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DISCRETE OPEN AND CLOSED MAPPINGS ON
GENERALIZED CONTINUA AND NEWMAN’S
PROPERTY

LOUIS F. McAULEY AND ERIC E. ROBINSON

1. Introduction. In 1930, M. H. A. Newman proved a rather remarkable
theorem which has become one of the classical theorems in topology. It
has many important applications. A special case of Newman’s Theorem is
that a periodic homeomorphism of period n > 1 of a sphere S onto itself
must have some orbit which is not contained in a “cap’ smaller than a
hemisphere. The general theorem is as follows:

THEOREM ( [15] ). Suppose that M" is a connected (metric) n-manifold, U
is a domain in M", and p is an integer greater than 1. Then there is a positive
number d such that no uniformly continuous homeomorphism h of M" onto
itself of period p moves every point of U a distance < d. That is, there is
x € U so that the orbit of x under h has diameter = d.

Ten years later (1940), P. A. Smith generalized Newman’s Theorem as
follows:

THEOREM ( [18] ). Suppose that M is a locally compact Hausdorff space in
which open sets are Gg sets, the covering dimension of M is finite, N is a
bounded open set in M, q is an integer greater than 1, p is a prime factor of q,
Z, is the additive group of integers mod p, and M is n-regular over Z,. Then
there is a covering A of M such that no periodic homeomorphism T of period q
on M can satisfy the relation T << A over N. That is, T < A over N if and
only if for each x € N,

{x, T(x)} C a, wherea, € A.

The study of light open and closed mappings grew out of the study of
analytic functions by Stoilow in 1928. However, it was G. T. Whyburn
who developed the theory in a systematic manner in the 1930s [21].
Finite-to-one and discrete open and closed mappings are special cases of
these light (totally disconnected point inverses or fibers) mappings.

Important contributions were made by a number of individuals in the
1950s; notable among these are Church and Hemmingsen [4]. However, it
was Cernavskii who first observed that finite-to-one open and closed

Received May 27, 1983 and in revised form January 19, 1984.
1081

https://doi.org/10.4153/CJM-1984-062-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-062-9

1082 L. F. McAULEY AND E. E. ROBINSON

mappings on manifolds are enough like orbit mappings of finite group
actions to possess this special Newman’s property. In 1964, Cernavskii
proved the following:

THEOREM ( [3] ). Suppose that [ is a finite-to-one open and closed mapping
on a connected (metric) n-manifold M" onto a Hausdorff space Y. Then

(1) there is a natural number k so that for each x € M", cardinality of
[ (x) = k (bounded multiplicity) and

(2) the elements of maximal multiplicity form a dense open set in M".

Furthermore,

(3) for each open set U of M", there is € > 0 such that if f is any
finite-to-one open and closed mapping of M" onto some metric space Y and |
is not a homeomorphism, then for some x € U, diameter [~ 'f(x) = .

The proofs are complicated and difficult to follow. However, the type of
arguments are similar to those due to Smith [18].

Using Alexander-Spanier cohomology, important properties of mani-
folds, and a topological index, Viisdld proved, in 1966, the following
theorems which are corollaries of Cernavskii’s Theorem.

THEOREM ( [19] ). Suppose that each of X and Y is a connected (metric)
n-manifold without boundary. If f'is a discrete open and closed mapping of X
onto Y, then

(1) f is finite-to-one and has bounded multiplicity,

2) ifo = {x|x € X and [ 'is not local homeomorphism at x}, then interior
Br =0,

f(3)f0r xe X — f_'f(Bf),f_lf(x) has maximum multiplicity k, and
(4)dim By =n — 2.

Note that Cernavskii’s Theorem does not require that Y be a
manifold.

Returning to finite actions, A. Dress [6] gave a reasonably short proof of
Newman’s Theorem in 1968. There is an elegant proof of Newman’s
Theorem in Bredon’s book [5, pp. 154-158] which appeared in 1972.

We were able to generalize, in 1982, a lemma of Dress [6] to obtain a
short straightforward proof of the following theorem (cf. Cernavskii’s
Theorem).

THEOREM ([11]). If (M, d) is a connected (closed) n-dimensional
manifold, there is € > 0 so that if Y is a (closed) manifold and [ is a
finite-to-one proper open surjective mapping of M onto Y which is not a
homeomorphism, then for some y € Y,

diam /" Y(y) Z e

In 1971, Duda and Haynsworth proved (1) and (2) of Cernavskii’s
Theorem for boundaries of certain open subsets of n-manifolds as well as a
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version of (3). Their work uses rather powerful tools from cohomology
theory as well as the topological index used by Viisala.

We generalize the results of Cernavskii, in particular, to locally
compact, locally connected metric spaces (generalized continua). Our
proofs are entirely elementary and are in the spirit of Smith and
Cernavskii. We make use of basic (and easily proved) results of Whyburn
from the theory of light open mappings, some useful but almost obvious
rvesults of Viisild, and generalizations of two lemmas due to Wilder. Basic
Cech homology is used along with some special coverings defined with
respect to discrete open and closed mappings between generalized
continua.

We define an obvious Newman’s Property and show that it is, indeed,
equivalent to bounded multiplicity for finite-to-one and closed mappings
on certain generalized continua.

We also prove that f(By) neither separates nor locally separates Y where
fis a finite-to-one open and closed mapping of X onto Y where X is a
generalized continuum with Newman’s Property hereditarily. Further-
more, we establish the surprising result that if / ~'f (Br) separates X, then
there are exactly n components C;, C,, ..., C, of this set and [ is
one-to-one on each. If fis one-to-one on f 'f(Bf), then n = 2 and there is
an involution g of X onto X such that g|B, is the identity and f is
topologically equivalent to the orbit mapping of g.

It should be clear that our work generalizes to certain non metrizable
spaces using coverings and the idea of “relation 7' << 4 over N to replace
“e > 0 and diam f~'f(x)” as done by Smith in his proof of a Newman’s
Theorem [18].

We would like to point out that Larry Mann and collaborators Ku have
used earlier results [11] to prove a Newman’s Theorem for pseudosubmer-
sions. See [9].

The hypothesis concerning openness can be weakened using work of
Montgomery [10].

It may be possible to modify the treatment of Newman’s work as given
by Bredon [5] so as to prove some of the theorems in Sections 5 and 6.
Although Bredon is concerned with actions of groups (finite, in the case of
Newman’s Theorem), various lemmas are quite general. Orbit mappings of
finite group actions (on compact spaces) are finite-to-one open and closed
mappings. The converse is false.

Finite-to-one open and closed mappings, in some instances, share other
properties with actions. However, one must exercise considerable care in
the use of homology since group actions are not involved. Moreover, our
work is on the whole self contained and elementary.

2. Terminology, notation, and basic results. All mappings are contin-
uous and all topological spaces are Hausdorff. A mapping f of a space X
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onto a space Y is open (closed) if the image of each open (closed) set in X is
open (closed) in Y. A mapping f of X onto Y is light if and only if for each
x € X, [ 'f(x) is totally disconnected (each maximal connected subset,
i.e., each component, is a point). It is discrete if and only if /~'f(x) is
discrete (i.e., has no limit point) for each x € X. The branch set By of f is
the set of all x € X such that fis not a local homeomorphism at x. It is
easy to show that By is closed, hence, under a closed mapping f(By) is

closed.
The multiplicity N(x, f) of f at x € X is the cardinality of /™ 'f(x)
while
N(f) = supremum {N(x, f)|x € X}.
Let

Ki(f) = {xlx € Xand N(x, f) = i}.

Thus, it follows that K;(f) is closed.

We shall use 4 and int 4 to denote the closure of A4 and the interior of
A, respectively. We may use Cl 4 to denote A as well.

