity distribution. It is clear that
another rheological property, not present in XG, is causing the chevron pattern in the
flows of PAM through the PCT.

Streamwise velocity profiles u+
x along different x+ values are shown in figure 14(a)

for PAM with c = 0.03 %. Two different Re are compared to contrast the change in the
velocity from when the contours transition to the half-chevron seen in figure 13. For the
low-Reynolds-number case of Re = 3.02 (red symbols), profiles of u+

x are similar to those
for water or XG. The shape of the u+

x profiles appear to be subtly more blunted than the
parabolic Poiseuille profile and the variations in U0 are slightly larger than the values
encountered for water at Re = 15.7 seen in figure 7(a). Similar to XG, the more blunted
velocity profile for PAM at low Re can likely be explained by shear-thinning. Recall that
PAM with c = 0.03 % has a lower power-law index than XG with c = 0.05 %, as seen
in Appendix A. Therefore, we would expect u+

x profiles not to be parabolic, but also not
as blunted as the higher concentration XG solutions. Although the low-Re flow reflects
some similarities to previous findings for XG, the higher Re flow of PAM (blue symbols)
exhibits entirely unique distributions in u+

x . At x+ = 0 the u+
x profile has two local maxima

– one at the centreline, the other at r+ = 0.9. Within the contraction, where x+ = 0.25,
the maximum value of u+

x is no longer situated at the centreline, but at r+ = 0.6. Prior
works have observed large velocity overshoot near the wall in gradual planar contraction
flows of PAM solutions (Poole et al. 2005) and numerical investigations that used various
viscoelastic constitutive models (Afonso & Pinho 2006; Alves & Poole 2007; Poole et al.
2007; Poole & Alves 2009). Poole et al. (2005) referred to these velocity overshoots as
‘cat’s ears’ given their appearance.
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Figure 13. Velocity magnitude normalized by the average centreline velocity 〈U0〉 for different c and Re of
PAM. Solid black lines overlaid on filled contours are streamlines. The solid black line at the limit of the filled
contour is the sinusoidal wall profile.

Coupled with the near-wall velocity overshoots are highly curved streamlines, as shown
in figure 14(b). At sufficiently large Re, PAM with c = 0.03 % has streamlines that are
directed away from the PCT core and more towards the tube wall for x+ = 0 to 0.5. The
works by Cable & Boger (1978a,b, 1979) referred to the state of these curved streamlines
as ‘divergent flow’. In general, solutions of PAM with c ≥ 0.02 % and sufficiently large
Re are subjected to near-wall velocity overshoots and divergent flow within the contracting
portions of the PCT (i.e. 0 < x+ < 0.5), as seen in figure 13.
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Figure 14. (a) Velocity profiles along different x locations for PAM with c = 0.03 % at Re = 3.02 and Re =
60.5. Red symbols show Re = 3.02 and blue symbols show Re = 60.5. Down sampled error bars are shown
for the flow of PAM with c = 0.03 % and Re = 3.02 at x+ = 0.5. (b) Overlaid streamlines of PAM at different
Re. The black line in panel (b) indicates the wall profile Rw.
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Figure 15. Standard deviation in the centreline velocity divided by the mean centreline velocity with respect
to (a) different Re and (b) different Deborah number De for various PAM solutions.

The pattern of u+
x for PAM is clearly dependent on Re and c, as observed in figure 13.

Compared to water, it can be observed that variations in U0 are larger for PAM at
large c and Re based on figure 14(a). Figure 15(a) demonstrates R(U0)

+ as a function
of Re for different c of PAM. When the concentration of PAM is low (c = 0.01 %),
values of R(U0)

+ are similar to water. This is expected; contours of velocity for
PAM with c = 0.01 % do not exhibit a prevalent asymmetric half-chevron pattern in
figure 13. At large concentrations, PAM enhances the variations in U0. For more moderate
PAM concentrations of c = 0.02 % and 0.03 %, R(U0)

+ increases up until an Re of
approximately 35, before decreasing with further growth in Re. At large concentrations
of c = 0.04 % and 0.05 %, values of R(U0)

+ are similar.
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Rheological measurements of PAM solutions demonstrated that the solutions are
viscoelastic – see figure 5 and Appendix B. Therefore, values of R(U0)

+ are also
contrasted with the elastic properties of the flow. A Deborah number within the PCT
was defined as De = te/tf , where tf = λ/〈U0〉 is the time scale of the flow along the
PCT centreline. Figure 15(b) shows values of R(U0)

+ with respect to De for different
concentrations of PAM. For all flows of PAM with c = 0.01 %, the values of De are less
than 0.1 and the corresponding values of R(U0)

