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Abstract

Chokeberries are a rich source of anthocyanins, which may contribute to the prevention of obesity and the metabolic syndrome. The aim of

the present study was to determine if an extract from chokeberries would reduce weight gain in rats fed a fructose-rich diet (FRD) and

to explore the potential mechanisms related to insulin signalling, adipogenesis and inflammatory-related pathways. Wistar rats were fed

a FRD for 6 weeks to induce insulin resistance, with or without chokeberry extract (CBE) added to the drinking-water (100 and

200 mg/kg body weight, daily: CBE100 and CBE200). Both doses of CBE consumption lowered epididymal fat, blood glucose, TAG, choles-

terol and LDL-cholesterol. CBE consumption also elevated plasma adiponectin levels and inhibited plasma TNF-a and IL6, compared with

the control group. There were increases in the mRNA expression for Irs1, Irs2, Pi3k, Glut1, Glut4 and Gys1, and decreases in mRNA levels

of Gsk3b. The protein and gene expression of adiponectin and Pparg mRNA levels were up-regulated and Fabp4, Fas and Lpl mRNA levels

were inhibited. The levels of gene expression of inflammatory cytokines, such as Il1b, Il6 and Tnfa were lowered, and protein and gene

expression of ZFP36 (zinc finger protein) were enhanced in the epididymal adipose tissue of the rats that consumed the CBE200 extract. In

summary, these results suggest that the CBE decreased risk factors related to insulin resistance by modulating multiple pathways associated

with insulin signalling, adipogenesis and inflammation.

Key words: Chokeberry extract: Insulin signalling: Adipogenesis: Inflammation

Chokeberry, known as Aronia melanocarpa, is found in

the eastern parts of North America, as well as Northern

and Eastern Europe. Although usually consumed as a fruit,

it has also been used in traditional medicine to treat hyperten-

sion and atherosclerosis in Russia and Eastern European

countries(1). Chokeberry has attracted scientific interest

because of its high content of phenolic phytochemicals. The

active compounds found in chokeberry include anthocyanins

and flavonoids, some at concentrations over five times greater

than those found in cranberries(2,3). A comparative in vitro

study has shown that chokeberries display higher antioxidant

activity with the oxygen radical absorption capacity assay than

that obtained with blueberries, cranberries or lingonberries(4).

Anthocyanins and anthocyanin-rich extracts exhibit diverse

potential health benefits in animal and human studies, includ-

ing cardioprotective(5), anti-diabetic(6,7) and anti-inflammatory

properties(8). Although it has been reported that anthocyanins

are poorly absorbed and circulate in the blood exclusively

as unmetabolised parent glycosides(9), Kay et al.(10) observed

that in human subjects, anthocyanins exist in the circulation

primarily as metabolites, and cyanidin 3-glycosides are

absorbed and transported in human serum and urine primarily

as glucuronide and methyl glucuronide derivatives. Moreover,

recent studies in rodents have shown that anthocyanins are

rapidly absorbed from both the stomach and small intes-

tine(11), with derivatives found in multiple organs, including

adipose tissue(12).

Adipocyte and adipose tissue dysfunction are primary

defects in obesity and may link obesity to several health

problems, including increased risk of type 2 diabetes, hyper-

tension, dyslipidaemia and atherosclerosis(13,14). In cultured

adipocytes, anthocyanins enhance adiponectin secretion(15),
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regulate the expression of multiple adipocyte-specific

genes(15,16) and also reverse TNF-a-induced insulin resist-

ance(17). In addition, dietary anthocyanins were shown to

suppress obesity when administered to mice fed high-fat

diets(18,19).

The aim of the present study was to investigate whether

feeding an extract of chokeberry improved metabolic

parameters in rats fed a fructose-rich diet (FRD) to induce

insulin resistance. Effects on body weight gain and epididymal

fat accumulation and the underlying molecular mechanisms

of action on the expression of the adipose genes involved

in insulin signalling, adipogenic and inflammation pathways

were evaluated.

Materials and methods

According to the manufacturer, the chokeberry extract (CBE)

used was prepared from frozen Aronia berries from Northern

Europe. Berries were stirred at room temperature with 4-fold

excess by weight of 60 % ethanol–water for 3–4 h. The mix-

ture was then centrifuged and the supernatant was spray-

dried (CellBerryw, the dried CBE, was provided by Integrity

Nutraceuticals International (Spring Hill, TN, USA)). This

extract contained at least 10 % anthocyanins based on HPLC

and MS analyses (lot no. TGB-071020).