A space X is a generalized continuum if and only if X is locally compact,
connected, and locally connected. This term is due to Whyburn [20].

It is well known that if fis an open and closed mapping of X onto Y,
then the collection

Gr= (/") x € X}
is a continuous collection (continuous decomposition of X), ie., if
{yi} 2 yin Y, then {f‘l(y,-) } converges tof!(y)in X.

A subset U of a space X is a domain if and only if U is open and
connected. A mapping f of X onto Y is proper if and only if for each
compact subset 4 of Y, f'(4) is compact. If each of X and Y is locally
compact, f is closed, and f ~!(y) is compact for each y € Y, then f is
proper. In particular, if f'is closed and finite-to-one, then f is proper.

A simple arc A4 is the homeomorphic image of the closed interval [0, 1]
into a space Y.

A subset 4 of a space X is said to separate X locally at x € X if and only
if for each open set U containing x, there is an open set V' containing x
such that U D V and V — A is not connected.

We shall make use of some lemmas and theorems which are easy to
prove. For completeness, we include the proofs.

LeEMMA 2.1. [18] Suppose that f is a light open mapping of X onto Y such
that N(f) = k (a natural number). Then N(x, f) < k for each x € By

Proof. If N(x), f) = k for some x; € By, then let
S = {x1, x2 -0, xi )
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Choose k pairwise disjoint open sets U;, i = 1,2, ..., k, such that x; € U,.
Then the set

V=10, ﬂf_][iélf(Ui)]

is an open set such that f]V is a homeomorphism and consequently fis a
local homeomorphism at x| contrary to the fact that x| € By.

LEMMA 2.2. [18] Suppose that X is locally compact and that f is a discrete
open mapping of X onto Y. Then int By = 0.

Proof. Suppose that int By # #. Then there is an open set U such that
By > Uand U is compact. The restriction g = f|U is an open mapping for
which N(x, g) < oo for each x € U. Thus,

[ee)
U= U Kig)
i=

By the Baire Theorem [17],
int K;(g) = V # 0 for some i.

Since N(g|V) = i, Lemma 1 implies that there is a point x € V at which
glV, and hence f, is a local homeomorphism. However, x € U C By which
is a contradiction.

LeMMA 2.3. [19] Suppose that X is locally compact and locally connected.
Furthermore, [ is a light mapping of X onto Y. Then for each point x € X
and each open set Uin X, x € U, there is a domain Vin X, x € V C U such
that f|V = g is a closed mapping of V onto f(V).

Proof. Let x € X and x € U, an open set in X. Since f'is light, there is
an open set W, x € W, such that U D W, W is compact, and

Bd W n ff(x) = 0.

Choose an open set D of f(X) such that D N f(Bd W) = @ and let V be
the component of / ~!(D) which contains x. Then ¥V € W is a domain and
g = f|V is a closed mapping of V onto f(V).

LEMMA 2.4. [19] Suppose that X is a locally connected space and that A is
a closed subset of X such that int A = 8 and X — A is not connected. If F is
the closure of the set of all points at which A separates X locally, then X — F
is not connected.

Proof. Since X — A is not connected, X — 4 = U; U U, — two disjoint
nonempty open sets. Let

V, = (int U,) — F.

https://doi.org/10.4153/CJM-1984-062-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-062-9

1086 L. F. McAULEY AND E. E. ROBINSON

It follows that X — F = V; U V, — two disjoint open sets such that
V,- D U,‘.

THEOREM 2.5. Suppose that [ is a proper light open mapping of X onto Y.
If xy is a simple arc in Y and p € [~ \(x), then there is a simple arc pq in X
such that f| pq is a homeomorphism of pq onto xy. In fact, for each path P in
Y (image of [0, 1] under a continuous mapping 0) andp € [~ 16(0), there is a
continuous mapping 8 of [0, 1] into X such that

0(0) = p and (f1([0,1]))o0 8 = 6.

Proof. Since f is proper, f'(xy) = A4 is compact. By a theorem of
Whyburn ( [21], 2.1, p. 186) there exists pq satisfying the conclusion of the
theorem. Similarly, if 6[0, 1] = P, then f ~'(P) = 4 is compact and f|4 is
light and open [21, 7.2, p. 147]. By a theorem of Floyd (8, 2, p. 574], there
exists 8 satisfying the conclusion of the theorem.

LEMMA 2.6. [cf 19, Lemma 5.3]. Suppose that X is a generalized
continuum and that [ is a finite-to-one open and closed mapping of X onto Y.
Furthermore, A is a closed subset of X such that X — A is not connected and
N(x,f) = 1for each x € A. Then each component C of X — A is mapped by
fonto a component f(C) of Y — f(A) and g = f|C is a closed (and open, of
course) mapping of C onto f(C).

Proof. Let E be a subset of C closed relative to C, thatis, E = E N C.
Now, f(C) is contained in a component V of Y — f(A4). Thus, f(E) N V
is closed relative to ¥ and contains f(E). Hence, g is closed. Finally,
f(C) = V since g is open.

The following theorems are easy generalizations of theorems due to
Whyburn, {21, pp. 147, 131, and 189, respectively].

THEOREM A. Suppose that f is a proper open mapping of X onto Y where X
is a generalized continuum. If R is a domain in Y, then f ~(R) has at most a
finite number of components each of which maps onto R under f.

THEOREM B. Suppose that [ is a proper light mapping of X onto Y where
each of (X, d) and (Y, p) is a locally compact metric space. If € > 0, there is
8 > 0 such that for each closed and connected subset C of Y with diameter
less than 8, each component of [ ~'(C) has diameter less than e.

THEOREM C. Suppose that f is a proper light open mapping of X onto Y
where X is a generalized continuum. If K is a generalized continuum in Y
whose interior is dense in K, then [~ \(K) is locally connected and each
component of [ ~(K) is a generalized continuum.

It is easy to obtain proofs of these theorems by first observing that fis
proper and Y is locally compact. Now, adapt the proofs given by Whyburn
[21] to the situation here.
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3. Finite-to-one open and closed mappings on generalized continua
having Newman’s Property. We shall prove, in Section 6, that certain
n-dimensional generalized continua have Newman’s Property hereditarily.
Indeed, we give generalizations, in Section 7, to certain light open

mappings on a class of generalized continua. Clearly, n-manifolds
(connected and metric) as well as Peano continua are special cases of
generalized continua.

We first give some easy and elementary proofs of theorems for
generalized continua first proved for n-manifolds by Cernavskii [3], later
proved by Viisila [19, 20], Duda and Haynsworth [7], and Church [4]. Our
methods resemble those of Cernavskii but are far simpler using the easily
proved results of Section 2 and some of the theorems proved below. We do
not need to use manifold theory and the important Alexander-Spanier
Cohomology Theory used in [19] and elsewhere. First, we state a key
property which will be seen to be equivalent to the bounded multiplicity
property for finite-to-one open and closed mappings on n-manifolds (and
more general spaces).

Definition. A metric space (X, d) is said to have Newman’s Property if
and only if for each open set U C X, there is an € > 0 such that if f'is an
open and closed mapping defined on X (from X onto some space Yy) and
1 < N(f) < oo, then for some x € U, the diameter of /~'f(x) = e

We can, of course, state Newman’s Property for more general (non
metrizable) spaces X using coverings.

A space X is said to have Newman’s Property hereditarily if and only if
each domain U in X has Newman’s Property.

Since an n-manifold M is locally an n-manifold, it follows that M has
Newman’s Property hereditarily.

