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Abstract

Astigmatism and myopia are two common ocular refractive errors that can impact daily life, including learning and productivity. Current
knowledge suggests that the etiology of these conditions is the result of a complex interplay between genetic and environmental factors. Studies
in populations of European ancestry have demonstrated a higher concordance of refractive errors in monozygotic (MZ) twins compared to
dizygotic (DZ) twins. However, there is a lack of studies on genetically informative samples of multi-ethnic ancestry. This study aimed to
estimate the genetic contribution to astigmatism and myopia in the Mexican population. A sample of 1399 families, including 243 twin pairs
and 1156 single twins, completed a medical questionnaire about their own and their co-twin’s diagnosis of astigmatism and myopia.
Concordance rates for astigmatism and myopia were estimated, and heritability and genetic correlations were determined using a bivariate
ACE Cholesky decomposition method, decomposed into A (additive genetic), C (shared environmental) and E (unique environmental)
components. The results showed a higher concordance rate for astigmatism and myopia for MZ twins (.74 and .74, respectively) than for
DZ twins (.50 and .55). The AE model, instead of the ACE model, best fitted the data. Based on this, heritability estimates were .81 for
astigmatism and .81 for myopia, with a cross-trait genetic correlation of rA = .80, nonshared environmental correlation rE = .89, and a
phenotypic correlation of rP = .80. These results are consistent with previous findings in other populations, providing evidence for a similar
genetic architecture of these conditions in the multi-ethnic Mexican population.
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Astigmatism and myopia are two prevalent ocular refractive errors
that have become significant public health concerns globally (Baird
et al., 2020; Hashemi et al., 2017; Pascolini & Mariotti, 2012).
Astigmatism is characterized by unequal curvatures in the cornea
or crystalline lens, leading to rotational asymmetries and blurry
projections of light over the retina (Harb &Wildsoet, 2019; Harris,
2000; Visnjić et al., 2012). Myopia, also known as nearsightedness,
is caused by the light being focused in front of the retina instead of

on it, leading to a blurred perception of distant objects (Harb &
Wildsoet, 2019). The elongation of the eye and corneal modifications
(e.g., keratoconus) can contribute to myopia (Baird et al., 2020).

The worldwide prevalence of myopia was estimated to be∼33%
by the World Health Organization in 2020, and a meta-analysis of
global studies estimated a prevalence of 26.5% for myopia and
40.4% for astigmatism (Holden et al., 2016). However, data varies
greatly between regions and ethnic groups, with higher prevalence
in some groups (Hashemi et al., 2017; Rose et al., 2001). For
example, in East and Southeast Asia, myopia is considered an
epidemic among adults, with 80−90% suffering from it (Morgan
et al., 2018). In contrast, half of the European population suffer
from some refraction error, with around 30% of myopia and 23%
of astigmatism (Williams et al., 2015). The comorbidity between
astigmatism and myopia also varies among populations; for
example, it has been estimated at 3.8% (3250/19,686) in the
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Albanian population (Kleves, 2021), but at 58% in American
children (Fulton et al., 1982). Meanwhile, data from other regions,
such as Latin America, is scarce. In Mexico, astigmatism and
myopia have been recognized as common ocular problems
(Secretaría de Salud, 2020). Specifically, in a sample of 676,856
Mexican patients (aged 6 to 90), myopia was the most common
refractive error at 24.8%, while astigmatismwas present in 13.5% of
the sample (Gomez-Salazar et al., 2017). Studies of school-age
children in urban areas showed a prevalence of 44% for bilateral
myopia and 9.5% for astigmatism, while those in rural areas were
estimated at 9.7% and 4.4% respectively (Garcia-Lievanos et al.,
2016). Refractive errors impact aspects of life such as education and
employment (Kandel et al., 2017); as such, the concern about these
conditions is growing. They are predicted to affect over 50% of the
world’s population by 2050 (Holden et al., 2016); thus, evaluating
the etiology of refractive errors is crucial.