Animals

Male Wistar rats (5 weeks old) were housed in a temperature-

controlled room according to the Guidelines for Animal

Care of the Beltsville Area Animal Care and Use Committee.

After a 1-week acclimatisation period, rats were assigned

randomly to receive either the CBE at 100 or 200 mg/kg

body weight/d (n 6 for each group: CBE100 and CBE200)

added to drinking-water or water alone (CON) group. All

rats were placed on a FRD for 6 weeks. The diet contained

(g/kg diet): casein, 207; DL-methionine, 3·0; fructose, 600;

lard, 50; cellulose, 79·8; AIN mineral mix, 50·0; zinc carbonate,

0·04; AIN vitamin mix 10·0; and green food colour 0·15

(89 247-Teklad Animal Diets, Madison, WI, USA). During

the experimental period, the consumption of food and fluid

and body weight were monitored every other day. At the

termination of the feeding experiment, following an overnight

fast, blood glucose levels were tested from blood collected

from the tail vein. Rats were then anaesthetised and blood

was collected from the portal vein in pre-cooled tubes

containing EDTA and centrifuged at 5000 rpm for 15 min at

48C. The epididymal adipose tissues (EAT) were carefully

removed and weighed before being snap-frozen in liquid N2

and stored at 2808C until analysed.

Immunoblotting

For the immunoanalysis of adipose tissue, approximately

100 mg of EAT were homogenised at 48C for 30 s in lysis

buffer containing 20mM-Tris (pH 7·4), 2mM-EDTA, 50mM-NaF,

200mM-Na3VO4, 250mM-phenylmethylsulfonyl fluoride, 1mM-leu-

peptin, 1mM-pepstatin and 0·36mM-aprotinin. Protein concen-

trations were determined by a commercial assay (Bio-Rad Dc

protein assay; Bio-Rad Laboratories, Hercules, CA, USA)

using bovine serum albumin as a standard. Rabbit polyclonal

antibody against adiponectin was purchased from ProSci

(Poway, CA, USA). Rabbit polyclonal antibody against zinc

finger protein 36 (ZFP36) was purchased from Genway

(San Diego, CA, USA).

Gene expression in epididymal adipose tissues

Total RNA was isolated from EAT using Trizol reagent (Invitro-

gen, Carlsbad, CA, USA). RNA concentrations and integrity

were determined using RNA 6000 Nano Assay Kit and the

Bioanalyzer 2100, according to the manufacturer’s instructions

(Agilent, Santa Clara, CA, USA). The complementary DNA

were synthesised from total RNA using SuperScript II RT

(Invitrogen). The primers used are described in our previous

study(20) and included in Table 1. Real-time quantitative

PCR was performed using SYBR Green PCR Master Mix

(ABI, Forster, CA, USA). The expression of the housekeeping

gene, peptidylprolyl isomerase A, was used to normalise the

expression of target genes.

Biochemistry

Plasma adiponectin was determined with a rat ultrasensitive

EIA (Phoenix Pharm, Burlingame, CA, USA). Plasma NEFA

were measured using a colorimetric assay (Wako, Richmond,

VA, USA). Serum TNF-a and IL-6 were determined with a rat

ultrasensitive EIA (Alpco, Salem, NH, USA). Measurement of

blood glucose, insulin, TAG and cholesterol were performed

as described(20,21).

Statistical analyses

Data were analysed by one-way ANOVA followed by the least

square difference (LSD) test. P values ,0·05 were considered

significant.

Table 1. Real-time PCR primers

Gene Sequence (50 to 30 forward) Sequence (50 to 30 reverse)

AdipoQ AGGAAACTTGTGCAGGTTGGA GAACACCTGCGTCTCCCTTCT
Lpl TGGAGCCCATGCTGCTG CAAGCCAGTAATTCTATTGACCTTCTT
Fas GCCTCACTCCGAGGAACAAACA CCCGGCATTCAGAATAGTGGCA
Fabp4 GAAGTGGGAGTGGGCTTT TTATGGTGCTCTTGACTTTCCT

AdipoQ, adiponectin; Lpl, lipoprotein lipase; Fas, fatty acid synthase; Fabp4, fatty acid-binding protein 4.
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Results

General observations and plasma biochemistry

Food intake and water consumed did not differ among

the three groups. Body weight gain and epididymal adipose

weight were reduced at both levels of CBE intake (Table 2,

P,0·05). Fasting blood glucose and plasma insulin, TAG,

total cholesterol, LDL-cholesterol and plasma NEFA levels

were all reduced in animals consuming both levels of CBE.