Definition. A mapping h of X onto X is said to be an involution if and
only if 4 is a homeomorphism of period 2, but not the identity. The orbit
mapping ¢ of s is a two-to-one open and closed mapping. We shall say
that a finite-to-one open and closed mapping f is simple if and only if

N(f) =2

It is well known that if U and V are disjoint open subsets of an
n-manifold M such that

() BAU=BdV and Q)M # T U 7,

then there is no homeomorphism 4 of U onto V" such that (x) = x for
x € Bd U. See [19, 5.2, p. 6]. Suppose that there is such a homeo-
morphism.

Let f be the quotient mapping consisting of the singletons on M —
(U U V) and the sets (orbits) {x, h(x) } for x € U. Thus, fis a finite-
to-one open and closed mapping which is one-to-one on the open set
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M — (U U V). This implies that M does not have Newman’s Property
with respect to simple mappings. Thus, this property used in [19, 5.2] is
only a special use of Newman’s Property for n-manifolds. Indeed, it is
equivalent to this special case.

Notation. Suppose that fis a discrete open mapping of X onto Y. We use
B to denote f ! S (By) where

By = {x|f'is not a local homeomorphism at x}.
Also,
A = Cl{x|x € B and B separates X locally at x }.

We shall prove theorems in the remainder of this section which are of
interest independently of their usefulness in establishing our main
results.

THEOREM 3.1. Suppose that X is a generalized continuum and that [ is a
finite-to-one open and closed mapping of X onto Y such that X — B is
connected. Then N(x, f) is constant on X — B.

Proof. Suppose that for some p and ¢ in X — B, N(p, f) # N(q. f).
There is a simple arc pg from p to g in X — B [cf. 21].

Now, f(pq) is a Peano continuum P in f(X — B). There is a simple
arc R from f(p) to f(q) in P. By using Theorem 2.5, it is seen that
X — B > f YR) and f~'(R) is the union of a finite number of simple
arcs x;y; such that

M) fx) = f(p)s
(@) f(y) =/f(g), and
(3) flx;y; is a homeomorphism of x;y; onto R.

Since N(p, f) # N(q, f), some two of the arcs x;y; must have at least one
point in common. Thus, some common point z is a point at which f'is not a
local homeomorphism. Hence z € By. This is a contradiction. (See also a
similar result in [21, 6.1, p. 199].)

THEOREM 3.2. Suppose that X is a generalized continuum which has
Newman’s Property hereditarily and that f is a finite-to-one open and closed
mapping of X onto Y. If X — B is not connected, then f is one-to-one on each
component C of X — B.

Proof. Suppose that fis not one-to-one on some component C of X — B.
Let

Q={xlxe C—-Candx € C(X — C)}.
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Then Q is closed and separates C from X — C in X. That is, there is a
separation X — Q = S U Twhere S D Cand T > X — C.

Let B; = Q N K;(f) for each i.

Since

[ee]
Q= ‘Ul B,
=

it follows from the Baire Theorem that for some k, the interior U of B,
with respect to Q is non empty. Let W be an open set in X so that
W N Q = U. Now,

Ki(f) D U and N(x, flU) = k for each x € U.
Hence, there is x; € U so that
k = N(xi, fIW) =n = N(x, fIW) foreach x € U.

Let x5, x3, ..., x,, be the other points (distinct from each other and from
xy) of W N f"f(x,), if any; otherwise, let V' = W. Choose pairwise
disjoint open sets W, containing x; for each i = 1, 2,..., n such that
W o> W, Let

v — w0 (A som).

Then N(x, f|V) = 1foreach x € V' N Q. (We have used an idea from [19,
proof of 5.4, p. 7].)

Next, choose a domain D containing x; such that f|D is closed and
V 2 D.Thus, f|D N Q is one-to-one. Since x; € Q and C is a component
of X — B,

Dn(X—C)#0.

Let g = f|C U D. Clearly, f|C is closed since fﬁlf(Bf) = B is closed.
Thus, g is a closed and open mapping on the domain C U D. Let m denote
the quotient mapping defined with singletons on D — C and the various
sets g 'g(x) for x € C. Thus, m, is an open and closed mapping of
bounded multiplicity, i.e., N(m) = N(f|C) which is constant by Theorem
2.1 and greater than 1 by assumption. Since m is one-to-one on the non
empty open set D — C, it follows that X does not have Newman’s
Property hereditarily. This is a contradiction. The theorem is proved.

Remark. Instead of assuming that X has Newman’s Property hereditari-
ly, assume that X has Newman’s Property and that f|Bd C is one-to-one
where C is a component of X — B. Assuming that fis not one-to-one on C,
let m be the quotient mapping defined by the singletons on X — C and the
sets /~!f(x) N C. Consequently, if X — B is not connected, then m is
one-to-one on the non empty set X — C. This contradicts the assumption
that X has Newman’s Property. It follows that f|C is one-to-one.
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THEOREM 3.3. Suppose that X is a generalized continuum and that f is a
finite-to-one open and closed mapping of X onto Y. Furthermore, C is a
component of X — B (where B = fﬁlf(Bf)) such that f|C is one-to-one.
Then C is contained in a component C' of X — A (where A = Cl {x|]x € B
and B separates X locally at x} ) and f is one-to-one on C'.

Proof. If B =@ = A, then C = X and f'is one-to-one on X. If B # @,
let

F={xlxe CnBandx & CI(X — O)}.

For each x € F, there is a domain D, containing x and no point of
Cl(X — C). Clearly, C" = C U Fis connected and F N 4 = #. However,
A D B n (C — F). It follows that C’ is a component of X — A.

Suppose that f'is not one-to-one on C’. Then there are two points p and
q in C’ such that f(p) = f(q). There are disjoint domains D, and D,
containing p and g, respectively, such that f(D,) = f(D,). Consequently,
there are points x € D, N Candy € D, N C so that f(x) = f(y) which
contradicts Theorem 3.2. Thus, f'is one-to-one on C'.

THEOREM 3.4. Suppose that X is a generalized continuum with Newman’s
Property hereditarily and that f is a finite-to-one open and closed mapping of
X onto Y. Furthermore, Q is a closed subset of B such that

(1) C, and C, are two components of X — Q,

(2) S(C) = [(Cy),

(3) [fIC; is one-to-one,

4) fIC; is closed (and, open, of course),

(5) D is a domain such that f|D is closed,

(6) N(x,f|D) =1 for each x € D N Q, and

(7) DN C;#0fori=1,2.

Then D — (6, U 62) = ﬂ

Proof. Suppose that D — (C; U C,) # 0. Let m be the quotient
mapping defined by the singletons on D — (C; U (,) and the sets
f Y (x) n (C, U G, for each x € C,. It follows that the domain
D U C; U C, does not have Newman’s Property since m is one-to-one
on D — (C; U C,). This is a contradiction. The theorem is proved.

THEOREM 3.5. Suppose that X is a generalized continuum with Newman'’s
Property hereditarily and that f is a finite-to-one open and closed mapping
from X onto Y. If X — B is not connected, then there is p € By and at least
two components Cy and Cy of X — B such that

() peCn Gy,

(2 f(C) = [f(Cy),

(3) fIC; is one-to-one, and

(4) fIB is a local homeomorphism m at p.
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Indeed, there exist components Cy and C of X — A containing Cy and Cs,
respectively, such that f|C} is one-to-one. (Recall that B = [~ lf(Bf) and that
A = Cl {x|x € B and B separates X locally at x}.)

Proof. Let B; = B N K;(f) for each i. As in the proof of Theorem 3.2,
there is some k such that the interior U of B, relative to B is non empty. As
shown there, there is p = x; € U and an open set V' in X containing p such
that

UDVnNB and N(x,[f|V) = 1foreachx € VN B.

Since U D f~!f(p), there is no loss of generality in assuming that p € By
and f is not a local homeomorphism at p.
There is a sequence { y;} — f(p) such that for each
(1) y; & f(B) and
(2) there are points p; and ¢; in f ~'( ;) where p; # ¢;, {p;} —p.and
{4:} = p.

