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DISCRETE OPEN AND CLOSED MAPPINGS ON 
GENERALIZED CONTINUA AND NEWMAN'S 

PROPERTY 

LOUIS F. McAULEY AND ERIC E. ROBINSON 

1. Introduction. In 1930, M. H. A. Newman proved a rather remarkable 
theorem which has become one of the classical theorems in topology. It 
has many important applications. A special case of Newman's Theorem is 
that a periodic homeomorphism of period n > 1 of a sphere S onto itself 
must have some orbit which is not contained in a "cap" smaller than a 
hemisphere. The general theorem is as follows: 

THEOREM ( [15] ). Suppose that Mn is a connected (metric) n-manifold, U 
is a domain in Mn, andp is an integer greater than 1. Then there is a positive 
number d such that no uniformly continuous homeomorphism h of Mn onto 
itself of period p moves every point of U a distance < d. That is, there is 
x G U so that the orbit of x under h has diameter = d. 

Ten years later (1940), P. A. Smith generalized Newman's Theorem as 
follows: 

THEOREM ( [18] ). Suppose that M is a locally compact Hausdorff space in 
which open sets are G$ sets, the covering dimension of M is finite, N is a 
bounded open set in M, q is an integer greater than \,p is a prime factor ofq, 
Zp is the additive group of integers mod/?, and M is n-regular over Zp. Then 
there is a covering A of M such that no periodic homeomorphism T of period q 
on M can satisfy the relation T < A over N. That is, T < A over N if and 
only if for each x e N, 

{x, T(x) } c ax where ax e A. 

The study of light open and closed mappings grew out of the study of 
analytic functions by Stoilow in 1928. However, it was G. T. Whyburn 
who developed the theory in a systematic manner in the 1930s [21]. 
Finite-to-one and discrete open and closed mappings are special cases of 
these light (totally disconnected point inverses or fibers) mappings. 

Important contributions were made by a number of individuals in the 
1950s; notable among these are Church and Hemmingsen [4]. However, it 
was Cernavskii who first observed that finite-to-one open and closed 

Received May 27, 1983 and in revised form January 19, 1984. 

1081 

https://doi.org/10.4153/CJM-1984-062-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-062-9


1082 L. F. McAULEY AND E. E. ROBINSON 

mappings on manifolds are enough like orbit mappings of finite group 
actions to possess this special Newman's property. In 1964, Cernavskii 
proved the following: 

THEOREM ( [3] ). Suppose that fis a finite-to-one open and closed mapping 
on a connected (metric) n-manifold Mn onto a Hausdorff space Y. Then 

(1) there is a natural number k so that for each x e M", cardinality of 
f~f(x) = k (bounded multiplicity) and 

(2) the elements of maximal multiplicity form a dense open set in Mn. 
Furthermore, 
(3) for each open set U of Ml\ there is e > 0 such that if f is any 

finite-to-one open and closed mapping of M" onto some metric space Y and J 
is not a homeomorphism, then for some x G U, diameter f ]f(x) = c. 

The proofs are complicated and difficult to follow. However, the type of 
arguments are similar to those due to Smith [18]. 

Using Alexander-Spanier cohomology, important properties of mani­
folds, and a topological index, Vàisàlà proved, in 1966, the following 
theorems which are corollaries of Cernavskii's Theorem. 

THEOREM ( [19] ). Suppose that each of X and Y is a connected (metric) 
n-manifold without boundary. Ifj is a discrete open and closed mapping of X 
onto Y, then 

(X) f is finite-to-one and has bounded multiplicity, 
(2) if Bf = {x\x e X and fis not local homeomorphism at x} , then interior 

Bf = 0, 
(3) for x G X — f~f(Bf),f~f(x) has maximum multiplicity k, and 
(4) dim Bf^n- 2. 

Note that Cernavskii's Theorem does not require that y be a 
manifold. 

Returning to finite actions, A. Dress [6] gave a reasonably short proof of 
Newman's Theorem in 1968. There is an elegant proof of Newman's 
Theorem in Bredon's book [5, pp. 154-158] which appeared in 1972. 

We were able to generalize, in 1982, a lemma of Dress [6] to obtain a 
short straightforward proof of the following theorem (cf. Cernavskii's 
Theorem). 

THEOREM ( [11] ). If (M, d) is a connected (closed) n-dimensional 
manifold, there is e > 0 so that if Y is a (closed) manifold and f is a 
finite-to-one proper open surjective mapping of M onto Y which is not a 
homeomorphism, then jor some y e Y, 

d i a m / - 1 ( / ) ^ e. 