CBE consumption increased the plasma adiponectin and

HDL-cholesterol levels (Table 3). In addition, a significant

reduction in the plasma IL-6 and TNF-a occurred in both

the CBE groups (Table 3).

Chokeberry extract altered mRNA expression in the insulin
signalling pathway and glucose uptake in epididymal
adipose tissues

As shown in Fig. 1(a), CBE consumption (CBE200) with

the FRD enhanced mRNA levels of components of the insulin

signalling pathway, including increases in mRNA levels of

insulin receptor substrate 1 (Irs1) (2·3-fold), Irs2 (1·8-fold)

and phosphatidylinositol 3 kinase regulatory subunit 1

(Pi3kr1) (1·5-fold), and inhibited phosphatase and tensin

homolog (Pten) mRNA levels (0·61-fold), compared with the

FRD-fed control rats.

As shown in Fig. 1(b), CBE consumption (CBE200) induced

an increase in Glut1 (1·6-fold), Glut4 (1·5-fold) and glycogen

synthase (Gys) (1·5-fold) mRNA expression, and inhibited gly-

cogen synthase kinase 3b (Gsk3b) mRNA levels (0·62-fold),

compared with the FRD-fed control rats. Similar trends were

observed in the CBE100 group but values were not significant

(data not shown).

Consumption of chokeberry extract modulated the
expression of genes and proteins involved in epididymal
adipose adipogenesis

As shown in Fig. 2(a) and (b), CBE consumption (CBE200)

caused a significant increase in adiponectin (AdipoQ) mRNA

levels (2·1-fold) and adiponectin protein levels (169 %), com-

pared with the FRD-fed control rats (P,0·05, both). CBE

also induced Pparg mRNA expression (1·6-fold) and inhibited

fatty acid binding protein 4 (Fabp4) (0·7-fold), fatty acid

synthase (Fas) (0·63-fold) and Lpl (0·65-fold) mRNA

expression (Fig. 2(c)), but did not significantly affect fatty

acid translocase (Cd36) mRNA expression. Changes in the

CBE100 group were not significant (data not shown).

Chokeberry extract inhibited the epididymal adipose
inflammation gene expression and induced ZFP36
expression

As shown in Fig. 3(a), CBE consumption (CBE200) caused

a significant decrease in Tnfa (0·52-fold), Ilb (0·38-fold)

and Il6 (0·45-fold) mRNA levels, compared with the FRD-fed

Table 2. Effects of chokeberry extract (CBE) on body weight and epididymal pad weight

(Mean values with their standard errors for six rats)

CON CBE100 CBE200

Mean SE Mean SE Mean SE

Initial body weight (g) 181a 3 183a 2 180a 1
Final body weight (g) 416a 6 402a 5 398a 5
Body weight gain (g) 236a 5 219b 5 217b 4
Epididymal adipose weight (g) 9·2a 0·2 8·3b 0·2 8·0a 0·2

CON, group fed with water alone; CBE100, group fed CBE at 100 mg/kg body weight daily added to drinking water;
CBE200, group fed CBE at 200 mg/kg body weight daily added to drinking water.

a,b Mean values within a row with unlike superscript letters were significantly different (P,0·05).

Table 3. Effects of chokeberry extract (CBE) on blood and plasma parameters in the fasted state

(Mean values with their standard errors for six rats)

CON CBE100 CBE200

Mean SE Mean SE Mean SE

Blood glucose (mmol/l) 4·9a 0·2 4·4b 0·2 4·3b 0·3
Insulin (ng/ml) 1·3a 0·12 0·95b 0·06 0·91b 0·09
TAG (mmol/l) 1·92a 0·15 1·25b 0·11 1·15b 0·13
Cholesterol (mmol/l) 2·35a 0·19 1·65b 0·18 1·58b 0·14
LDL-C (mmol/l) 1·18a 0·13 0·83b 0·13 0·75b 0·13
HDL-C (mmol/l) 0·46a 0·03 0·62b 0·04 0·70b 0·02
NEFA (mmol/l) 0·75a 0·07 0·48b 0·03 0·43b 0·05
Adiponectin (mg/ml) 19·8a 2·1 27·3b 2·4 29·8b 2·6
IL-6 (pg/ml) 220a 10 158b 7 81c 5
TNF-a (pg/ml) 353a 9 190b 10 103c 6

CON, group fed with water alone; CBE100, group fed CBE at 100 mg/kg body weight daily added to drinking water;
CBE200, group fed CBE at 200 mg/kg body weight daily added to drinking water; LDL-C, LDL-cholesterol; HDL-C,
HDL-cholesterol.

a,b,c Mean values within a row with unlike superscript letters were significantly different (P,0·05).
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control rats. In contrast to these inflammatory factors, CBE

consumption enhanced Zfp36 mRNA and ZFP36 protein

expression (Fig. 3(b) and (c), 1·45-fold and 139 %). Changes

in the CBE100 group were not significant (data not shown).