For each i, there are components W, and Z; of X — B such that p; € W,
4 € Zo f(W) = f(Z), and W, " Z, = B._

Suppose that for infinitely many i, p & W,. By Lemma 2.3, there is a
domain D containing p so that f|D is closed. Also, assume that ¥ > D.
Hence, N(x, f|D) = 1 for each x € D N B. For some t, D N W, # 0,
D N Z # B, and p ¢ W, Now, define a quotient mapping m on
D U W, U Z, with singletons on D — (W, U Z,) and the sets / ~'f(x) N
(W, U Z,)foreach x € W, Now, D U W, U Z, has Newman’s Property.
By Theorem 3.4,

D— (W,uUZ)=4.

This is a contradiction. Thus, there is N so that if i > N, p € -147, and
p € Z.

If there is some i and j, i > j > N, so that f(W;) # f(W)), then choose a
domain D containing p so that f|D is closed and N(x, f|D) = 1 for each
x € DN B

Now, f(W;) = f(Z)). Also,

sincep € D,p € W, and W, n (W; U Z;) = 0.

Again, we can define a quotient mapping on D U W, U Z, similar
to the above, and obtain a contradiction to Theorem 3.4. Thus,
f(W;) = f(W)) for each i, j > N and, similarly, f(Z;) = f(Z;) for
i, j > N. Consequently, we have proved that there is M so that for each
i> N,p; € W;and q; € Z,; for each j > M.

The final part of the theorem follows from an application of Theorem
3.3.
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Definition. A pair (X, Y) where each of X and Y is a space is said to have
The Invariance Of Domain Property if and only if for any pair (U, V') such
that

() XoU,

(2) Y > V, and

(3) there is a homeomorphism % of U onto V,
then U is open implies that V' is open and conversely.

This is a well known property for pairs (X, Y) where each of X and Y is
an n-manifold (without boundary).

Question. What pairs (X, Y) have the Invariance Of Domain Property?

THEOREM 3.6. Suppose that X is a generalized continuum with Newman’s
Property hereditarily and that f is a finite-to-one open and closed mapping of X
onto Y. Furthermore, the pair (X, Y) has the Invariance Of Domain Property.
Then By does not locally separate X.

Proof. Let
F = Cl {x|x € Brand By separates X locally X at x}.

It follows from Lemma 2.4 that if B, separates X locally at x, then F
does.

Let B, = F N K;(f) for each i. Thus, by the Baire Theorem, there is
some k such that the interior U of By relative to F is non empty. Let W be
open in X such that W N F = U. Since K;(f) D U,

N(x, fIW) = k for each x € U.
Hence, there is x; € U so that
k = N(xy, fIW) =n = N(x, fI]W) foreachx € U.
As shown before, there is an open set V' in X so that
UDVNF and N(x,f|V) =1 foreachx € VN F.

Since x; € F, thereis ¢ € By N V at which By (and hence F) separates
X locally at g. Choose a domain D containing g such that f|D is closed,
V > D, and D — F is not connected. Since

int By = ¢ = int B,

D — B is not connected.

Now, D is a generalized continuum and g = f|D is a finite-to-one open
and closed mapping of D onto f(D). Furthermore, D has Newman’s
Property. Now,

g 'g(By) = B N D.
By Theorem 3.5, there exists p € B, = By N D, components C; and C; of
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D — B such that

(1) g(Ch) = g(&),

2 pe NG

(3) glC; is one-to-one, and

(4) glB alocal homeomorphism at p.
There is a domain D, containing p such that D > D, gD, is closed,
and

N(x, glD,) = 1 foreachx € D, N B.

There are components Z; and Z, of D, — B such that C; > Z;. By
Theorem 3.4,

Dp_(ZUZ)Zﬂ

Since g is one-to-one on Dp N B, it follows that Z; N D,, is homeomorphic
to g(D,) which is open in Y. By the Invariance Of Domarn Property,
Z N D is open in x and in D,. Since Z N D, is also closed in D,

follows that Z N D, = D, Thrs contradicts the fact that Z, < D, and
Zy, N Z, = 0. We are forced to conclude that By does not separate X

locally at any point.

CoroLLARY 3.61. If each X and Y is a connected n-manifold without
boundary, X has Newman’s Property hereditarily (proved in Section 6), and f
is a finite-to-one open and closed mapping of X onto Y, then By neither
separates X nor separates X locally at any point. Indeed, dim By = n — 2.
[¢f 19, 5.4, p. 7].

Proof. 1f dim By = n— 1, then By separates X locally at some point.

Remark. We used Newman’s Property to show, in the proof of Theorem
3.6, that D, — B consists of exactly the two components Z; and Z,.
A proof for a similar result in [19] where each of X and Y is an n-mani-
fold uses the following result: Suppose that X is an rn-manifold
containing disjoint domains U; and U, such that Bd U; = Bd U, and
U, U U, # X. Then there is no homeomorphism % of U, onto U, which
keeps the common boundary, Bd U, fixed.

It is remarkable that this result is equivalent to Newman’s Property with
respect to simple mappings.

In [3, Theoreml], the proof is given for n-manifolds. However, it holds
true for certain generalized continua as follows:

THEOREM 3.7. Suppose that X is a generalized continuum which has
Newman’s Property hereditarily and [ is a finite-to-one open and closed
mapping of X onto Y. Then N(f) << co.

Proof. Suppose that N(f) = co. Let
E; = Ei(f) = Cl(int K;(f) — Ki—1(f))
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for each i where K, = 0. For some i, E; # # by the Baire Theorem. We
shall prove that

(1) K(f) — Ki_\(f) = H,(f) is dense in Bd E..

Choose x € Bd E; such that N(x, /) = N(y, f) for each y € Bd E,. Of
course, i = N(x, f). Suppose that i > N(x, f). Then thereis z € '/ (x)
such that f|E; is not a local homeomorphism at z. However, f|Bd E; is a
local homeomorphism at z by choice of x. There is a domain D. containing
z such that

N(p,fID.) =1 foreachp € D. N Bd E,,
fID. is closed, and
D. —BdE =V, U Vs,

two separated sets where E; D Vi and E; N V, = 0 (Bd E, separates int E;
from X — E;).

Let m be the quotient mapping consisting of the singletons of ¥, and
the sets /'f(x) N V,. Thus, m is an open and closed mapping on D.
which is one-to-one on the open set V,. This contradicts the hypothesis
that X has Newman’s Property hereditarily. Thus, N(x, f) = i and H,(f)
is dense in Bd E,.

Choose x € Bd E; such that N(x, /) = i. Thereisz € /'~ 'f(x) € Bd E,
such that f is not a local homeomorphism at z but f|Bd E; is a local
homeomorphism at z. Let D, be a domain such that f|D, is closed and

N(p,fID.) =1 foreachp € D. N Bd E,.
We shall prove that

(2) {N(q,f)|qg € D, — E;} is unbounded.
If this is not the case, then there is k so that

N(g,f) < k foreachq € D, — E,.

Define a quotient mapping m consisting of singletons on £; N D. and the
sets f ~f(x) 0 D. — E,. Again, m is an open and closed mapping on D-
with N(x, m) < k. Thus, m being one-to-one on int E; contradicts the
hypothesis that X has Newman’s Property hereditarily. The statement (2)
is true.

Let

(ee]
M=X - Y int K;(f).

Thus, if x € M, then M D f~f(x). Also, if x € M and U, is an open set
containing x, then N(p, f|U,) is unbounded. Note that
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o0
M> U BdE,
=

Let M; = M N K;(f). By the Baire Theorem, there is k so that the interior
of M relative to M is a non empty set U. If x € U, then

U>f 'f(x) and N(x.f) = k.
There is an open set W in X such that

WnNnM=U and [f'f(W)=W.