In 1971, Duda and Haynsworth proved (1) and (2) of Cernavskii's 
Theorem for boundaries of certain open subsets of ^-manifolds as well as a 
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version of (3). Their work uses rather powerful tools from cohomology 
theory as well as the topological index used by Vâisâlâ. 

We generalize the results of Cernavskii, in particular, to locally 
compact, locally connected metric spaces (generalized continua). Our 
proofs are entirely elementary and are in the spirit of Smith and 
Cernavskii. We make use of basic (and easily proved) results of Whyburn 
from the theory of light open mappings, some useful but almost obvious 
results of Vâisâlâ, and generalizations of two lemmas due to Wilder. Basic 
Cech homology is used along with some special coverings defined with 
respect to discrete open and closed mappings between generalized 
continua. 

We define an obvious Newman's Property and show that it is, indeed, 
equivalent to bounded multiplicity for finite-to-one and closed mappings 
on certain generalized continua. 

We also prove that f(Bf) neither separates nor locally separates Y where 
/ is a finite-to-one open and closed mapping of X onto Y where X is a 
generalized continuum with Newman's Property hereditarily. Further­
more, we establish the surprising result that iff~]f(Bf) separates X, then 
there are exactly n components Ch C^-, • • . , Cn of this set and / is 
one-to-one on each. I f / is one-to-one onf~xf(Bf), then n = 2 and there is 
an involution g of X onto X such that g\Bf is the identity and / is 
topologically equivalent to the orbit mapping of g. 

It should be clear that our work generalizes to certain non metrizable 
spaces using coverings and the idea of "relation T < A over TV" to replace 
"e > 0 and d i a m / _ 1 / ( x ) " as done by Smith in his proof of a Newman's 
Theorem [18]. 

We would like to point out that Larry Mann and collaborators Ku have 
used earlier results [11] to prove a Newman's Theorem for pseudosubmer­
sions. See [9]. 

The hypothesis concerning openness can be weakened using work of 
Montgomery [10]. 

It may be possible to modify the treatment of Newman's work as given 
by Bredon [5] so as to prove some of the theorems in Sections 5 and 6. 
Although Bredon is concerned with actions of groups (finite, in the case of 
Newman's Theorem), various lemmas are quite general. Orbit mappings of 
finite group actions (on compact spaces) are finite-to-one open and closed 
mappings. The converse is false. 

Finite-to-one open and closed mappings, in some instances, share other 
properties with actions. However, one must exercise considerable care in 
the use of homology since group actions are not involved. Moreover, our 
work is on the whole self contained and elementary. 

2. Terminology, notation, and basic results. All mappings are contin­
uous and all topological spaces are Hausdorff. A mapping/of a space X 
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onto a space Y is open (closed) if the image of each open (closed) set in X is 
open (closed) in Y. A mapping/of X onto Y is light if and only if for each 
x e X,f~]f(x) is totally disconnected (each maximal connected subset, 
i.e., each component, is a point). It is discrete if and only iîf~lf(x) is 
discrete (i.e., has no limit point) for each x e X. The branch set Bfoîfis 
the set of all x <= X such that fis not a local homeomorphism at x. It is 
easy to show that Bf is closed, hence, under a closed mapping f(Bf) is 
closed. 

The multiplicity N(x, f) of / a t x e X is the cardinality of f~Xf(x) 
while 

J V ( / ) = supremum {N(x,f) \x e X}. 

Let 

* / ( / ) = {x\x e X and # ( * , / ) â / } . 

Thus, it follows that Kt(f) is closed. 
We shall use A and int yl to denote the closure of A and the interior of 

A, respectively. We may use Cl A to denote A as well. 
A space X is a generalized continuum if and only if X is locally compact, 

connected, and locally connected. This term is due to Whyburn [20]. 
It is well known that if / i s an open and closed mapping of X onto Y, 

then the collection 

Gf= {rV(x)\x e X) 

is a continuous collection (continuous decomposition of X), i.e., if 
{ïi} -* y in F, then {/"Vj'i) } converges to f~l(y) in X. 

A subset U of a space X is a domain if and only if U is open and 
connected. A mapping / of X onto Y is proper if and only if for each 
compact subset A of Y , / _ 1 ( ^ ) is compact. If each of X and Y is locally 
compact , / i s closed, a n d / - 1 ( ^ ) is compact for each y G F, then / i s 
proper. In particular, i f / i s closed and finite-to-one, t h e n / i s proper. 