Previous research suggests that both genetic and environmental
factors play a role in the development of astigmatism and myopia
(Baird et al., 2020; Gordon-Shaag et al., 2021; Read et al., 2007;
Young et al., 2007). For instance, genomewide association studies
(GWASs) have identified various risk polymorphisms for both
conditions, including genes involved in eye growth, retinal
proteins, corneal epithelium, neurotransmission, and retinoic acid
metabolism (Harb &Wildsoet, 2019; Hysi et al., 2010; Kiefer et al.,
2013; Lopes et al., 2013; Nakanishi et al., 2009; Shah, Li et al., 2018;
Wojciechowski, 2011; Wojciechowski & Hysi, 2013). However, the
genetic connection between astigmatism and myopia remains
inconclusive, with some studies suggesting a shared genetic
etiology (Pinazo-Durán et al., 2016; Shah, Guggenheim et al., 2018;
Young et al., 2007) and others considering them as different
manifestations of refractive errors (Dirani et al., 2008; Hammond
et al., 2001; Paget et al., 2008). Environmental factors, such as
prolonged near-work activities, outdoor time, reduced sleep,
education, muscle changes, and population density also seem to
play a role (Demir et al., 2021; Harb & Wildsoet, 2019; Li et al.,
2019; Saad & El Bayoumy, 2007;Wang et al., 2021;Wojciechowski,
2011; Xiong et al., 2017; Zhang et al., 2010). For example, studies
have suggested that more time spent in outdoor activities reduces
the risk of developing myopia (Jin et al., 2015; Xiong et al., 2017);
meanwhile, near-work activities such as reading or the overuse of
smartphones, which involve short viewing distance, force the eye to
modify the optical convergences and increase eyelid pressure onto
the cornea, resulting in increased risk of developing both myopia
and astigmatism (Dutheil et al., 2023; Leung et al., 2020). Other
studies have suggested that sociodemographic variables could be
related to developing myopia, as this is more prevalent in urban
and higher income populations compared to rural and lower
income, which could be related in turn to near-work and outdoor
activities (Ragot et al., 2020).

Twin studies are useful in evaluating the combined impact of
genes and environment (Sahu & Prasuna, 2016). For example, a
study in Norway showed higher concordance rates for astigmatism
in monozygotic twins than in dizygotic twins, suggesting a genetic
influence (Grjibovski et al., 2006). The heritability of astigmatism
was estimated to be over 60% in an Australian twin study (Dirani
et al., 2008). In addition, a Chinese twin study also found
significant contributions from both genes and environment to
myopia (C.-J. Chen et al., 1985). However, the contribution of
genes and environment in genetically admixed populations, such
as theMexican, is practically unknown. TheMexican population is
largely underrepresented in genetic studies but has a high
prevalence of refractive errors. This study aims to determine the

concordance rates, heritability, and genetic cross-trait correlation
of astigmatism and myopia in Mexican twins.

Methods

Sample

Data used for this study comes from the Mexican Twin Registry,
TwinsMX (https://twinsmxofficial.unam.mx/; Leon-Apodaca
et al., 2019), collected using the Research Electronic Data
Capture (REDCap) platform, hosted at the National Laboratory
of Advanced Scientific Visualization at the Universidad Nacional
Autónoma de México (UNAM). All participants gave informed
consent, and the study protocol was reviewed and approved by the
Research Ethics Committee of the Institute of Neurobiology
at UNAM.

At the time of data extraction (April 2022), TwinsMX included
data for 2778 families. For this study, we selected subjects who
completed the medical questionnaire and were aged 7 years or
older (considering that the age to start school can vary between
6−7 years old in Mexico), resulting in a sample of N = 1887
families. Zygosity status was participant-reported; twin pairs
whose reported zygosity did not match (e.g., one twin reported
MZ and the co-twin reported DZ) were classified as indeterminate
(Sánchez-Romera, 2013) and were excluded (n= 9). Subjects from
other multiple birth types (e.g., triplets or quadruplets) or who did
not report the sex of their co-twin were also excluded. The final
sample consisted of N = 1399 families. A family was defined for
either a singleton or a pair of twins. In this study, 243 families with
both twins being registered (i.e., 486 individuals) and 1156 families
with only one registered twin were included in the final sample. The
1156 single twins reported information about their unregistered twin,
and with this information we were able to analyze a sample of
N= 2798 individuals (i.e., 486 þ [1156*2]). Sociodemographic data,
sex and age of the twins were also acquired.