Thus, W N Bd E; = @ fori > k. If W N int E; # @ for some i > k, then
either

(a) intE; D W or
(b) Wn BdE; # 0.

In case (a) N(w, f) = i for w € W. Case (b) can not be true because
WnM=U-c K/

Thus, it follows that, in any case, {N(p, f)|p € W} is bounded. This
involves a contradiction since by statements (1) and (2), each open
set containing a point of Bd E, (such as W) has the property that
{N(p. /)Ilp € W} is unbounded. Consequently, the theorem is true
and N(f) < oo.

THEOREM 3.8. Suppose that X is a generalized continuum with Newman’s
Property hereditarily and that f is a finite-t0-one open and closed mapping of
X onto Y. If X — B is not connected, then there are n > 1 components of
X — B each of which maps homeomorphically onto Y — f(By).

Proof. By Theorem 3.5, there is a point p € Byand two components C)
and C; of X — Bsuch that p € C; N Gy, f(C)) = f(Cy), fIC; is one-
to-one, and f|B is a local homeomorphism at p.

Let C), Cs, ..., C, be the components of f ~'f(C)). Thus f(C;) = f(C})
and f|C; is one-to-one. Indeed, f|C; is one-to-one. Let

Z = {qlq € Bd C; for some i}.
Now, Z is closed and p € Z. Consider

0=2ZnClx — Y C).

Either
() Q=16 or
2 0 #40.
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We shall show that in case (1),

If

then there is a sequence {g;) — ¢ such that

n
q; & ’_gl C; and ¢ € Bd C; for some /.

Thus, Q # 0, contrary to this case.

Let B; = Q N K;(f) for each i. By the Baire Theorem, there is some & so
that the interior U of By relative to Q is non empty. By an argument
similar to one used before, there is z € U and an open set V in X
containing z such that

UV NnQ and N(x,fIV)=1 forxe Vn Q.

There is a domain R containing z such that f|R is closed, N(x, f|R) = 1
forx € RN Q,and R N C; = P if z ¢ Bd C,. Define a quotient mapping
m on R with singletons on C, N R for each 7 so that C, N R # @. (Recall
that f|C, is one-to-one) and the sets

noo__
fYfx) "R forx e R— U C,.

i=1
If x € Bd C; N R for some i, then either
noo__
x € Q or x & Cl(X — _9] C).
Consequently, m is an open and closed mapping on R. By Theorem 3.7,

N(m) < co. Thus, X can not have Newman’s Property hereditarily since m

n
is one-to-one on the non empty open set R N (}Ul C;), a contradiction.
Thus, =

no__
X=u G
j=

It follows that f maps each C; homeomorphically onto ¥ — f(Bf) and the
theorem is proved.

Example. There is an example of a Peano continuum X and an open and
closed mapping f of X onto Y such that N(f) = 4, X — B has infinitely
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many components, and X has Newman’s Property. However, X does not
have Newman’s Property hereditarily. Thus, Theorem 3.8 is false without
this hereditary property.

We construct the Peano continuum X by starting with an equilateral
triangle ABC containing another equilateral triangle DEF where D, E, and
F are the midpoints of the sides 4C, CB, and AB, respectively. In each
equilateral triangle ADF, DFE, DEC, and EFB, we remove the interior of
an equilateral triangle such as abc having vertices as midpoints of the sides
of the larger triangle. Continue removing the interiors of equilateral
triangles on the remaining triangles in this manner. We obtain a
l-dimensional Peano continuum X which has Newman’s Property (see
Section 6). Fold triangle ADF onto triangle DFE, BFE onto DFE, and
DEC onto DFE to obtain an open and closed mapping f of X onto Y, the
part of X contained in triangle DFE. Now, N(f) = 4 and By consists of
the straight line intervals DE, EF, and DF. Both By and B = ff'f(Bf)
separates X into infinitely many components none of which maps onto

Y — f(By).
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Example. There is a finite-to-one open and closed mapping f of a simple
closed curve X (1-manifold) onto the closed interval [0, 1] = Y such that
N(f) = 4, X — By has 4 components, and f is one-to-one on each
component. This is in contrast to Theorem 3.6. In this example, the pair
(X, Y) does not have the Invariance Of Domain Property. Thus, without
this property, B may separate X but in a very special way.

Let X be the space consisting of

Xi={(,ply—x=1-1=x=0}
X, ={(xyly—x=-1L0=x=1}
X3 ={(upy)lx+y=10=x=1},

and
Xpg={(x,y)x+ty=-1—-1=x=0}

with the induced topology from the plane.

Let ' map each of X3 linearly onto [0, 1] taking (0, 0) to 1 and (0, 1) to 0,
X, linearly onto [0, 1] taking (0, 1) to 0 and (—1, 0) to 1, X4 linearly onto
[0, 1] taking (—1, 0) to 1 and (0, —1) to 0, and X, linearly onto [0, 1]
taking (0, —1) to 0, and (0, 1) to 1. Clearly, X has Newman’s Property
hereditarily (Section 6), but (X, Y) does not have the Invariance Of
Domain Property. Now,

B = Br={(1,0),(0,1),(=1,0), (@0, =1)}.

The remainder of the claim should be obvious.
One can take X X [0, 1]and Y X [0, 1] to construct a similar example in
two dimensions.

COROLLARY 3.81. Suppose that X is a generalized continuum which has
Newman’s Property hereditarily. If f is an open and closed mapping of X onto
Y such that N(f) = 2 and X — B is not connected, then X — B consists of
exactly two components C| and C,. Furthermore, there is an involution h of X
onto X such that h(x) = x if and only if x € Byand [ is (topologically) the
orbit mapping of h.

The proof is an easy consequence of Theorem 3.8.

COROLLARY 3.82. Suppose that X is a generalized continuum with
Newman’s Property and that f is a finite-to-one open and closed mapping of
X onto Y. Then f(By) does not separate Y.

Proof. 1f f(By) separates Y, then fﬁlf(Bf) = B separates X. Thus,
by Theorem 3.8, there are exactly n components of X — B, say,
Cy, Cy, ..., C,such that f|C; is one-to-one and

J(C) =f(C) =Y — [(B).
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Thus, Y — f(B) is connected. This involves a contradiction.

CoroLLARY 3.83. Suppose that X is a generalized continuum with
Newman’s Property hereditarily and that f is a finite-to-one open and closed
mapping of X onto Y. Then f(By) does not separate Y locally at any point.

Proof. Let U be a domain containing y at which f(By) separates Y
locally and U — f(Br) = S U T, two separated sets.

Let E= S N T. Since N(f) < oo by Theorem 3.8, there is y € E such
that

N(y.f) = n = N(x,f) foreachx € [ Y(E) = F.

There exists a domain D containing y such that f7ND) has exactly
n components C,, C,, ..., C, such that f(C;) = D for each i. Thus,
SI(F n () is one-to-one. For some k, there is p € By N C; where
p € F. Now, these exist sequences {p;} = p, {¢;} = p, and {y;} = p
such that f(p;,) = f(¢;) € S and f(y;) € T. Let W,, Z;, and Q; be
components of C, — F such that p;, € W, ¢q; € Z;, and y; € Q;. It may
happen that W, = Z;, but clearly f(W;) = f(Z,) in any case.

Choose a domain V containing p such that f|V is closed and C; D V.
There exists ¢ such that

VnWwW,#8 and V N Q, # 0.

