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Abstract

We show that the algebraic local fundamental group of any Kawamata log terminal
singularity as well as the algebraic fundamental group of the smooth locus of any log
Fano variety are finite.

1. Introduction

We work over the field C of complex numbers. The study of the local topology of singularities has
a long history. In the surface case, Mumford proved that a point in a normal surface has a trivial
local fundamental group if and only if it is smooth (cf. [Mum61]). Since then the investigation of
the local topology of a singularity has been one of the most important tools to study singularities.
It is agreed that there are three basic objects to study. Given a singularity, the link L(0 ∈ X)
should carry essentially all the local topological information of the singularity. It has a continuous
map to a topological space whose deformation retract is the simple normal crossing variety E
defined as the preimage of 0 for a log resolution Y → (X, 0). The combinatorial gluing data of
E is then captured in the dual complex D(E) = DR(0 ∈ X). See [Kol12] for more background.

Recently, examples (cf. [KK11, Kol11, Kol12]) have been constructed to show that for a
general singularity, the dual complex can be as complicated as possible. When 0 ∈ X is log
canonical, Kollár also constructed three-dimensional examples that have more complicated local
topology than people expected. For instance, the local fundamental group of such a singularity
can be the fundamental group of any connected two-dimensional manifold. Kollár indeed asked
whether there is any nontrivial restriction of π1(E) (cf. [Kol11, Question 25]).

In this paper, we aim to show that the local topology of a Kawamata log terminal (klt)
singularity should be much simpler than the log canonical case. In fact, the following conjecture
is proposed by Kollár.

Conjecture 1 [Kol11, Question 26]. Let 0 ∈ (X,∆) be a klt singularity. Then the local
fundamental group πloc1 (X, 0) := π1(L(0 ∈ X)) is finite.

In this direction, Kollár and Takayama proved that π1(E) is trivial (cf. [Kol93, Tak03]).
However, this is not enough to conclude that π1(L(0 ∈ X)) is finite (e.g. consider a surface
rational singularity that is not a quotient singularity).

We can similarly define the local algebraic fundamental group π̂loc1 (X, 0) which is just the
pro-finite completion of πloc1 (X, 0). Our first theorem says that Kollár’s conjecture is true at least
for π̂loc1 (X, 0).

Theorem 1. Let 0 ∈ (X,∆) be an algebraic klt singularity. Then the algebraic local fundamental
group π̂loc1 (X, 0) is finite.
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We note that the main result of [KK11] implies that there exists an algebraic singularity
(X, 0) with π̂1(X, 0) = {e} but π1(X, 0) is an infinite group.

The corresponding global result is the following.

Theorem 2. Let (X,∆ + ∆′) be a projective klt pair with ∆′ > 0, and the coefficients of ∆
are contained in {(m− 1)/m|m ∈ N}. Assume that −(KX + ∆ + ∆′) is ample. Denote by X0

the maximal open locus where the restriction (X,∆) is an orbifold. Then the algebraic orbifold
fundamental group π̂orb1 (X0,∆|X0) is finite.

We note that the question on the fundamental group of the smooth locus of a log Fano variety
has attracted lots of interest. When the dimension is equal to 2 and there is no boundary divisor,
we know that the topological fundamental groups are always finite (see [GZ95, KM99, MT84])
and we indeed have a classification of them (cf. [Xu09]).

Beyond only being an analog, we could really connect the above two theorems using the local-
to-global induction, namely, we could show that the local result Theorem 1 implies the global
result Theorem 2 in the same dimension,1 and then the global result gives the local one for one
dimension higher. However, to make the proof shorter, we present the proof of Theorem 2 using
the boundedness theorem in [HMX12], and then establish Theorem 1.

2. Finiteness of algebraic fundamental groups

Notation and conventions. We follow the terminology in [KM98]. We call a finite morphism
between two log pairs f : (Y,∆Y )→ (X,∆) log étale in codimension 1 if f∗(KX+∆) = KY +∆Y .
We note that here ∆ and ∆Y are effective divisors. A projective log pair (X,∆) is called log Fano
if (X,∆) has klt singularities and −(KX + ∆) is ample. Given a point p on a log pair (X,∆), we
use mld(p,X,∆) to mean the minimal log discrepancy minE a(E,X,∆) + 1, where the minimum
runs over all exceptional divisors E whose center on X is p.

Let f : Y → X be a morphism induced by a surjection π̂orb1 (X0,∆|X0)→ G for some finite
group G; then if we write f∗(KX + ∆) = KY + ∆Y , we have ∆Y > 0. Thus, if we write f∗(KX +
∆ + ∆′) = KY + ∆′Y , it satisfies ∆′Y > ∆Y > 0. Therefore, Theorem 2 immediately follows from
the following result.