+ are less than 0.2. Larger concentration
PAM solutions with De > 0.1 have large values of R(U0)

+ that are greater than 0.2 and
tend to increase with growing De – that is, up until the point where Re has attained 35, with
reference to figure 15(a). Based on the trend in R(U0)

+ versus Re for water, a decreasing
R(U0)

+ is likely attributed to inertial effects – perhaps producing more stagnant flow or
small, unseen recirculations in the expansion regions with adverse pressure gradients and
where Rw = Ro (Deiber & Schowalter 1981). However, elasticity acts to augment R(U0)

+.
The increasing–decreasing trend in R(U0)

+ is most likely a result of the competing effects
of elasticity and inertia. When c is sufficiently large, elasticity dominates and the trend in
R(U0)

+ as function of De shows better overlap for different c. Cases with De > 0.1 also
tend to have a pronounced half-chevron velocity pattern in figure 13.

Lastly, contours of vorticity ω+
θ are shown for the flows of PAM in the PCT in figure 16.

At low c and Re, ω+
θ is everywhere positive, similar to those for water and XG. However,

PAM with sufficiently large c and Re exhibits negative values of ω+
θ within the PCT

contractions. In certain cases, e.g. c = 0.03 % and Re = 60.5, there is a strong contrast
between the tilted negative contour of ω+

θ and the surrounding positive ω+
θ values.

4.4. Surfactant solutions
Velocity contours are shown for the TTAC solutions in figure 17. At the lowest
concentration of c = 0.01 % and 0.02 %, the contours are similar to those for water.
Half-chevron patterns that are similar to the those of PAM appear for all c greater
than 0.03 % and Re that exceed 115. The chevrons result in curved streamlines that
are asymmetric with respect to x+ = 0.5. Despite a water-like shear rheogram, shown
in figure 4, TTAC demonstrates a complex, non-Newtonian response within the PCT
that is similar to flexible polymers and unlike rigid polymers. Therefore, the current
measurements show that the rheological trait responsible for the asymmetric chevron
pattern in PAM is clearly also inherent in TTAC.

Profiles of u+
x with respect to r+ and at different x+ are shown in figure 18(a) for TTAC

with c = 0.05 % and Re = 119 and compared with PAM at c = 0.02 % and Re = 83.1
– the closest possible Re. The near-wall velocity overshoots encountered for the PAM
flows are also present in the TTAC solution. Within the contraction, from x+ = 0 to
0.25, distributions of u+

x can be described by a higher-order polynomial with two local
peaks along r+. Streamlines are also compared for TTAC and PAM in figure 18(b). Both
solutions demonstrate divergent flow patterns within the PCT contraction (Cable & Boger
1978a,b, 1979). Streamlines for PAM are projected farther towards the wall relative to
TTAC. This is despite PAM having slightly lower near-wall velocity overshoots. In general,
we see good qualitative agreement between the velocity field of PAM and TTAC – cat’s
ears and divergent flow.

Distributions of R(U0)
+ as a function of Re are shown in figure 19 for TTAC solutions

of different c. Solutions that do not exhibit asymmetric velocity patterns, namely TTAC
with c = 0.01 % and 0.02 %, have values of R(U0)

+ that overlap with those of water
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Figure 16. Vorticity normalized by γ̇w for different c and Re of PAM. The solid black line is the sinusoidal
wall profile.

and demonstrate the same decreasing trend in R(U0)
+ with increasing Re. For more

concentrated solutions of TTAC, such as c = 0.03 % and 0.04 %, values of R(U0)
+

overlap with measurements for water at low Re. As Re is increased further, values of
R(U0)

+ abruptly increase. This is different than the monotonic increase in R(U0)
+ with

growing Re observed for PAM in figure 15(a). The Re at which R(U0)
+ abruptly increases

appears to be sensitive to small discrepancies in Re. It appears as though transition to large
R(U0)

+ occurs earlier for the c = 0.04 % TTAC solution compared to the c = 0.03 %
solution. However, the Re at which R(U0)

+ increases for c = 0.03 % is subtly larger than
the Re of the c = 0.04 % solution at a comparable flow rate. Evidently, the resolution of Re
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Figure 17. Velocity magnitude normalized by the average centreline velocity 〈U0〉 for different c and Re of
TTAC. Solid black lines overlaid on filled contours are streamlines. The solid black line at the limit of the filled
contour is the sinusoidal wall profile.

is too sparse to capture the sudden augmentation in R(U0)
+. Ultimately, the trend in the

velocity pattern, namely R(U0)
+ as a function of Re, is different for TTAC compared to

PAM. Beyond a critical Re, the asymmetric velocity patterns that are formed by the TTAC
solution exhibit qualitatively the same pattern as PAM, with values of R(U0)

+ that are
also larger than the Newtonian and XG flows.