Define a quotient mapping m on V with singletons on V' — (W, U Z,) and
the sets / '/ (x) n (W, U Z,) for x € W,

Suppose that x € Bd W, N V. If x & F, then there is a domain N,
containing x such that N, N F = @ and V D N,. Thus, W, D N, since W,
is a component of C, — F and x € Bd W, a contradiction. Thus, x € F.
Since f](F N Cy) is one-to-one, it follows that m is an open and closed
mapping on V. Furthermore, m is one-to-one on the non empty set V' —
(W, U Z,). This contradicts the hypothesis that the domain V has
Newman’s Property. Hence, the corollary is proved.

CorROLLARY 3.84. Suppose that X is a generalized continuum with
Newman’s Property hereditarily and that f is a finite-to-one open and closed
mapping of X onto Y. If B = By = [~ 'f(By), f is one-to-one on B, and
X — B is not connected, then X — B consists of 2 components Cy and C,
and there is a periodic homeomorphism h of X onto X of period 2 such that
h(x) = x for x € B and f is topologically the orbit mapping of h.

Proof. By Theorem 3.8, there are exactly n components Cy, C,, ..., C,
of X — B each of which maps homeomorphically onto ¥ — f(B).

Let b € B. Then b € Bd C; for some j. Let 1 = k = n. There is a
sequence { p;} — b such that p; € C; for each i. Thus,

Y)Yy —=7"Y®)=0b and ¢ €f Y(p) N G
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Since f'is closed it follows that {¢;} — b and b € Bd C;.

Suppose that n > 2. Let m denote the quotient mapping with singletons
on C; for i > 2 and the sets f ~'f(x) N (C; U C,) for x € C,. Thus, m is
an open and closed mapping on X which is one-to-one on the open set C5.
This contradicts the hypothesis that X has Newman’s Property. Thus,
n =2

Let /'f(x) N C; be the singleton x,. Now, define 4(x;) = x, and
h(xy) = x;. For x € By, let h(x) = x. The conclusion of the corollary
follows.

Example. Let X denote the unit 2-sphere
{(x,y,z)lx2 +y2 + 22 = 1}
and Y denote the 2-disk
{(x,»,0) Ix2 + y2 =1}

Let f be the vertical projection of X onto Y, i.e., f(x, y,z) = (x, ). Thus, f
is an open and closed mapping of the 2-manifold X onto the 2-manifold Y
with boundary. Note that (X, Y) does not have the Invariance Of Domain
Property. Here,

Br=B={(xy 0 +y =1}
Also, f is the orbit map of an involution g on X.

4. More terminology and preliminary theorems. We shall prove that
certain generalized continua possess Newman’s Property. First, we state
needed concepts and prove useful theorems.

A collection K of subsets of a space X is said to be locally finite if and
only if for each x € X, there is an open set U containing x which has a
nonempty intersection with at most a finite number of the elements of K.
A set A meets a set B if and only if A N B # . If K is an open covering of

a space X, then N(K) will denote the nerve of K consisting of all elements
of K (vertices) and all n-simplices

0" = (Vo, Vl» c ey Vn)
such that

h
V, € K and 'ﬁOV,‘séﬂ
i

n
for each natural number n. The nucleus, N[o"], of o” is the set ﬂo V.
=

We shall be using Cech homology (cf. {22, chapter V] ).
Suppose that K is a collection of subsets of X and 4 C X. Then the star
of A with respect to K is the collection

{klk € Kand k N 4 # 0}.
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We shall make use of the well known theorems about open coverings of
metric spaces (X, d). For example, for each open covering G of X, there is
an open covering H of X which

(1) refines G (each element of H is contained in an element of G) and
denoted by H > G and

(2) H is locally finite. That is, (X, d) is paracompact.

If each element /# of H has the property that h C g € G, then H closure
refines G (denoted by H > G).

We shall use covering dimension of (X, d) which we denote by dim X.
The order of an open covering G of X is n if and only if at most n elements
of G meet and some n elements of G meet. That is, there is an n-simplex in
N(G) and N(G) contains no k-simplex for k > n. It is well known that for
each open covering G of a metric space (X, d) such that dim X = n, there
1s an open covering H such that

(1) H star refines G, i.e., if h € H, then there is g € G such that each
element of the star of 4 with respect to H lies in g,

(2) H is locally finite, and

(3) order H = n + 1 (cf. [14]).

A collection K of subsets of X is closure preserving if and only if for any
subcollection H of K,

Uh — Ul

heH  heH
Also, K is discrete if it is closure preserving and the closures of the
elements of K are pairwise disjoint. We let K* denote the union of the
elements of K. See [1].

The next two theorems are useful in constructing special coverings
which we use to prove that certain generalized continua possess Newman’s
Property. In fact, we generalize two lemmas of Wilder [22; 8.7 and 8.8,
p. 134]. The proofs use ideas of his but our results are stronger.

THEOREM 4.1. Suppose that Y is a generalized continuum and F is a closed
subset of Y. If U is an open covering of Y, then there is a locally finite open
refinement R of U which covers Y and an open set Q O F such that if the
nucleus of a simplex of N(R) meets Q, then it meets F. In addition, the
elements of R can be taken as connected. Also, R can be chosen to star refine
U. If dim Y = n, then we can choose R to also have order n + 1.

Proof. There exists a locally finite open refinement W of U such that if
w € W, then w is compact and w is connected. Let P denote the union of
all elements w € W such that w N F # @. Let

U = {wwn P + @}
Let ¢” be an r-simplex of N(U"). If its nucleus, N[o"], meets F, then let

p(@) € Fn N[d'];
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otherwise, let p(¢") denote any point of N[s"]. Let M denote the set of all
these points p(¢”). Since W is locally finite, M has no limit point. The
elements of U’ are countable as Uy, U,, ..., U, . ... Replace each U, by a
collection K; as follows: Let

Ay =MnU)yulP— U Ul
j=2

Cover A, by a collection K, such that

(1) for k € K,, k is open and connected (indeed, uniformly locally
connected),

(2) U; D k for each k € K|,

(3) the elements of K| are pairwise disjoint, and

(4) K, is closure preserving (use the fact that a metric space is
collectionwise normal [1] and the collection of closed sets consisting of

and the points of M N U, is discrete).

Using induction, let

_ i—1 co
Ai=MNU) VI[P — U K— U Ul
j=1 Jj=it1

Cover A; by a discrete collection K; of connected open sets such that for
each k € K, U; D k. Now, let R denote the collection of the elements of
the various K; and those elements of W not meeting P.

Suppose that a simplex o" of N(R) has a nucleus N[o"] that does not
meet F where ¢’ = (b, by, ..., b,). Then

x € Ny N F
would imply that

r —
x e N b,‘.
i=0

There exist jy, ji, - - ., j, such that

b C U, N@)c 0 U = NI

where

& = (U, U

i U - - - U) € N(U).

This implies that F N N[8"] # @ and that p(8") € N[o"] which is contrary
to the construction of R. Thus, if N[¢"] fails to meet F for ¢ € N(R),
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then

N[¢"] N F = §.

Let Q be any open subset of P which contains F and meets no N[o"] that
fails to meet F.

In case dim Y = n, we first choose W to have the properties listed above
and, in addition, order W = n + 1. The construction of R yields that
order R = n + 1.

THEOREM 4.2. Under the hypotheses of Theorem 4.1, there exists a locally
finite open covering W of Y which star refines U such that if H is a
subcollection of W each element of which meets F, then the intersection N of
the elements of H is non empty only if N meets F. If dim Y = n, then W
exists with the additional property that order W = n + 1. If dim Y = n,
then W can be chosen so that in addition to the other properties, order
W=n+ 1.1IfdimY = nand dim F = n — 1, then W can be chosen to
have the additional properties that order W = n + 1 and order Wr = n

where
Wr = {ww e Wandw N F # 8}.
Proof. Choose R and Q as in Theorem 4.2. As shown there, a set
(bo, by, ..., b)) =0"
of elements of R has a nucleus N[o"] meeting F only if the same held true
for N[§"] where

& = Uiy U

L/jr)

with elements in U’ such that U;, © b;. By the way that Q was chosen, such
a set N[o"] must meet F if it meets Q. That is, nuclei of simplices in N(R)
either meet Q and hence F or liein Y — Q. Replace the collection K;, for

each i, by the collections
K ={kn Qlk € K;} and K/= {k — Flk € K;}.