Myopia and Astigmatism Participant-Reported Diagnosis

Twins answered a medical questionnaire where they were asked
‘Have you, your parents, siblings, or children ever suffered some of
the following conditions?’, and tick boxes allowed participants to
state which family members had presented with the condition.
Among the possible answers, myopia and astigmatism were listed.

Statistical Analyses

Participants were split into two main groups, All MZ and All DZ,
based on the self-reported zygosity. Additionally, each twin
reported their sex and their twin’s sex. With that information,
families were classified into five different subgroups depending on
zygosity and sex as has been widely reported: MZ female (MZF),
MZ male (MZM), DZ female (DZF), DZ male (DZM), and DZ
opposite-sex (DZOS) (e.g., Grjibovski et al., 2006; Hopper et al.,
1990; Loat et al., 2004; Vink & Boomsma, 2011).

The participant-report diagnosis was used for families where
both twins were part of the registry. For the families where only one
of the twins was part of the registry (single twins), we considered
the report about themselves and the report about their twin. To
address the concern of reliability of a single twin reporting the
diagnosis of the nonregistered co-twin, we adopted the following
strategy: first, we analyzed the responses from the 243 twin pairs
(both twins registered) and tested the consistency of their answers
regarding their co-twin. That is, we compared the twins’ response
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about their co-twin, since in these 243 families we have data from
both twins.

In addition, we estimated the concordance rate for the
diagnoses (i.e., presence or absence of astigmatism and myopia,
independently performed one from another) only for the 243 twin
pairs, to assess whether the results obtained from the entire sample
(i.e., 1399 families) were consistent.

Demographic analysis. We compared the distribution of sex and
age between the MZ and DZ groups using an independent chi-
square test (χ2). Additionally, we reported the prevalence of having
at least one of the two conditions, that is, only myopia, only
astigmatism, or both. We used an independent chi-square test to
evaluate whether sex or zygosity distribution differed among the
three groups.

Concordance rate test. We calculated probandwise concordance
for both astigmatism and myopia following the model reported by
McGue (1992), and calculated the respective confidence intervals
for proportions for each group and subgroups of zygosity and sex.
Due to the small sample size of some of the zygosity and sex
subgroups, only the comparisons between concordance rates for
All MZ and All DZ groups, without stratification by sex, were
tested with the Likelihood Ratio Test. Only results with p < .05
were considered statistically significant.

Bivariate ACE Cholesky analysis. We performed the ACE
Cholesky decomposition, which allows estimating the amount of
variance of each phenotype, explained by the genetic contribution
or heritability (A), the shared environmental contribution (C), and
the unique environment (E). In addition, a multivariate design (in
this case, a bivariate model) allows to estimate the covariation
between myopia and astigmatism. For a detailed description of
these analyses, see Zietsch et al. (2014) and Posthuma (2009).

Briefly, the bivariate model assumes that latent variables have
effects on the traits of interest (see Figure 1 for the path model).
First, we consider the genetic contribution from two sets of genes
(latent variables A1 andA2) by directly associating the first gene set
over one trait (i.e., A1 over astigmatism) through a path (a11), and
the second set of genes over the second trait (i.e., A2 acting over
myopia) through a second path (a22). Second, the model takes into
account the shared genes for astigmatism and myopia, which are
modeled on the influence of A1 over the second trait, myopia (path
a21). The effect of the set of genes A2 over the first trait
(astigmatism) via a12 is not modeled to avoid redundancy; namely,
it is assumed that if an overlapping of shared genes exists, these will
be the same group of genes within A1 or A2 sets, then the path a21 is
already reflecting the conjunction of shared genes. Additionally, it
is relevant to notice that, in a Cholesky factorization, the lower
triangular solution is mathematically equivalent to the upper
triangular solution (see matrix a below). Similarly, the respective
shared and nonshared environmental contributions are corre-
spondingly modeled by C and E from paths.