Figure 20 presents contours of ω+
θ for the TTAC solutions at different c and Re. Similar

to the PAM solutions, the flows of TTAC with sufficiently large c and Re demonstrate
negative values of ω+

θ within the contractions of the PCT (0 < x+ < 0.5). As expected, the
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Figure 18. (a) Velocity profiles along different x locations for TTAC with c = 0.05 % at Re = 119, shown by
the red symbols, and PAM with c = 0.02 % at Re = 83.7, shown with blue symbols. Down sampled error bars
are shown for the flow of PAM with c = 0.02 % and Re = 83.7 at x+ = 0.5. (b) Overlaid streamlines of TTAC
and PAM.
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Figure 19. Standard deviation in the centreline velocity divided by the mean centreline velocity as a function
of Re for the various TTAC solutions.

conditions where half-chevrons appear in velocity contours also reflect negative values in
ω+

θ . The c = 0.01 % and 0.02 % TTAC solutions have ω+
θ distributions that are seemingly

identical to those for water, seen in figure 8. At large c and Re, negative contours of ω+
θ

begin to appear. It is notable that the TTAC solutions exhibit water-like rheology, yet they
respond in a manner similar to PAM within the PCT at larger c and Re conditions.

4.5. Non-Newtonian torque
The non-Newtonian torque was established based on the deficit between the advection
of vorticity (VA) and the viscous solvent diffusion (VSD) – see (2.8). The normalized
azimuthal component of the non-Newtonian torque is T+

θ = Tθ /γ̇
2
w . The distributions of

960 A19-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.198


Polymer and surfactant flows through a PCT

–1.5 –1.0 –0.5 0

ωθ
+

0.5 1.0 1.5

c = 0.05%, Re = 16.3 c = 0.05%, Re = 53.2 c = 0.05%, Re = 119 c = 0.05%, Re = 182 c = 0.05%, Re = 254

c = 0.04%, Re = 16.6 c = 0.04%, Re = 53.5 c = 0.04%, Re = 113 c = 0.04%, Re = 183 c = 0.04%, Re = 241

c = 0.03%, Re = 18.1 c = 0.03%, Re = 52.5 c = 0.03%, Re = 125 c = 0.03%, Re = 190 c = 0.03%, Re = 289

c = 0.02%, Re = 17.9 c = 0.02%, Re = 49.5 c = 0.02%, Re = 145 c = 0.02%, Re = 174 c = 0.02%, Re = 245

c = 0.01%, Re = 17.7 c = 0.01%, Re = 50.2 c = 0.01%, Re = 108 c = 0.01%, Re = 170 c = 0.01%, Re = 235

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.00 0 0 0

x+ x+ x+ x+ x+

1.0

0.5r+

1.0

0.5

0

r+

1.0

0.5r+

1.0

0.5r+

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

1.0

0.5

0

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.00 0 0 00

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.00 0 0 00

0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.00 0 0 0

0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.00 0 0 0

r+

Figure 20. Vorticity normalized by γ̇w for different c and Re of TTAC. The solid black line is the sinusoidal
wall profile.

T+
θ are presented in figures 21, 22 and 23 for water, XG, PAM and TTAC. In these figures,

the open contours show T+
θ and are overlaid on filled contours of ω+

θ . Contour levels for
T+

θ are from −0.4 to +0.4 in steps of 0.2. Contours greater than or equal to zero are solid
lines and negative contours are dotted lines. Values of T+

θ were not computed or shown
near the wall (within 42 % of Rw) due to difficulties in computing spatial gradients within
this region, as discussed in § 2.5.
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Figure 21. Contours of vorticity and the non-Newtonian torque for the flows of (a) water with Re = 106
and (b) XG at c = 0.02 %, Re = 71.7. Positive and zero contours are solid lines, while dashed lines are
negative contours.
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Figure 22. Contours of vorticity and the non-Newtonian torque for the flow of PAM solutions with (a) c =
0.03 %, Re = 60.5 and (b) c = 0.05 %, Re = 35.5. Positive and zero contours are solid lines, while dashed
lines are negative contours.