The covering W consisting of the elements of R not in any K; along with
the elements of the various collections K; and K/ is the required
covering.

In case, dim Y = n and dim F = n — 1, start with U in Theorem 4.2 as
an open covering of Y with the property that the collection Uf of those
elements of U which meet F has order = n relative to F (i.e., the
collection

UF) ={unN Flu € Ur}
has order = n) and the collection
Uy_r={uu € Uandu N F = @}
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has order n + 1. Apply Theorem 4.1 and the proof above using such a
covering U to obtain W. Observe that if

Wr={ww &€ Wandw N F # @}

then order Wr = n.

We shall say that W is regular with respect to F when W satisfies the
conclusion of Theorem 4.2. In case either dim ¥ = n or dim Y = n and
dim F = n — 1, we require the appropriate additional restrictions or
either Wor W and Wr.

5. Special coverings. Suppose that f'is a light open and closed mapping
from X to Y when each of X and Y is a generalized continuum. We shall
construct what we shall call special coverings of X similar to those defined
by Smith [18]. In the case that f is finite-to-one, dim X = dim Y = n,
F = f(By), and dim F = n — 1, these special coverings have particularly
nice properties. In fact, we shall construct the special coverings for this
case. The generalization should be clear.

Suppose that U is an open covering of Y. Now, use Theorem 4.1 to
obtain R refining U and satisfying all of the conditions of the theorem
including conditions on the orders of R and W. Now, obtain W satisfying
Theorem 4.2 such that W is regular with respect to F.

Ifwe W,we K,and w & K/ then /~'(w) has a finite number of
components each mapping onto w under f. In fact, R and W can be chosen
so that if w € R, the closures of the components of /~'(w) are pairwise
disjoint. If N(f) = k, then forw € W wherew N F = @, f '(w) con-
sists of exactly k components each mapping homeomorphically onto w
under f.

Let g, 8 € W, g €& K|, and g & K for any i and eachj = 1, 2.

If gy N g, # @, then the components off_'(gj),j = 1, 2, can be ordered
as g1, g2, - - - » g such that g;; N g5, # @ if and only if i = ¢.

These components of /~'(w) constitute a distinguished family deter-
mined by W when W N F = #. Each component will be a member of the
special covering Wy The remaining elements of Wy are as follows: If
g € Kjor g € K} then there exists k € K; such that either

(1) g=knQor

(2) g = k — F (where Q is the open set used in the definition
of K}).

In either case, f “ (k) consists of a finite number of components uj,
uy, . . ., uy each mapping onto k under f. Now, let

u=u; N f Q) and v, =u — [ \(F)

depending on where case (1) or (2) holds true. Now, the remain-
ing elements of Wy are the various u; and vj. Also, the collection
{u, ub, ..., u;} and {vi, v, . . ., vi} are distinguished families determined
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by g in either case (1) or (2).
Suppose that (vg, vi, ..., v,) = o' is an r-simplex in N(W). For each
LW0=i=r,

-
ST) = v Uvpg UL Uy,

where {v;, v, ..., v;,} is the distinguished family determined by v;.
Suppose that

(Vojps Vijps oo V) = &

is an r-simplex in N(Wy). Now, there are such simplices since for each
i=0,1,2,...,rneachj=1,2,...,n;andeachk =0, 1,...,r; thereis
some ¢ so that

VI/ N Vit # ﬂ
and conversely, for each s = 1, 2,..., n,, there is p so that
vis N vy # 0.

That is, each member of the family determined by v, intersects some
member of the family determined by v, and conversely. Thus, if ¢ is in the
nucleus of o, N[o”], then

/‘7](q)ﬂvu#@ foreachi =0,1,...,randj =1,2,...,n,

The orientation of " is to be that of ¢" as indicated by the order given of
the vertices vo;, Vijy, - - - » Vyi, Of &'

Since /7~ '(v;) has n; components, there will be at least n; r-simplices in
N(Wy) which are mapped to ¢" by the simplical mapping

JeN(Wyp) = N(W)

induced by f. If m = max {ni = 0, 1, ..., r}, then there are m r-simplices
in N(Wy) determined by o” as indicated above. We say that this collection
of r-simplices is the distinguished family of r-simplices determined by o
(more precisely, determined by N[o”]).

If N[o"] N F = @, then v; N F = @ for some i (recall that the vertices of
o" are vy, vy, ..., v, which are members of W).

A standard argument yields the following theorem.

THEOREM 5.1. The collection of all special coverings W of Y and Wy of X
are cofinal in the collection of all open coverings of Y and X, respectively.

We now define special projections. Suppose that a special covering H of
Y star refines a special covering G of Y. The special coverings Hyand Gy of
X have the properties

(1) Hp star refines Gy and

(2) ifhe H,hCgeGy,
then each member of the distinguished family to which 4 belongs is
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contained in exactly one member of the distinguished family to which g
belongs. Suppose that §" = (ug, uy, ..., u,) is an r-simplex of N(Hy). We
say that a projection

m:N(Hy) = N(Gy)

m

is special if and only if 7(8") = o” in N(Gy), then each member

8, i = 1,2,..., t, of the distinguished family to which & belongs is
mapped by 7 to a member of the distinguished family to which o™
belongs.

Next, we define the chain operator o used by Cernavskii [3]. Observe
that our constructions of the special coverings and the definition of o is
much simpler than in [3] for obvious reasons.

If 8 is an m-simplex in N(Wy) where Wy is a special covering, then
either

(1) N[ nfYF)y#8 or
(2) N[ n fY(F)=0.

In case (1), 06™ = 0. In case (2),

k
od" = 2 8]

i=1

where {8:"}{;1 is the distinguished family to which 6" belongs. By
definition, they have the same orientation. The definition obviously
extends to any chain group in the usual way.

LEMMA 5.2. The special operator commutes with the boundary operator,
i.e., for an m-simplex, 038™ = 008™.

Proof. If N[8"] N f~!(F) # @, then Theorem 4.2 and N[8"] N f~\(F)
# @ imply that for each face ¢" ! of 8",
Nie" ' n fY(F) # 0.
Thus, 608" = 00d".
If N[8"] N f~YF) = 8, then consider

n+1
0" = X (—1y el

i=1
Either
(@) N8 '1nf\(F) =6 or
(b) N8/ 1 fUF) # 6.

In case (a), theldistinguished family of 8; = contains k(n — 1)-
ae

L ! =1 . . .
simplices 8, ,8), ,...,087 .Eachisa face of exactly one n-simplex in

1
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the distinguished family of §". The labelling may be arranged so that

-1 . 1 .
8:; is a face of 8]'». In this case,

n+1
0(d8") = o 2 (—1 '8!

i=1

n+1

= X o(-1yts

i=1

n+1 k
-3y S
i=1 j=1 v
k n+1
-2 2 -ntle
j=1i=1 v
On the other hand,
k n+1 . o
0" = 21 8736] = 121 (—1tsl )
j= —
Thus,
k n+l

d(od") = 2 X (— 1718
j=1i=1
Note that 8;)' = 8], ' and a(38") = 9(c8").
In case (b),

08! ' =0, 08" = 2 8, and

n+1 .
n i+1gn—
0 = X (—Ditls;

i=1
If N[8J, '] N f ~'(F) # 0 for some j it is true for each j = 1, 2,..., k.
Thus

082-_1 = 0 for each j.