The corresponding matrix design of this bivariate path model is
an n× nmatrix, where n is the number of traits in themodel, in this

case, a 2 × 2 matrix a =
a11 0
a21 a22

� �
. The total genetic

contribution is estimated as the result of A = a*aT, given as a

result A= a211 a11a21
a21a11 a221a

2
22

� �
. The A(1,1)= a112 is the total genetic

contribution (i.e., heritability) of the trait 1, A(2,2) = a221þ a222, is

the total genetic contribution (i.e., heritability) of the trait 2.
Meanwhile, the cross-trait, cross-twin genetic covariance is A(2,1)
= a11a21. To estimate the genetic correlation between the traits of
interest, astigmatism, and myopia, rA = a11�a21ffiffiffiffiffi

a211
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a221 þ a222

p . The

variance and covariance matrices, and correlations for C and E can
be calculated analogously.

Data analysis was performed in Ubuntu 22.04 using RStudio
v.4.2.0 (2022-04-22, SCR_000432), and packages — tidyverse
(v.1.3.1, Wickham et al., 2019, SCR_019186), gt (v.0.6.0, Iannone
et al., 2022) and the UMX package, (v.4.10.50 and OpenMx v2.20.6)
(Bates et al., 2019)— were used for the bivariate structural modeling
of the ACE Cholesky decomposition. For the umxACE function, the
arguments addCI and Intervals were set up as True; themodeling was
performed using the ‘CSOLNP’ optimizer. All code is available in
GitHub URL: https://github.com/NeuroGenomicsMX/TwinsMX_
Astigmatism_Myopia.

Results

Considering that DZ twin pairs can be discordant for sex, we
performed a chi-square test betweenMZ and DZ twins for the total
sample by sex. The chi-square test did not show significant
differences in sex ratios between DZ and MZ, χ2(1,
N= 2798) = 1.83, p = .18. Figure 2 shows subgroups or pairs
segregated by zygosity and sex (2A) and distribution by age group
(2B). No differences in distribution by age group were observed
between MZ and DZ pairs, χ2(4, N= 1399)= 7.1623, p = .13.

The prevalence of astigmatism, myopia, and their comorbidity
—that is, their co-occurrence — were characterized in the whole
sample. Considering the whole sample, 50.90% (1424/2798) of the
individuals had at least one of the two diagnoses (astigmatism or
myopia). Specifically, 5.5% (155) of the individuals were diagnosed
only with astigmatism, 14.58% (408) only with myopia, and
30.77% (861) were diagnosed with both. There were no differences
between the distribution of these three groups by zygosity,
MZ versus DZ, χ2(2, n= 1424) = 2.21, p = .33, nor by sex, χ2(2,
n= 1424)= 0.23, p = .89; see Figures 3A and 3B respectively.

Astigmatism. Among 1399 families, the prevalence of astigma-
tism was 36% (1016/2798). Concordance rates results showed that
MZ twins had a significantly higher astigmatism concordance than
DZ, .74 versus .50; χ2(1)= 40.20, p= 2.29 × 10-10 (Table 1).

Figure 1. Bivariate path modeling for astigmatism and myopia. Cholesky decom-
position in latent variables: A (genetic contribution), C (shared environment influence),
and E (residual or nonshared environmental influences). A1 represents the latent
variable (i.e., the set of genes) that contributes to astigmatism (path a11) and myopia
(path a21). A2 is the second latent variable (i.e., a second set of genes) affecting
myopia. Also shown are the respective variables for shared and nonshared
environmental contributions (C and E).
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Myopia. The prevalence of myopia was 45% (1269/2798). The
concordance rate was significantly higher for MZ than for DZ
twins, .74 versus .55, χ2(1)= 33.09, p= 8.80 × 10-9 (Table 2).

Additional Analysis for Complete Pairs Only

The same statistics were estimated for the subsample that included
the participant-report of both twins (243 pairs). Consistent with
the previous results (considering the report from one twin about
both twins), MZ twins showed higher concordance rates for
astigmatism, χ2(1)= 14.72, p= 1.20 × 10-4 (Table 3) and myopia,
χ2(1)= 12.08, p= 5.0 × 10-4 (Table 4).