Based on (2.8), T+
θ should be equal to zero in the flow of water. In other words,

the dynamics of vorticity should be entirely described by vorticity advection (VA)
and diffusion (VSD). Figure 21(a) presents contours of ω+

θ and T+
θ for water at

Re = 170. Contours of T+
θ are relatively low in magnitude and noisy. Although XG

is a non-Newtonian flow, with evidently large amounts of shear-thinning and linear
viscoelasticity (see Appendix B), it too does not have contours of T+

θ with large magnitude,
as seen in figure 21(b). Generally, the plug-like flow of XG within the PCT has a larger
region where ω+

θ and T+
θ are equal to 0.

Contours of ω+
θ and T+

θ for PAM with c = 0.03 % and Re = 60.5 are shown in
figure 22(a). A zone of large T+

θ values is interspersed between regions of negative and
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Figure 23. Contours of vorticity and the non-Newtonian torque for the flow of TTAC solutions with (a) c =
0.05 %, Re = 119, and (b) c = 0.05 %, Re = 254. Positive and zero contours are solid lines, while dashed lines
are negative contours.

positive ω+
θ within the PCT contraction. This T+

θ zone appears in areas where values of
ω+

θ significantly vary in space. The opposite can be observed within the PCT expansion
(0.5 < x+ < 1); the vorticity reduces with increasing x+, and hence T+

θ is at its most
negative. Similar observations can be made for the flow of PAM with c = 0.05 % and
Re = 35.5 in figure 22(b). Large values of T+

θ are interspersed between positive and
negative contours of ω+

θ . In both cases, the Newtonian diffusion term (VSD) cannot
account for the large spatial variations in ω+

θ , implying that the non-Newtonian torque
is needed to balance the vorticity equation.

Figure 23(a) demonstrates contours of ω+
θ and T+

θ for TTAC with c = 0.05 % at Re =
119. Similar to the flows of PAM, TTAC exhibits large values of T+

θ intermittent between
the regions of positive and negative ω+

θ . The largest positive value of T+
θ occurs within the

contraction, where ω+
θ changes abruptly from negative to positive with increasing x+. The

same can be observed for larger Re flows, such as TTAC with c = 0.05 % and Re = 254,
seen in figure 23(b). As Re increases – comparing figure 23(a,b) – the large positive
contour of T+

θ = 0.4 within the PCT contraction moves closer towards the centreline.
Overall, the large values of T+

θ are coupled with the strong spatial variations in ω+
θ .

Distributions in T+
θ are relatively consistent among solutions of flexible polymers and

surfactants as the two solutions apply the same mechanism via non-Newtonian torque
for disrupting ω+

θ . This mechanism is potentially associated with a common rheological
feature that produces the non-Newtonian torque.

5. Discussion

Rheometric measurements showed that PAM and XG have prevalent shear-thinning and
linear viscoelasticity, while TTAC has a Newtonian and water-like shear viscosity, as
shown in figures 4 and 25 (see Appendix B). However, high c and Re flows of PAM and
TTAC within the PCT demonstrate noticeably similar features. These features include the
asymmetric half-chevron velocity pattern, negative vorticity contours and non-Newtonian
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torque – all of which are not encountered in the flows of water or XG. This peculiar
observation in the velocity and vorticity profiles of PAM and TTAC can be explained
by non-Newtonian qualities that do not exist for XG. Indeed, XG solutions do not exhibit
elastocapillary thinning in DoS rheometry, unlike the PAM solutions shown in figure 5. It
is plausible that the chevron-shaped velocity pattern for PAM in the PCT can be explained
by a resistance to extensional flow. However, this does not explain the existence of the same
chevron-shaped pattern observed for TTAC flows within the PCT since the TTAC solutions
do not exhibit elastocapillary thinning. We hypothesize that structures induced by shear,
elongational or mixed kinematics are formed within the PCT flow of the surfactant solution
when Re is sufficiently large. These structures behave similarly as flexible polymers. The
remaining discussion interprets the results for PAM and TTAC further in an attempt to
reconcile the cause for their non-Newtonian velocity and vorticity patterns within the PCT.

In viscoelastic flows through gradual planar contractions, large near-wall velocity
overshoots have been observed experimentally. Poole et al. (2005) were among the first
to observe near-wall velocity overshoots in the flow of a PAM solution through a duct that
gradually contracted along one Cartesian direction. Poole et al. (2005) coined the near-wall
velocity overshoot as ‘cat’s ears’ due to their appearance. The canonical flow of Poole
et al. (2005) was not axisymmetric, and later numerical investigations by Afonso & Pinho
(2006) and Poole et al. (2007) demonstrated that the magnitude of the velocity overshoot
was different depending on the Cartesian plane of interest. Subsequent investigations by
Alves & Poole (2007) and Poole & Alves (2009) of viscoelastic flows through planar
contractions concluded that the cat’s ears and divergent streamlines were inherently elastic,
and attributed to a large extensional viscosity and first normal stress differences along the
centreline of the duct. Velocity statistics for PAM, seen in figures 13 and 14, reflect both
cat’s ears and divergent flow, implying the PAM solutions impose a large resistance to
extensional flow along the centreline of the PCT – as per the conclusions of Alves & Poole
(2007) and Poole & Alves (2009). Moreover, a complex interplay between elasticity and
inertia within the PCT was alluded to, based on the trend in R(U0)