Discussion

Consumption of a FRD contributes to insulin resistance,

hyperinsulinaemia, dyslipidaemia and hypertension in animal

models(22–24). Furthermore, consumption of a FRD leads to

abdominal adipose tissue endocrine dysfunction in normal

rats, and increased adipose tissue mass and adipocyte size(25).

Growing evidence suggests that adipose tissue plays a crucial

role in the regulation of systemic energy homoeostasis, insulin

sensitivity and lipid/carbohydrate metabolism(26). In the pre-

sent study, we used the FRD-fed rat model to investigate the

effects of a CBE rich in anthocyanins. The present data indi-

cated that CBE consumption reduced weight gain, epididymal

fat accumulation and improved systemic glucose/lipid metab-

olism. We also demonstrated that CBE consumption increased

plasma adiponectin levels and decreased plasma TNF-a and

IL-6 levels. In addition, we demonstrated that consumption

of CBE regulated gene expression in multiple pathways

involved in insulin signalling, adipogenesis and inflammation.

FRD-induced adipose tissue dysfunction in studies of high-

polyphenol extracts of other plants caused alterations in the

production of many adipocyte-derived factors such as NEFA

and adiponectin(24). These dysregulated factors induced

local and systemic insulin resistance, which is a major contri-

butor to the pathogenesis of type 2 diabetes and plays a key

role in associated metabolic abnormalities, such as obesity,

dyslipidaemia and hypertension(27). Evidence from human

and animal studies demonstrated that loss of body weight

is associated with an increase of insulin sensitivity(6,28,29).

In the present study, we found that consumption of a CBE,

high in polyphenols, reduced weight gain and epididymal

fat accumulation, and improved systemic insulin sensitivity-

related factors, such as fasting glucose, plasma insulin and

lipids. At the molecular level, although the FRD impaired insu-

lin signalling pathways in multiple tissues, such as liver(30),

skeletal muscle(23) and adipose tissue(24), the consumption

of CBE improved the impaired gene expression related to

insulin signalling and glucose uptake in EAT, and up-regulated

the decreased Irs1, Irs2 and Pi3k mRNA expression and the

expression of other genes related to carbohydrate metabolism,

such as Glut1, Glut4 and Gys1. CBE also inhibited the

expression of Pten and Gsk3b mRNA, which are increased

in insulin-resistant adipose tissue(31,32) (Fig. 1).

In contrast to many other factors derived from adipose

tissue, circulating adiponectin and adipose adiponectin

expression are decreased in insulin resistance(33,34). In most

clinical reports, primate studies and genetic models, serum

adiponectin levels have been reported to be negatively corre-

lated with body weight, visceral fat mass and resting insulin

levels(35–37). Transgenic mice overexpressing AdipoQ have

increased insulin sensitivity and improved glucose tolerance

and TAG clearance(38). We have reported previously that

FRD feeding significantly decreased plasma adiponectin

and AdipoQ mRNA expression(24). In the present study, we

observed that feeding CBE significantly increased plasma

adiponectin levels and the mRNA and protein expression of

adipose adiponectin of FRD-fed rats (Fig. 2). These results

support the previous finding in human subjects that combi-

nation therapy of statins with an extract of chokeberry
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Fig. 1. Effects of feeding a chokeberry extract (CBE) on the mRNA levels

related to insulin signalling, GLUT and glycogen synthesis in epididymal adi-

pose tissue. , Control group; , group fed CBE at 200 mg/kg body weight

daily (CBE200). (a) Ir, Irs1, Irs2, Pi3kr1, Akt1 and Pten and (b) Glut1, Glut4,

Gys1 and Gsk3b. Values are means with their standard errors and are pre-

sented as fold of control (n 5–6). * Mean values were significantly different

from those of the control group (P,0·05).
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Fig. 2. Effects of feeding a chokeberry extract (CBE) on the expression

of genes and proteins involved in adipogenesis in epididymal adipose tissue.

, Control group; , group fed CBE at 200 mg/kg body weight daily (CBE200).