Proposition 1. Let (X,∆) be a log Fano variety. Let f : Y → (X,∆) be a finite surjective
morphism, such that if we write

f∗(KX + ∆) = KY + ∆Y ,

then ∆Y is effective. Then the degree of f is bounded by a constant N only depending on (X,∆).

Proof. Let M ∈ N be such that M(KX + ∆) is Cartier; then M(KY + ∆Y ) is Cartier. It follows
from [HMX12, Corollary 1.8] that

vol(KY + ∆Y ) = deg(f) · vol(KX + ∆)

is bounded from above by a constant C = C(M,n) which only depends on M and n = dim(X).
Thus deg(f) is bounded from above by

C

(−KX −∆)n
. 2

1 After this paper was posted on arXiv, this approach was worked out by Greb, Kebekus, and Peternell in [GKP13].
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As we mentioned in the introduction, here we use the strong boundedness result in [HMX12].
We can argue more straightforwardly using Theorem 1 in the same dimension. Later we will see
that in order to prove Theorem 1 we only need Proposition 1 in one dimension lower.

The next lemma associates to every klt singularity an exceptional log canonical place after
adding a certain auxiliary divisor. Although the exceptional log canonical place depends on
the choice of the auxiliary divisor, this construction proved to be useful for many questions
(cf. [HX09, Kol07, LX11]).

Lemma 1. Let p ∈ (X,∆) be a klt point. There exist a Q-divisor H on X and a birational
morphism f : Y → X from a normal variety such that:

(1) Y has a prime divisor E such that CenterX(E) = p, −(KY + f−1∗ ∆ +E) and −E are ample
over X (in particular, Ex(f) = Supp(E)); and

(2) (X,∆ + H) is klt on X\{p}, mld(p,X,∆ + H) = 0 and E is the unique divisor such that
the discrepancy a(E,X,∆ +H) = −1.

Proof. We first choose an ample Q-divisor L on X such that (X,∆ +L) is log canonical at p but
klt at X\{p}. Take a log resolution g : Z → (X,∆ +L) such that Ex(g) supports a fixed relative
ample divisor A over X. We write

g∗(KX + ∆ + (t+ ε)L) ∼Q KZ + g−1∗ (∆ + tL) +

k∑
i=1

aiEi + (εg∗L+ δA),

where 0 < δ� ε such that εg∗L+ δA ∼Q L
′ is a general ample Q-divisor and each ai depends on

t and δA. Choosing L a general ample Q-divisor with small coefficients passing through p, and
using δA to perturb, we can assume that there exists a t0 > 0 such that in the above formula,
if we take t = t0, there exist a unique ai, say a1, which is equal to 1, some other ai < 1 (i > 2)
and the center of EZ := E1 on X is p.

Considering the pair (Z, g−1∗ (∆ + tL) + EZ +
∑k

i=2Ei + L′), we have

KZ + g−1∗ (∆ + tL) + EZ +

k∑
i=2

Ei + L′ ∼X,Q
m∑
i=2

(1− ai)Ei.

We run a (KZ + g−1∗ (∆ + tL) + EZ +
∑k

i=2Ei + L′)-MMP with scaling of L′ over X.
By [BCHM10], this minimal model program (MMP) will terminate with a good minimal model
h : W → X. As it contracts all the divisors whose supports are contained in the stable base
locus, we know that φ : Z W precisely contracts all Ei for i > 2. Thus the divisorial part of
Ex(h) is EW , and on W we have

KW + h−1∗ (∆ + tL) + EW + φ∗L
′ ∼X,Q 0,

where EW denotes the pushforward of EZ on W . Since (W,h−1∗ (∆+tL)+EW +φ∗L
′) is divisorial

log terminal (dlt) with only one divisor of coefficient 1, it is indeed purely log terminal (plt).
Furthermore, since it is an MMP with scaling of L′, by the definition of MMP with scaling
(cf. [BCHM10]), we know, for some sufficiently small σ > 0, that

KW + h−1∗ (∆ + tL) + EW + (1 + σ)φ∗L
′

is nef over X. We let Y be the log canonical model of (W,h−1∗ (∆ + tL) +EW + (1 +σ)φ∗L
′), i.e.,

Y = Proj⊕d h∗OW (d(KW + h−1∗ (∆ + tL) + EW + (1 + σ)φ∗L
′)).
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As φ contracts Ei (i > 2), we know that φ∗A ∼ −λEW for some λ > 0. Thus

KW + h−1∗ (∆ + tL) + EW + (1 + σ)φ∗L
′ ∼X,Q σδφ∗A = −σδλEW ,

which is nef.
Define H = tL + (h ◦ φ)∗L

′. We see that W → Y cannot contract EW , thus it is a small
morphism. As (W,h−1∗ (∆ + tL) +EW +φ∗L

′) is plt, so is (Y,E + f−1∗ (H + ∆)) where E denotes
the pushforward of EW on Y and we know that −E is f -ample.