Heritability and Cross-Trait Correlation

The Akaike information criterion (AIC) showed that the AEmodel
had a better fitting that the ACE model (Table 5). The estimates
and their corresponding 95% CI for ACE and AE are detailed in
Figure 4.

The additive genetic effects or heritability (A) for astigmatism
(a211) was estimated at .81 (95% CI [.74, .82]) with residual or
nonshared environmental contributions (e211) E = .19 (95% CI
[.17, .25]). Meanwhile, heritability (a212 þ a222) for myopia was
estimated at A = .81 (95% CI [.73, .89]) and E (e212 þ e222) = .19
(95% CI [.15, .21]). Additionally, bivariate modeling allowed us to
estimate the cross-trait correlation; for this model the genetic
correlation was rA = .80 (95% CI [0.77, 0.83]), and nonshared
environmental correlation rE = .89 (95% CI [0.84, 0.91]). Finally,
the phenotypic correlation between astigmatism and myopia due
to additive genetic influences was rP = .79 (95% CI [.76, .82]), and

the phenotypic correlation due to nonshared environmental
influences was estimated at .21 (95%CI [.18, .24]). The calculations
for these bivariate effects and cross-trait correlations are carefully
detailed in (Munn et al., 2010).

Discussion

This study aimed to estimate the concordance rates and heritability
of myopia and astigmatism inMexican twins. Given the genetically
diverse ancestral composition of the Mexican population (García-
Ortiz et al., 2021; Martínez-Cortés et al., 2012), this study is
relevant to better understand the relevance of genes on these
diagnoses in genetically admixed populations that are typically
underrepresented in research. The results showed higher con-
cordance rates for myopia and astigmatism in monozygotic (MZ)
twins compared to dizygotic (DZ) twins. The estimated heritability
was .81 for each of the traits, astigmatism and myopia, and the
genetic correlation (rA = .80) suggests that both traits are
influenced by a shared set of genes.

Although a correlation lower than one does not necessarily
imply that the set of shared genes has a similar effect on both
astigmatism and myopia (Posthuma, 2009), the high value of the
genetic correlation in this study supports the conclusion that
astigmatism and myopia share a genetic basis and overlap in their
genetic effects. Accordingly, a genomewide association study
(GWAS) in a sample with European ancestry found that the
NPLOC4/TSPAN10 (17q25.3) gene cluster, which has previously
been linked to myopia and other ocular disturbances (e.g.,
Plotnikov et al., 2019), was also associated with astigmatism
(Shah, Li et al., 2018). Another study in individuals from the UK

Figure 2. A. Twin pairs segregated by zygosity
and sex. No differences by group were observed
(p = .18). B. Twin pairs segregated by zygosity
and age group. No differences between DZ and
MZ pairs were observed (p = .13).
Note: MZ, monozygotic; DZ, dizygotic; MZF, MZ
female; MZM, MZmale; DZF, DZ female; DZM, DZ
male; DZO, DZ opposite sex.
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and Canada showed that keratoconus, a corneal deformity and
thickness associated with early stages of myopia and astigmatism,
involved approximately 500 genetic loci, suggesting a highly polygenic
architecture of ocular refraction errors (He et al., 2022). The present
study highlights the genetic overlap between astigmatism andmyopia,
and further research is needed to identify the specific shared or unique
loci contributing to the etiology of these conditions. The higher
concordance rates and heritability estimates in this study indicate that
these refractive errors have a strong genetic contribution in the
Mexican population.

Our results are consistent with prior research on the heritability
of astigmatism and myopia in various populations. For astigma-
tism, studies have demonstrated higher correlations within MZ
twins compared to DZ twins for factors such as refractive error,
axial length, and corneal curvature (Dirani et al., 2008; Lyhne et al.,
2001; Teikari et al., 1989). In the case of myopia, a Chinese study
found a higher concordance rate in MZ twins (.65) than in DZ

twins (0.46) (Lin & Chen, 1987). Our findings, with concordance
rates of .74 and .55 for MZ and DZ twins respectively reveal a
similar trend. Currently, it is understood that myopia results from
the interplay of multiple genes and genetic variants that influence
eye growth and retinal signaling (Williams et al., 2017).