(a) AdipoQ mRNA, (b) adiponectin protein and (c) Pparg mRNA, Fabp4, Fas,

Lpl and Cd36 mRNA. (b) Representative experiments on the immunoblots of

adiponectin were analysed using densitometry. Values are means with their

standard errors and are presented as percentage of control (n 5–6). * Mean

values were significantly different from those of the control group (P,0·05).
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increased plasma adiponectin levels in patients after myocar-

dial infarction(8). Adiponectin possesses insulin sensitising

and anti-atherogenic properties(35).

It is well known that increased adipose tissue mass and adi-

pocyte dysfunction associated with obesity are linked to the

abnormal regulation of adipogenesis(39). PPARg, a master reg-

ulator of adipogenesis(40), plays a critical role in glucose

metabolism and energy homoeostasis(41,42). Fructose feeding

induced a lower Pparg mRNA expression in white adipose

tissue, and a PPAR ligand reversed the down-regulated

expression of PPARg and systemic insulin resistance(43). In

the present study, we observed that CBE consumption

increased Pparg mRNA expression in EAT. PPARg regulates

multiple genes in the adipose tissue regulating adipogenesis,

including those encoding the adipocyte fatty acid-binding pro-

tein 4 (FABP4), fatty acid synthase (FAS) and lipoprotein lipase

(LPL). FABP4 is postulated to be an early marker of the meta-

bolic syndrome and the future onset of type 2 diabetes(44,45).

Fabp4-deficient mice are protected from insulin resistance,

hyperglycaemia, dyslipidaemia and atherosclerosis(46,47). We

have reported that FRD feeding induced the overexpression

of Fabp4 mRNA(24). FAS is a key enzyme in de novo lipogen-

esis. Studies have reported that Fas mRNA and protein levels

are elevated in obese Zucker rats(48), and polyphenols from

cinnamon(24) and dietary green tea inhibit Fas mRNA

expression in diet-induced insulin-resistant animals(49). LPL,

the rate-limiting enzyme in TAG-rich lipoprotein catabolism,

provides TAG-derived fatty acids to adipose tissue for storage.

Studies have shown that polyphenols from cinnamon and

green tea also inhibit Lpl mRNA expression and other genes

of lipogenesis(24,49). In the present study, the data show that

feeding polyphenols from chokeberry suppressed Fabp4,

Fas and Lpl mRNA levels in EAT. CD36, referred to as fatty

acid translocase, is a transmembrane protein present in

many tissues that is believed to play a role in facilitating

fatty acid transport(50). In ob/ob mice, and FRD-fed rats,

CD36 mRNA(51) and protein(24) levels in the adipose tissue

were increased. CBE consumption did not affect CD36

mRNA expression in the adipose tissue.

Substantial evidence indicates that a state of low-grade

chronic inflammation typically is associated with obesity,

and the increased production of pro-inflammatory cytokines

by adipose tissue plays a crucial role in the development of

insulin resistance(52,53). FRD feeding also induces the overex-

pression of plasma TNF-a and IL-6, which both contribute

to the development of CVD by promoting insulin resistance,

dyslipidaemia and endothelial dysfunction(54). TNF-a is

known to be a potent negative regulator of adipogenesis

and PPARg function(55). The present results suggest that con-

sumption of CBE not only inhibited the plasma levels of

TNF-a and IL-6 but also induced a decrease of mRNA

expression of Tnfa and Ilb and Il6. This is in agreement

with a human study in which chronic chokeberry consump-

tion reduced the severity of plasma inflammation, increased

anti-inflammation factor and increased plasma adiponectin

levels(8). Previous studies suggested that Zfp36, an anti-

inflammatory protein, increased Tnfa mRNA degradation by

binding to its 30 untranslated region(56), and that omental

adipose Zfp36 mRNA levels were correlated with insulin, insu-

lin resistance index and adiponectinaemia in women(57). In

the present study, we found that CBE consumption increased

adipose Zfp36 protein and mRNA expression, which is

consistent with CBE feeding-induced decreases in TNF-a

expression and increases in adiponectin expression in

plasma and adipose tissue.

In summary, the present study provides evidence that an

anthocyanin-rich extract of chokeberry reduced body weight

gain and abdominal fat, improved the risk factors related to

the metabolic syndrome in plasma and modulated multiple

signalling pathways related to adipose dysfunction in an

animal model. The present findings suggest that chokeberry

or its extract might be beneficial in preventing or decreasing

obesity and the metabolic syndrome. Further studies are

needed in human volunteers at increased risks for diet-related

chronic disease to ascertain the beneficial effects from con-

sumption of polyphenols such as those found in chokeberry.
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