Again, 636" = 908" and the lemma is proved.
LEmMMA 5.3. If dim Y = n, dim F = n — 1, and N(f) = k, then

068" = 0 mod k for each n-simplex in N(Wy) where Wy satisfies the
conclusion of Theorem 4.2.

Proof. If 68" # 0, then
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k
08" = X 8!

i=1
where N[8!] N f '](F) . Now,
a(68") = o 2 8"
i=1

where {87}5-":1 is the distinguished family to which 8" belongs. Now,

so that
/\ .

k
a(ad") = § 2

1

k8! = 0 mod k.

HM>

Observe that ¢ maps n-cycles to n-cycles and takes essential n-cycles to
essential n-cycles. Also, § commutes on n-chains with the special
projections.

6. Finite-to-one open and closed mappings on certain generalized
continua and Newman’s Property. It is easy to prove that a discrete open
and closed mapping on a generalized continuum is finite-to-one.

THEOREM 6.1. (Proof due to Viisild [19]). Suppose that f is a discrete
open and closed mapping of X onto Y where each of X and Y is a generalized
continuum. Then [~ 'f(x) is finite for each x € X.

Proof. Suppose that for some x € X,

f_lf(x) = {X], Xz,...,x,,,...},

an infinite set. Let d and p denote metrics for X and Y, respectively.
Choose, for each i, z; € X — f~ f(x) such that

1 X 1
d(z;, x;) < 3 and p(f(z),f(x)) < e

The set Z = {zy, z5,..., z,, ... } is a closed set such that f(Z) is not
closed. This contradicts the assumption that fis closed. Consequently, f'is
finite-to-one.

We shall consider the class C(k) k > 1, of all finite-to-one open and
closed mappings f on a generalized n-dimensional continuum X such

that
(1) f maps X onto a generalized continuum Yy and
(2) N(f) =

We shall say that the generalized continuum X has Newman’s Property
with respect to C(k) if and only if for each open set 4 in X, there is a
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positive number € such that if f € C(k), then for some x € A, the

diameter of / ~!f(x) = e Thus, X, has Newman’s Property if and only if X

has Newman’s Property with respect to C(k) for each integer k > 1.
The main theorem of this section follows:

THEOREM 6.2. (c.f. [2, pp. 154-158] ) Suppose that X is an n-dimensional
generalized continuum. Furthermore, for each open set A in X, the Cech
homology group, H,(X, X — A, Z,) is nontrivial for the prime p. Then X has
Newman’s Property with respect to C(p).

The points of maximal multiplicity of f form a dense open set in X. This
restricted property is equivalent to the definition given in Section 3 when applied
to connected metric n-manifolds.

Proof. Suppose that 4 is an open set in X. Choose an open set D such
that D O A. Let U denote a locally finite open covering of X such that if B
is a locally finite open covering of X which refines U with the property
that the star of 4 with respect to B lies in D, then any projection of N(B)
into N(U) takes an essential n-cycle z"(B) mod X — D to an essential
n-cycle z"(U) mod X — A.

Let € be the Lebesque number of the covering B. Suppose that f is an
open and closed mapping of X onto a generalized continuum Y such
that

() N(f) =k>1 and
Q) iff7Yfx)n 4+ 0,

then diam / ~'f(x) < € and consequently lies in an element of B.

There is a special covering Gy of X which refines B such that each
distinguished family of elements of Gy which covers an inverse set £ (x),
x € X, and meets A lies entirely in some element of B (and, hence,

in D).

Consider a special projection 7:N(Gy) — N(B) such that if some
member g; of a distinguished family {g), g2 ..., g} of elements of Gy
meets 4, then 7 projects each g;, i = 1, 2,..., m, to the same member b
of B.

Suppose that ¢” is an n-simplex of N(Gy). If
N[o"l € X — f}(F)

where F = f(By), then the distinguished family in N(Gy) which contains
o” contains exactly p n-simplices.
If 2"(Gy) is an essential n-cycle mod X — D on A, then

0z"(Gy) = xz"(Gy) where x € Z,.
Now,
00z"(Gr) = 0 = 2xz"(Gy).

Either x = 0orx = lincase p = 2. If x = 1, then
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0z"(Gy) = "(Gy) and
0 = 00z2"(Gy) = 0z"(Gy) = "(Gy) = 0.

This is a contradiction. Hence, x = 0.
By construction of Gy, 72"(Gy) # 0. However,

onz"(Gy) = maz"(Gy) = 0.
This contradicts the fact that o takes essential n-cycles to essential
n-cycles. Thus, it is false that
diam f~'f(x) < € for each x € 4.
The theorem is proved.
The following corollaries are easy to establish.

CoroLLARY 6.21. If for each open set A of a generalized n-dimensional
continuum, the Cech homology group H,(X, X — A, Z,) is nontrivial for
each prime p, then X has Newman’s Property.

COROLLARY 6.22. Suppose that X is an n-dimensional connected metric
manifold. Then X has Newman’s Property.

CoROLLARY 6.23. Suppose that each of X and Y is an n-dimensional
connected metric manifold without boundary. If f is a discrete open and closed
mapping of X onto Y, then dim By = n — 2.

Proof. By Theorem 6.1, f is finite-to-one. From Theorem 6.2, X has
Newman’s Property. Now, by Theorem 3.8, f(By) does not locally separate
Y. Hence,

dim f(By) = n — 2.

If By locally separates X at some point x € X, then there is a domain D
containing x such that f|D is closed, open, and D — Byis not connected.
Now, g = f|D is open and closed. By Theorem 3.8, g(D) — g(B,) = Z is
connected. Each component C of g~ (Z) maps onto Z under g. Either
H g 1g(Bg) separates D and g is one-to-one on each component C of
g (Z)or
(2) g is constant on the connected set D — gilg(B‘,’,).
In case (1), B O By N D and since B, € By N D,
B/‘ N D= Bg.
If Cis a component of g~ '(Z), then let
K = {x|x € Bjand x € C}.
Then f|K is one-to-one on K. It follows that

dim K = dim f(K) = n — 2.
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Hence, K can not separate C from D — C which is a contradiction.
In case (2), we have B, = By N D and D — Byis connected. Again, we
have a contradiction.

7. Generalizations. It should be clear that the dimension » of X is not so
critical in the proof of Theorem 6.2 as the fact that H,(X, X — A4, Z,) is
nontrivial. Thus, we can state appropriate generalizations of Theorem 6.2
which can be proved by our methods.

THEOREM 7.1. Suppose that X is a generalized continuum. Furthermore,
there is a natural number n and a prime p such that for each open set A in X,
H,(X, X — A, Z,) is nontrivial. Then X has Newman’s Property hereditarily
with respect to C(p).

If we consider light open and closed mappings f on a generalized
continuum which are not finite-to-one, then By may be X [24]. Another
generalization is stated below.

THEOREM 7.2. Suppose that X is a generalized continuum and that L is the
class of all light open and closed mappings [ of X onto some generalized
continuum Yy (possibly different for different f) such that

(1) int By = 0 and ,

(2) there is a complete sequence of special coverings {G/'} of X and a
prime p such that the distinguished families of r-simplices whose nuclei do not
intersect [~ lf(Bf) consist of mp r-simplices where m is a natural number.

Furthermore, there is a natural number n such that if A is an open set in X,
then H,(X, X — A, Z,) is nontrivial. Then X has the Generalized Newman’s
Property hereditarily with respect to L (that is, there is € > 0 such that if
f € L, then for some x € U, diam f~'f(x) = o).

Problem. Characterize those generalized continua which possess New-
man’s Property (Generalized Newman’s Property).

The Sierpinski plane universal 1-dimensional curve S has Newman’s
Property. There are other obvious examples. However, what (if any)
topological property (or properties) characterize them?
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