The demographic analyses showed no differences in the
distribution of age nor sex between MZ and DZ twins, suggesting
that differences in demographics (p > .05) do not explain our
results. Additionally, our results show a higher prevalence of
myopia (45%) than astigmatism (36%) in the Mexican population,
which is consistent with those previously observed by Gomez-
Salazar et al. (2017). Additionally, there was a higher number of
participants that reported being diagnosed with both astigmatism
and myopia, instead of only one diagnosis, and this is not different
as a function of zygosity (MZ vs. DZ) or sex (MZ vs. DZ). This
finding suggests a phenotypic link between these two traits.

While biometric measures are used to diagnose astigmatism, for
example, measuring the meridian of anterior corneal surface (also
known as K1) and the steep meridian of the anterior corneal
surface (also known as K2) to estimate the spherical equivalent and
the autorefraction of the eyes (Dirani et al., 2008), we had no access
to any of these values. Requesting such information can limit the
extent of participant recruitment, particularly in populations like
those in Mexico, where obtaining large sample sizes with these
biometric measures is a geographic and economic challenge. In these
circumstances, participant self-reported data acquired through online
methods can offer a significant advantage for twin studies, particularly
in terms of size and geographic representation (Grjibovski et al., 2006;
Hur et al., 2019).

Our results were robust even when considering reports for the
pair from only one of the twins. The primary analysis conducted on
1399 families and the analysis on 243 complete pairs both
replicated the results for myopia and astigmatism. Furthermore,
the consistency of participant and co-twin reports was observed to
be high, with 80.45% agreement for astigmatism and 84.36% for
myopia. This suggests that the participant and co-twin reports
were highly reliable and supports the value of using participant-
reported data in twins’ studies, especially when only one of the
twins can provide information. This method allows the effective
use of data obtained through electronic records, making research
possible for underrepresented populations. Nevertheless, further
research should compare the in-person physical examination and
participant-reported data to assess the similarity and reliability of
results and address this inherent limitation when using partici-
pant-reported data.

One shortcoming of the study is that the limited sample size
prevented us from conducting subgroup analyses by zygosity and
sex. Future research should aim to overcome this limitation by
increasing the sample size, in order to investigate genetic
differences as a function of sex in greater detail. Although a high
reliability (above 85%) between perceived zygosity and DNA-
tested zygosity has been reported (J. Chen et al., 2010; Hardiansyah
et al., 2021; Ooki & Asaka, 2004; Reed et al., 2005), another
inherent limitation in this study is that the DNA validation of the
zygosity was not performed; further research might address the
concern for this Mexican sample.

Also, given the high genetic influence demonstrated in the
current results, it is also desirable to explore possible genetic factors
and variations in the Mexican population through techniques such
as GWASs (Nakanishi et al., 2009; Shah, Li et al., 2018). In addition
to the strong genetic contribution identified here, it is relevant to
note that, according to the model fitting, the shared environmental

Figure 3. Prevalence of astigmatism, myopia, and their comorbidity in the sample.
Three groups are shown: Astigmatism and No myopia; No astigmatism and Myopia;
Astigmatism and Myopia. Segregated by zygosity (A) or by sex (B). No differences
between groups were observed by zygosity: monozygotic (MZ) vs. dizygotic (DZ), χ2(2,
N = 1424) = 2.21, p = .33, nor by sex, χ2(2, N = 1424) = 0.23, p = .89.
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Table 1. Astigmatism concordance rates in Mexican twins

