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Abstract

The heart of the Lanczos algorithm is the systematic generation of orthonormal bases of
invariant subspaces of a perturbed matrix. The perturbations involved are special since
they are always rank-1 and are the smallest possible in certain senses. These minimal
perturbation properties are extended here to more general cases.

Rank-1 perturbations are also shown to be closely connected to inverse iteration, and thus
provide a novel explanation of the global convergence phenomenon of Rayleigh quotient
iteration.

Finally, we show that the restriction to a Krylov subspace of a matrix differs from the
restriction of its inverse by a rank-1 matrix.

1. Introduction

Rank-1 matrices are an integral part of numerical linear algebra; to give just one
example, the reduction of a matrix to tridiagonal form by Householder transformations.
More recently, rank-1 matrices have found other uses in eigenvalue problems. For
example, the divide-and-conquer strategy uses a rank-1 perturbation to decompose
a tridiagonal matrix into a decoupled tridiagonal form (see [1]). In [2] a rank-1
perturbation is also used as a starting point for homotopy methods.

To motivate what is to follow, we begin with some elementary facts concerning
rank-1 perturbations. These are in the spirit of backward error analysis and show how
small a perturbation is required to specify an eigenpair.

Fact 1 Any scalar /x and unit vector z is an eigenpair of a perturbation of A:

[A - (A - ix)zzJ]z = nz,
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Fact 2 The above perturbation is the smallest possible: if E is any other matrix for
which (A — E)z = \iz, then

Fact 3 The norm of the residual || (A — \x)z || is minimized by the Rayleigh quotient

p(z) = {Az,z)/(z,z),

that is,

Thus D — (A — p(z))zzJ is the smallest matrix for which the unit vector z is
an eigenvector of A — D.

2. The Lanczos method

In this section, we will see how the preceding results apply to the Lanczos method.
The Lanczos method for approximating outer eigenvalues and eigenvectors of a

symmetric n x n matrix A can be motivated in several different ways; for details
see [4]. Algebraically, it is the successive formation o f m x m tridiagonal matrices
Tm defined by

Tm = QJ
mAQm. (1)

The n x m orthonormal matrices Qm are built up column by column,

Qm+l = [<7l, • • • , <?m+l]

from vectors defined by

AQm-QmTm=qm+le
J
m, (2)

em = ( 0 , . . . , 1)T g IT .

The matrix Tm is the restriction of A to the subspace spanned by the columns of
Qm and as such its eigenvalues p, are approximations to outer eigenvalues of A. The
corresponding eigenvectors, j , , of Tm need to be transformed as *, = Qmyt to yield
approximations to the corresponding eigenvectors of A.

From now on we will assume m is fixed and understand that the p,, x,, yt depend
on m. We shall also assume the xt are normalized : ||;c, || = 1 .

Of course, the Lanczos algorithm does not form the matrices explicitly in (1)
and (2), but rather is a clever way of recursively generating the vectors qm and using
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this information to obtain 7m+1 by bordering Tm. For our purposes, though, (2)
highlights an essential but often overlooked feature, namely, the rank-1 right hand
side. It is this aspect which we focus on in this section.

From (2) we get immediately

( A - pi)xt =qm+lelyi.

That is, each residual is a multiple of qm+\.
Parallel residuals is essentially a geometric property. The elegance of the Lanczos

algorithm turns on the fact that the orthonormal columns of Qm span the Krylov
subspace

The scalars p, and vectors *, are the eigenpairs of the projection of A onto Km :

QmQlAQmQlxi = PiXh i = 1 , . . . , m,

which is just the Galerkin approximation on Km. Therefore each residual r, =
(A — p,)x, is orthogonal to Km (which is the motivation and definition of the Galerkin
approximation). At the same time, it is clear that r, € /Cm+i. However, K.m+i is
at most one dimension more than /Cm, and therefore all the residuals are contained
in a 1-dimensional subspace. So we conclude as before that the residuals are scalar
multiples of a unit vector r : r, = e,r. And of course r = qm+\.