+ with respect to Re and
De for PAM. From figure 15, it was observed that R(U0)

+ increased provided De > 0.1
and Re < 35. Using these threshold values to delineate the different flow regimes, a
qualitative phase diagram shown in figure 24 was constructed. In figure 24, the De and
Re of each PAM flow is shown with a colour that corresponds to their respective value of
R(U0)

+. Inset axes in figure 24 show samples of the vorticity field (from figure 16) within
each flow regime. The different flow regimes are summarized as follows.

(i) Inelastic: De < 0.1 and Re < 35. Velocity and vorticity are symmetric with respect
to x+ = 0.5, as shown in figures 13 and 16. Velocity contours are similar to those
of water or shear-thinning XG solutions. Vorticity is everywhere positive. As De
approaches 0.1, R(U0)

+ is marginally enhanced relative to water flows.
(ii) Inertial: De < 0.1 and Re > 35. Mainly distinguished by the decreasing trend in

R(U0)
+ with increasing Re that was similarly observed for water flows in the PCT –

seen in table 1 and figures 11(a) and 15(b). Possibly a result of small recirculations
or more stagnant flow within the PCT expansion (Deiber & Schowalter 1981; Pilitsis
et al. 1991).

(iii) Elastic: De > 0.1 and Re < 35. Near-wall velocity overshoots are apparent, as shown
by figure 14(a). The negative vorticity contours occupy a large region of the PCT
contraction. Values of R(U0)

+ are significantly augmented relative to water and
increase further with growing De and Re.

(iv) Inertioelastic: De > 0.1 and Re > 35. Values of R(U0)
+ decrease with increasing

Re; however, near-wall velocity overshoots are present – see figure 18(a).
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Figure 24. Phase diagram of the different PAM flows in De, Re space. The solid black lines separate the
different flow regimes, which are labelled in each quadrant. The four inset axes show sample vorticity contours
of flows within each regime. Data point colours correspond to the values of R(U0)

+ identified from the colour
bar.

The negative vorticity contour occupies a smaller region of the PCT contraction
compared to the elastic flows.

Far more fundamentally interesting is the observation that TTAC solutions also
demonstrate cat’s ears and divergent flow, as shown in figures 17 and 18, which hints at the
their elastic features. Evidently, the PCT stimulates the viscoelastic properties of TTAC
through the formation of structures induced from shear, elongation or mixed deformation.
The shape of the flow-induced structures are unknown, but they are conjectured to be
groupings of micelles that can be conceived as polymer-like aggregates (Rothstein &
Mohammadigoushki 2020). The sudden jump in R(U0)

+ with increasing Re, shown
in figure 19, demonstrates that these flow-induced structures are formed when Re is
greater than 100 within the PCT flows of TTAC. This corresponds to a value of γ̇w
of approximately 90 s−1. From figure 4(d), no shear-induced structures (SISs) were
observed in the shear rheograms of TTAC near 90 s−1; however, the PCT undergoes
mixed deformations, both shear and extension. An explanation is that extension, or the
combination of shear and extension, within the PCT is needed for the formation of
these structures – similar to the so called ‘elongation-induced structures’ alluded to by
Sachsenheimer et al. (2014), Omidvar et al. (2018) and Recktenwald et al. (2019). It
was also observed that extensional DoS rheometry does not demonstrate EC thinning for
TTAC, implying these elongation-induced structures are not formed within the filament
necking process of the DoS rheometer. The reason extensional DoS rheometry does
not reveal these elongation-induced structures for TTAC is either a result of insufficient
extensional deformation, or perhaps the lower surface tension of the surfactant solution,
which in turn reduces the Rayleigh time tR and Deborah number De of the necking process.
If these structures are shear-induced, perhaps pre-shearing the samples before DoS could
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enable measurements of te, similar to prior works such as Wunderlich & James (1987),
Vissmann & Bewersdorff (1990), Bhardwaj et al. (2007) and Fukushima et al. (2022).
Regardless of how the structures are formed within the PCT (shear, elongation or mixed
kinematics), they produce the same qualitative net-effect as PAM, revealed by the velocity
contours of figure 17, and the vorticity and non-Newtonian torque contours of figure 23.