Since (X,∆) is klt, we know that

−(KY + f−1∗ ∆ + E) ∼X,Q −(1 + a(E,X,∆))E

is f -ample. 2

Remark 1. In general, given a projective morphism g : (X,∆)→ S from a klt pair to a normal
variety such that g∗(OX) = OS and −(KX + ∆) is ample over S\{p} for some point p ∈ S, the
same argument shows that we can find f : Y → S such that:

(i) X and Y are isomorphic over S\{p};
(ii) f−1(p) is an irreducible divisor E;

(iii) if we let ∆Y be the birational transform of ∆ on Y , then −(KY + ∆Y + E) is f -ample.

In this construction, we call E a Kollár component of (X,∆). As we mentioned, it depends
on the auxiliary Q-divisor H. If we write (KY + f−1∗ ∆ +E)|E = KE + Γ, where Γ = DiffEf

−1
∗ ∆

as defined in [Kol+92, § 16], then the pair (E,Γ) is log Fano.
The Kollár component was first studied in [Kol07]. Later, in [LX11], it was interpreted as the

only remaining exceptional divisor after an MMP sequence scaled by a carefully chosen ample
divisor as above to make it log Fano.

Proof of Theorem 1. Let 0 ∈ (X,∆) be an algebraic singularity on a pair (X,∆). Applying the
construction in Lemma 1, we denote by f : Y → X a morphism which precisely extracts a Kollár
component E.

Now let

· · · → (Xi, pi)→ (Xi−1, pi−1)→ · · · → (X0, p0) = (X, 0)

be a sequence of finite morphisms such that each one is finite and étale for the restriction
Xi+1\{pi+1} →Xi\{pi} and Galois for Xi+1\{pi+1} →X\{0}. We want to show that it stabilizes
for sufficiently large i.

For each i, we let Yi be the normalization of the main component of Xi ×X Y with the
morphism fi : Yi → Xi. Thus there are commutative diagrams as follows.

Ei+1 ⊂ Yi
ψi //

fi+1

��

Ei ⊂ Yi
fi
��

pi+1 ∈ Xi+1
// pi ∈ Xi

Denote the pullback of ∆ on X by ∆i. Let (KYi +f−1i∗ ∆i+Ei)|Ei = KEi +Γi. Since ψ∗i (f
−1
i∗ ∆i) =

f−1i+1∗∆i+1, we conclude that

ψ∗i (KYi + f−1i∗ ∆i + Ei) = (KYi+1 + f−1i+1∗∆i+1 + Ei+1).
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Restricting on the Kollár components, this implies that the induced morphism

ψi|Ei+1 : (Ei+1,Γi+1)→ (Ei,Γi)

is log étale in codimension 1.
It follows from Proposition 1 that there exists an M ∈ N such that ψi|Ei is an isomorphism

for i > M . Thus, fixing such an i > M , ψi is a finite morphism, totally ramified over Ei. Let γ be
the element in π1(L(pi ∈ Xi)) corresponding to the loop around a general point of Ei. We only
need to verify that the order of γ is finite. Cutting Yi to a surface Si, and taking the Cartesian
product, we have the following diagram.

Ci+1 ⊂ Si+1
//

φi+1

��

Ci ⊂ Si
φi
��

pi ∈ Ti+1
// pi ∈ Ti

As the corresponding ramified covering is trivial along Ci = Ex(φi), we know that if we
let the surjection π̂loc1 (Ti, pi) → G correspond to the covering, then G is a finite cyclic group,
which is generated by the image of γ. Thus πloc1 (Ti, pi) = π1(Si\Ci)→ G indeed factors through
H1(Si\Ci). However, the homolog class [γ] is in the kernel of

H1(Si\Ci)→ H1(Si) = H1(Ci).

By Mumford’s calculation on the normal surface singularity (cf. [Mum61, p. 235]), we know that
[γ] is a torsion element. Thus for any j � i, Tj+1 → Tj is an identity, and so is Xj+1 → Xj . 2
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