Since the ;t, are mutually orthogonal, we have, similar to Fact 1,

A -

On setting s = £ f/-*/1'»this is [A — rsT]x, = p,;c, or

[A - rsT]X = XA , (3)

X = [xx xm], A = diag(p,,. . . ,pm).

In this form, the Lanczos method is interpreted as producing an invariant subspace of
a perturbation of A.

In [1], it is shown how this can be carried one step further by constructing a
symmetric rank-1 matrix E for which the subspace spanned by the columns of X is an
invariant subspace of A + E. This can then be used as another way of approximating
the eigenvalues of A.

That the perturbation which occurs in the Lanczos method is necessarily rank-1
rests on the fact that all the residuals are parallel. This last property is shared by all
rank-1 changes, that is, if (A — abT)z = fiz, then (A — /x)z is a multiple of a.

It also turns out that the perturbation rs1 is the smallest possible in the same sense
as Fact 2.
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THEOREM l.IfE is such that (A - £)*, = Pixjor each i, then

II"T| | < \\E\\.

PROOF. Since the xt are orthonormal, and \\r\\ = 1, we have

But

= II Es ||
< 11̂ 1111*11.

That is, ||rsT || < \\E\\ .

ALTERNATIVE PROOF. First write (A - E)X = XA, which, with (3), gives EX
rsTX. This, together with the fact that X is orthonormal and ||r|| = 1, yields,

More generally, for any subspace spanned by the columns of an orthonormal Z, there
is a perturbation of A for which span(Z) is an invariant subspace.

THEOREM 2. Suppose Z = [z\,...,zm] is orthonormal, M is m x m, and
R = [AZ- ZM]ZJ, then

(A - R)Z = ZM,

\\R\\ = \\AZ-ZM\\

and \\R\\ < \\E\\for every E such that (A - E)Z = ZM.

PROOF. Since Z is orthonormal, it follows that

||ft|| = UAZ - ZM)ZJ\\ = \\AZ - ZM\\ = \\RZ\\

and

Just as the norm of the residual is minimized by the Rayleigh quotient (Fact 3), so
it is that ||i4Z — ZM\\, and consequently ||ft||, is minimized by M = Z*AZ (see [4]).

As a final comment, we note that as the Lanczos algorithm proceeds, it is not
necessarily the case that the norms of the perturbations rsT decrease monotonically.
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3. Inverse iteration and iterated Galerkin approximations

3.1. Inverse iteration As noted before, [A — (A — fi)zzT]z = \iz, for an arbitrary
A, scalar it and unit vector z. Now consider the corresponding left eigenvector y
given by

yJ[A -(A- M)zzT] = y V

that is,
(A - /x)Tv = zzT(A - n)Jy.

When A is symmetric, the left eigenvector y is the inverse iterate of z, and, in general,
if fi is near an eigenvalue, y will be closer than z to the corresponding eigenvector.

The idea of smallest perturbation occurs in this context too, and is closely connected
to the global convergence property of Rayleigh quotient iteration.

THEOREM 3. If D, \i, and unit vectors x and y satisfy

(A — D)x = \JLX ,

yJ(A - D) = nyJ and

then
\\(A-n)ry\\<UA-iJ.)x\\.

PROOF.

\\(A - fi)Jy\\ = \\DTy\\ < \\DT\\ = \\D\\ =

The final equality is just Fact 2.

That is, the residual of the left eigenvector y (with respect to AJ) is less than the
residual of the right eigenvector (with respect to A). Basically this means that y is
a better approximation to a left eigenvector than x is to a right eigenvector. The
implication of this is that iterating with the adjoint is the best way to improve an
approximation to a right eigenvector. It also strongly suggests that inverse iteration
should really be performed with (A — /A)"1 (A — //.)" when A is nonsymmetric.

Combining Theorem 3 with Fact 3 results in a novel interpretation of some of the
properties of Rayleigh quotient iteration as defined by

(A - p(xk))xk+l = akxk , \\xk+i\\ = 1.