With reference to figure 24, the TTAC flows that exhibit cat’s ears fall within the
inertioelastic regime, considering their Re is larger than 35. The similarity between the
vorticity patterns for TTAC and PAM, or more precisely the R(U0)

+ value, can be used
to estimate the relaxation time te of the TTAC solutions. For example, the TTAC solution
shown in figure 20 with c = 0.05 % and Re = 254 has an R(U0)

+ value of 0.26, which is
equal to the R(U0)

+ value of the PAM flow with the label A shown in figure 24. Estimating
the flow time scale tf of the TTAC flow based on tf = λ/〈U0〉 and extracting the De = 0.12
from figure 24, the relaxation time of this TTAC solution is estimated to be approximately
4.1 ms. This example shows that measurements of R(U0)

+ using the PCT along with a
phase diagram similar to figure 24 can be used for estimating the relaxation time of the
TTAC solutions. However, figure 24 is currently too sparse to provide an accurate map of
R(U0)

+ values. We envisage that a larger and more dense matrix of R(U0)
+ can be used

to obtain an accurate phase diagram for extracting the De, and therefore the relaxation time
of the TTAC solutions. Ultimately, the PCT is able to uncover the non-Newtonian features
of the dilute TTAC solutions.

6. Conclusion

Three non-Newtonian solutions, comprising additives having unique chemical structure,
were experimentally investigated in a steady, laminar flow through a periodically
constricted tube (PCT). The PCT geometry consisted of an asymmetric tube with a
wall radius that was sinusoidal with respect to the streamwise direction. The tube with
undulating walls imposed a mixture of shear and extensional deformation, where shear
rates were as large as 300 s−1 and extensional strain rates as large as 58 s−1. The
non-Newtonian fluids were aqueous solutions of xanthan gum (XG), polyacrylamide
(PAM) and a surfactant referred to as TTAC. The experimental campaign compared several
concentrations of each non-Newtonian solution at five unique Reynolds numbers (Re)
within the PCT.

Particle shadow velocimetry (PSV) was used to determine the streamwise and radial
velocity within the PCT. The vorticity transport equation was used to derive the
non-Newtonian contribution to the vorticity field, referred to as the ‘non-Newtonian
torque’. Our experimental investigation is the first to produce measurements of the
non-Newtonian torque – providing another means for comparison with numerical
investigations that can derive the non-Newtonian torque explicitly from constitutive
models.

Steady shear rheology demonstrated that both XG and PAM were shear-thinning.
PAM solutions were the only non-Newtonian fluids to exhibit elastocapillary thinning
from extensional rheology. Within the PCT, solutions of XG demonstrated evidence of
a plug-like flow, consistent with expectations for pipe flow of inelastic shear-thinning
solutions. PCT flows of PAM solutions exhibited different dynamics depending on the
Deborah number (De) and Re. A phase diagram that delineated the different flow regimes
in De–Re space was constructed for the PAM solutions, based on the change in the
amplitude of the centreline velocity along the streamwise direction of the PCT. Above a
De of 0.1, PAM flows within the PCT exhibited ‘chevron’ velocity contours, near-wall
velocity overshoots and divergent streamlines with shape and curvature that departed
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c K (Pa sn−1) n te (ms)

0.01 % 3.0 × 10−3 0.92 2.2
0.02 % 6.0 × 10−3 0.86 6.3
0.03 % 9.9 × 10−3 0.82 16.3
0.04 % 32.8 × 10−3 0.62 32.2
0.05 % 40.5 × 10−3 0.62 48.6

Table 2. Rheological parameters of PAM from steady shear rheology and DoS.

dramatically from the sinusoidal wall profile. Within the contractions of the PCT were
regions of negative vorticity and non-Newtonian torque.

The PCT revealed that TTAC solutions have similar non-Newtonian features as PAM
solutions when Re exceeded 100. Unlike PAM solutions, the non-Newtonian features of the
TTAC solutions were not detectable from conventional shear and extensional rheometric
measurement techniques; TTAC solutions had a shear viscosity that was identical to
water and no elastocapillary extensional rheology. Therefore, the measurements using
the PCT proved to be a novel technique for uncovering the non-Newtonian features of
dilute surfactant solutions. Extension or mixed kinematics within the PCT flows of TTAC
promoted the formation of flow-induced structures. It is hypothesized that these structures
are long wormlike aggregates of micelles that are analogous to flexible polymers. TTAC
solutions that exhibited non-Newtonian features within the PCT reflected qualitative
similarities with inertioelastic PAM flows with De > 0.1 and Re > 35. A preliminary
estimate of the elastic relaxation time of the flow-induced structures was established based
on comparisons with PAM flows. However, fine tuning this estimate of the relaxation
time requires a denser sweep of Re and De for the PAM flows. Therefore, a well-defined
rheological property, such as an elastic relaxation time, has yet to be derived from the PCT
flow. If the PCT can provide an estimate for the elastic relaxation time, it is conceivable
that the PCT can be used for predicting the drag-reducing capabilities of both flexible
polymer and surfactant solutions in a turbulent flow.
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Appendix A. Rheological parameters