Group
Total
n Pairs

Positive
cases n

Negative
cases n

Concordant
pairs

Discordant
pairs

Probandwise
concordance

rate 95% CI

MZ MZF 1098 549 439 659 165 109 0.75 0.71, 0.79

MZM 462 231 138 324 49 40 0.71 0.63, 0.79

DZ DZF 612 306 249 363 74 101 0.59 0.53, 0.66

DZM 166 83 40 126 11 18 0.55 0.40, 0.70

DZOS 460 230 150 310 36 78 0.48 0.40, 0.56

All MZ 1560 780 577 983 214 149 0.74 0.71, 0.78

All DZ 1238 619 439 799 121 197 0.50 0.50, 0.60

Total 2798 1399 1016 1782 335 346 0.66 0.63, 0.69

Note: MZ, monozygotic; DZ, dizygotic; MZF, monozygotic female; MZM, monozygotic male; DZF, dizygotic female; DZM, dizygotic male; DZOS, dizygotic opposite sex. Probandwise concordance
between All MZ and All DZ groups was tested by Likelihood Ratio Test. χ2(1)= 40.20, p= 2.29 × 10-10. Significant concordance rate difference between groups was observed.

Table 2. Myopia concordance rates in Mexican twins

Group
Total
n Pairs

Positive
cases n

Negative
cases n

Concordant
pairs

Discordant
pairs

Probandwise
concordance

rate 95% CI

MZ MZF 1098 549 538 560 209 120 0.69 0.64, 0.74

MZM 462 231 165 297 65 35 0.47 0.33, 0.61

DZ DZF 612 306 321 291 111 99 0.58 0.51, 0.65

DZM 166 83 51 115 12 27 0.78 0.74, 0.81

DZOS 460 230 194 266 56 82 0.79 0.73, 0.85

All MZ 1560 780 703 857 274 155 0.74 0.71, 0.78

All DZ 1238 619 566 672 179 208 0.55 0.50, 0.60

Total 2798 1399 1269 1529 453 363 0.66 0.63, 0.69

Note: MZ, monozygotic; DZ, dizygotic; MZF, monozygotic female; MZM, monozygotic male; DZF, dizygotic female; DZM, dizygotic male; DZOS, dizygotic opposite sex. Probandwise concordance
between All MZ and All DZ groups was tested by Likelihood Ratio Test. χ2(1)= 33.09, p= 8.80 × 10-9. Significant concordance rate difference between groups was observed.

Table 3. Astigmatism concordance rate in pairs of Mexican twins

Group
Total
n Pairs

Positive
cases n

Negative
cases n

Concordant
pairs

Discordant
pairs

Probandwise
concordance

rate 95% CI

All MZ 324 162 151 173 55 41 0.73 0.66, 0.80

All DZ 162 81 66 96 15 36 0.45 0.33, 0.57

Total 486 243 217 269 70 77 0.65 0.58, 0.71

Note: MZ, monozygotic; DZ, dizygotic. Probandwise concordance between All MZ and All DZ groups was tested by Likelihood Ratio Test. χ2(1)= 14.72, p= 1.20 × 10-4. Significant concordance
rate difference between groups was observed.

Table 4. Astigmatism concordance rate in pairs of Mexican twins

Group Total n Pairs
Positive
cases n

Negative
cases n

Concordant
pairs

Discordant
pairs

Probandwise
concordance

rate 95% CI

All MZ 324 162 178 146 72 34 0.81 0.75, 0.87

All DZ 162 81 77 85 23 31 0.60 0.49, 0.71

Total 486 243 255 231 95 65 0.75 0.69, 0.80

Note: MZ, monozygotic; DZ, dizygotic. Probandwise concordance between All MZ and All DZ groups was tested by Likelihood Ratio Test. χ2(1)= 12.08, p= 5.0× 10-4. Significant concordance rate
difference between groups was observed.
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influence was not significant enough to be included in the model,
suggesting that the common lifestyle in the twins’ families has no
significant influence on the variability of being diagnosed with
astigmatism or myopia. However, it is also important to consider
individual environmental factors such as nutrition, the use of
electronic devices, and near-work to be explored in future Mexican
twin samples to understand their role in the prevalence in different
traits, including refractive errors.

Finally, it is not unexpected that one of the first twin studies
focused on examining the concordance rates of refraction errors in
human eyes. Twin studies afford a unique chance to investigate
conditions such as astigmatism and myopia. In conclusion, our
study affirms that the likelihood of developing astigmatism and
myopia in the Mexican population is significantly shaped by
genetic factors.
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this study will be available after accepted publication at GitHub URL: https://
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