Using the equivalence between the inverse iterate and left eigenvector this is recast as

xJ+i(A - Rk) = p(xk)x]+l, Rk = (A- p(xk))xkxk
J.
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It is evident from Theorem 3 that the residuals || (A—p (xk))xk || decrease monotonically
when A is normal. In fact, this results in the global convergence property of Rayleigh
quotient iteration (see [3,4]).

Since \\Rk\\ = \\(A — p{xk))xk||, the vectors xk are eigenvectors of successively
smaller perturbations of A, while the scalars p(xk) are such that the perturbation at
each step is the smallest possible given xk .

Bearing in mind the remark about iterating with (A — ix)~x (A — fx)~ , we see that
the appropriate strategy in Rayleigh quotient iteration is

(A - p(xk))
J(A - p(xk))xk+i = akxk,

which is just the alternative version of the iteration examined in [3].
Recall that Lanczos, at step m, produces vectors *, with (A — rsx)xi = p(x,);t,. In

view of the above, it is natural to ask if the left eigenvectors y, of A—rsJ corresponding
to pi have smaller residuals than the right (Lanczos) eigenvectors xh In fact this is
not necessarily the case; however, we may expect the residuals of y, to be less than
those of the xt in a collective sense. Such a result is contained in the following more
general situation.

Suppose Z is orthonormal, R = [AZ — ZM]ZJ for some M, and YJ(A — R) =
MY1, then

that is,
\\ArY-YMJ\\\\Y\rl <\\R\\.

In the Lanczos case, Z = X, M = A, R = rsJ and \\R\\ = \\s\\, but the columns of
Y are not necessarily mutually orthogonal, even though they can be normalized. We
therefore cannot conclude that

and counterexamples to this inequality are easily found. However, we do have

< 1104 -

so

Again, it is not necessarily true that £ |rTy,|2 < 1. But £ |rTy,|2 = \\Vr\\2 <
where V = E ^ J - T . so £ \\(A - p(yi))yi\\

2 < | |^||2|k||2.
So far it still an open question as to how Theorem 3 can be extended to cover the

Lanczos method.
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3.2. Iterated Galerkin approximation As an aside, we comment on the way left
eigenvectors also occur as refinements in Sloan's iteration of Galerkin approximations
examined in [5].

Sloan's iteration arises in connection with a sequence of Galerkin approximations

P,AXi = fMjXi, Pj - > / , (jtl,-, Xj) ->• (X, U) .

The Pi are projections onto subspaces in a nested sequence. The idea behind Sloan's
iteration is that the sequence {A;t,//z,} converges more rapidly than does {XJ}. What
interests us here is the fact that APtAxi = (iiAxj. When A is symmetric this is just

(PiA)JAxi = HiAxi.

In other words, the Sloan iterates are simply the left eigenvectors of the Galerkin
approximations PtA.

4. Krylov subspaces

For various reasons it is of some interest to examine the Galerkin-Krylov method
for the matrix A"1

PA~lyt = /n.,v;,

where P is the orthogonal projection onto the Krylov subspace

/C m =spanfo, Aq,..., Am~lq}.

This leads to a surprising result concerning the 'Gram' matrices

G(A) = [{Axi,Xj)] = XJAX and G(A~l) = [(A~lXi, *,)] = XJA~lX ,

where {*,} is an orthonormal basis for Km and X = [xu ..., xm].

THEOREM 4. G(A~X) - G(A)~X is rank-1.

PROOF. We use the same notation as in Section 1. Without losing any generality, we
may take the ;c, to be the unit eigenvectors of PA.

Now G(A) = diag(pi,... , pm) = A , by properties of the vectors xt, and

G(A~l) - G(A)~l = XJA~lX - A"1 .

But, recalling the results of Section 1,

[A - rsJ]X = XA ,
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that is,

A"1 = XJ[A-rs'rrlX

Therefore

which has rank 1 as claimed.

This relies crucially on the JC, being orthonormal vectors which span a Krylov
subspace for some q. Neither condition can be relaxed.
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