Values of the consistency K and flow index n derived from fitting (2.2) onto measurements
of η for shear-thinning fluids are listed in tables 2 and 3. Table 2 presents the values
for PAM solutions, for which the measurements of η can be seen in figure 4(b). Table 3
presents the values of K and n for the XG solutions, for which the measurements of η can
be seen in figure 4(c). For the PAM solutions, measurements of the extensional relaxation
time te could be determined from DoS rheology and a fit of Dmin/D0 in the EC regime
using (2.4). Values of te are listed in table 2 for the PAM solutions of different c.
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c K (Pa sn−1) n

0.01 % 1.7 × 10−3 0.94
0.02 % 11.2 × 10−3 0.73
0.03 % 19.5 × 10−3 0.68
0.04 % 32.8 × 10−3 0.62
0.05 % 53.3 × 10−3 0.58

Table 3. Power law model parameters according to (2.2) for XG.

Appendix B. Dynamic shear rheology

Two types of dynamic shear viscosity measurements were performed for each fluid.
The first was a stress amplitude sweep, τ0, with a constant oscillation frequency, ω, of
0.628 rad s−1, or 0.1 Hz. In these tests, τ0 was increased from 0.2 mPa to 0.3 Pa. Based
on the amplitude sweep, the upper limit of τ0 that corresponds to the linear viscoelastic
(LVE) regime was determined (Mezger 2020). Next, a sweep of ω was performed using
a sufficiently small value of τ0 that is within the LVE regime – for all fluids, a τ0 of
3.3 mPa satisfied the LVE condition. In the frequency sweep, ω was varied from 0.1
to 10 rad s−1. Trios software (TA Instruments) was used to determine the phase offset,
δ, between the applied oscillating stress, τ(t), and the measured strain, γ (t), where t
indicates the time dependence of the stress and strain signals. The complex stress modulus
was derived from the quotient of the stress and strain amplitudes, G∗ = τ0/γ0, where
γ0 is the measured strain amplitude. After determining the complex stress modulus and
the phase offset, the storage modulus, G′, and loss modulus, G′′, could be determined
using G∗2 = G′2 + G′′2 and tan(δ) = G′′/G′. We present distributions of G′ and G′′ for
the non-Newtonian solutions and comment on the linear viscoelasticity of the fluids.

Unlike steady shear viscosity measurements, dynamic shear viscosity measurements
are much more constrained by the torque and inertia limitations of the device – especially
when using a single head torsional rheometer (Läuger & Stettin 2016). Correcting the
torque measurements to compensate for the inertia of the spindle head and geometry can
be effective, but not always perfect (Ewoldt et al. 2015; Läuger & Stettin 2016). Ewoldt
et al. (2015) recommended ensuring that the torque imposed by the material exceed the
torque required to overcome the inertia of the geometry. They derived a limitation on
the shear moduli: G > IFτ /Fγ ω2, where G can be either G′ or G′′, and I is the moment
of inertia of the geometry. The geometry inertia, I, for the rotating inner cylinder was
determined to be approximately 4.3 × 10−6 kg m2. Measurements of G′ and G′′ that fall
below the inertia limitation were disregarded.

Measurements of linear viscoelasticity are shown in figure 25 for high-concentration
solutions of PAM and XG. Figure 25(a) demonstrates sweeps of stress amplitudes τ0 for
PAM solutions, and figure 25(b) demonstrates the same stress amplitude sweep for the
XG solutions. Stress amplitude sweeps for PAM with c = 0.04 % and 0.05 %, shown in
figure 25(a), have G′ and G′′ values greater than the inertia limit. Lower concentration
solutions, with c ≤ 0.03 %, are not shown as their G′ and G′′ measurements fall below
the inertia limit. Both PAM solutions with c = 0.04 % and 0.05 % have G′′ > G′ for
all values of τ0, implying the solutions are viscous dominant when ω = 0.628 rad s−1.
The difference between G′′ and G′ diminishes as c increases, i.e. the solution becomes
more elastic as c grows. Values of G′ and G′′ are constant for τ0 < 10−2 Pa. Therefore, the
LVE regime is confined to stress amplitudes less than 10 mPa for PAM. Stress amplitude
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Figure 25. Dynamic shear viscosity distributions for (a,c) PAM and (b,d) XG. (a,b) Amplitude sweeps at a
fixed ω of 0.628 rad s−1. (c,d) Frequency sweeps at a fixed τ0 of 3.3 mPa. Hollow symbols are G′ and filled
symbols are G′′. The dashed black line represents the geometric inertia limitation for the measurements Ewoldt
et al. (2015).

sweeps for XG solutions, shown in figure 25(b), are similar to PAM. All XG solutions are
viscous dominant for ω = 0.628 rad s−1. The disparity between G′′ and G′ decreases as
the concentration of XG grows. Values of G′ and G′′ are constant with respect to τ0 for
τ0 < 4 mPa.

Sweeps of ω are shown in figure 25(c) for PAM and figure 25(d) for XG. PAM solutions
have finite values of G′ and G′′ for ω between 0.1 and 10 rad s−1. For both c = 0.04 %
and 0.05 %, the solutions are viscous dominant, G′′ > G′. As ω increases, the elastic and
viscous moduli become more similar in magnitude, implying the cross-over frequency
where G′ = G′′ is slightly greater than 10 rad s−1. Similar to PAM, XG also demonstrates
finite G′ that are lower in magnitude than G′′, i.e. viscous dominant. As c increases, G′
becomes more similar in magnitude to G′′. Unlike PAM, XG with c = 0.03 % and 0.04 %
have profiles of G′ and G′′ that are parallel. In other words, the difference between G′ and
G′′ is not changing with respect to ω. When the concentration is increased to 0.05 %,
profiles of G′ and G′′ appear to begin converging towards one another, implying that
the cross-over frequency becomes lower as c increases. Nonetheless, it is likely that the
cross-over frequency is well above 10 rad s−1 for the XG solutions. Overall, both PAM and

960 A19-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.198


L. Warwaruk and S. Ghaemi

0 0.2

0.2

0.4

0.6

Red = 13.2

Red = 38.7

Red = 78.9

Red = 133

Red = 184

Poiseuille profile

0.8

1.0
0

–0.2

–0.4

–0.6

–0.8

–1.0
0.4 0.6 0.8

r/Ro

u x/
U

0

D
rx

R o/
U

0

r/Ro

1.0 0 0.2 0.4 0.6 0.8 1.0

(b)(a)

Figure 26. Radial profiles of (a) streamwise velocity and (b) the shear rate, at FOV1 for the flow of water at
various Red . Error bars are shown for Re = 13.2 and correspond to the 0.042〈U0〉 uncertainty assumed from
§ 2.4.

XG demonstrate characteristics of uncross-linked polymer solutions with predominantly
viscous behaviour. Solutions of TTAC had no measurable G′ or G′′ values for the same
reason the viscous moduli of water could not be measured; dynamic oscillation tests were
overcome by the inertia of the geometry for 0.1 s−1 < ω < 10 s−1.

Appendix C. Entrance region

Profiles of streamwise velocity ux normalized by the centreline velocity U0 for the flows
of water at different Red within the entrance region (FOV1) are shown in figure 26(a).
Recall that the tube walls have constant radius Ro in the entrance region, and U0 does not
vary with respect to x. Therefore, the Reynolds number is defined as Red = 2U0Ro/ηs.
Shown alongside the measurements of u+

x is the theoretical Poiseuille velocity profile for
laminar pipe flow of a Newtonian fluid within a straight-walled pipe, u+

x = 1 − r2/R2
o.

All measurements of u+
x are within 4 % of the theoretical Poiseuille profile for different

coordinates of r+ and agree well with theoretical expectations. Profiles of the shear
component of the rate of deformation tensor Drx are shown in figure 26(b). When the
Poiseuille profile for Newtonian pipe flow is differentiated, the relationship ∂ux/∂r =
2Drx = −2U0r/R2

o is obtained. When simplified, it can be shown that DrxRo/U0 = −r/Ro.
Similar to the streamwise velocity profiles, measurements of DrxRo/U0 agree well with
the theoretical profile for all Red. In general, figure 26 demonstrates that measurements
within the entrance region reasonably satisfy the expectations for laminar fully-developed
Newtonian pipe flow. We can proceed to measurements of the PCT knowing that the flow
entering the PCT section is fully developed and the measurement technique is valid.
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