A simple arc A is the homeomorphic image of the closed interval [0, 1] 
into a space Y. 

A subset A of a space X is said to separate X locally at x G JV if and only 
if for each open set U containing x, there is an open set V containing x 
such that U 3 V and V — A is not connected. 

We shall make use of some lemmas and theorems which are easy to 
prove. For completeness, we include the proofs. 

LEMMA 2.1. [18] Suppose that f is a light open mapping of X onto Y such 
that N(f) = k (a natural number). Then N(x,f) < k for each x G Bf. 

Proof If N(x\9f) = k for some x\ G Bf, then let 

f~V(*\) = {xi, x2, . . ., xk}. 
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Choose k pairwise disjoint open sets Uhi = 1 ,2 , . . . , /c, such that xl e [//. 
Then the set 

v = ux nf- n/(£/,-) 
L/' = l 

is an open set such that f\ V is a homeomorphism and consequently/is a 
local homeomorphism at x\ contrary to the fact that x\ e Bf 

LEMMA 2.2. [18] Suppose that X is locally compact and that f is a discrete 
open mapping of X onto Y. Then int Bf = 0. 

Proof Suppose that int Bf ^ 0. Then there is an open set U such that 
Bf Z) U and U is compact. The restriction g = f\ U is an open mapping for 
which N(x, g) < oo for each x ^ U. Thus, 

oo 

£/ = u K,(g). 
i = 1 

By the Baire Theorem [17], 

int Kt(g) = V ¥= 0 for some /. 

Since AT(g|F) ^ /, Lemma 1 implies that there is a point x e Kat which 
g|F, and hence/, is a local homeomorphism. However, i e [ / c 5^ which 
is a contradiction. 

LEMMA 2.3. [19] Suppose that X is locally compact and locally connected. 
Furthermore, f is a light mapping of X onto Y. Then for each point x G X 
and each open set U in X, x G U, there is a domain V in X, x G V c U such 
that f\V = g is a closed mapping of V ontof(V). 

Proof Let x e X and x e £/, an open set in X. Since/is light, there is 
an open set W, x G W, such that £/ 3 W, W is compact, and 

Bd W C\f-]f(x) = 0. 

Choose an open set D oif(X) such that D n / (Bd W) = 6 and let F be 
the component of/_1(Z>) which contains x. Then F c Wis a domain and 
g = f\V is a closed mapping of V on to / (F ) . 

LEMMA 2.4. [19] Suppose that X is a locally connected space and that A is 
a closed subset of X such that mi A =6 and X — A is not connected. If F is 
the closure of the set of all points at which A separates X locally, then X — F 
is not connected. 

Proof. Since X — A is not connected, X — A = U\ U U2 — two disjoint 
nonempty open sets. Let 

V, = (int Û,) - F. 
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It follows that X — F = V\ U V2 — two disjoint open sets such that 
V, D U,. 

THEOREM 2.5. Suppose that fis a proper light open mapping of X onto Y. 
If xy is a simple arc in Y andp ^ f~\x), then there is a simple arcpq in X 
such thatf\pq is a homeomorphism of pq onto xy. In fact, for each path P in 
Y (image of [0, 1] under a continuous mapping 0) andp e / 0(0), there is a 
continuous mapping 0 of [0, 1] into X such that 

0(0) = p and (f\0( [0, 1] ) ) o § = 0. 

Proof Since fis proper, f~\xy) = A is compact. By a theorem of 
Whyburn ( [21], 2.1, p. 186) there exists/?g satisfying the conclusion of the 
theorem. Similarly, if 0[O, 1] = P, t h e n / _ 1 ( P ) = A is compact and f\A is 
light and open [21, 7.2, p. 147]. By a theorem of Floyd [8, 2, p. 574], there 
exists 0 satisfying the conclusion of the theorem. 

LEMMA 2.6. [cf 19, Lemma 5.3]. Suppose that X is a generalized 
continuum and that fis a finite-to-one open and closed mapping of X onto Y. 
Furthermore, A is a closed subset of X such that X — A is not connected and 
N(x,f) = I for each x e A. Then each component C of X — A is mapped by 
f onto a component f(C) of Y — f(A ) and g = f\C is a closed (and open, of 
course) mapping of C onto/(C). 

Proof. Let E be a subset of C closed relative to C, that is, E = E n C. 
Now,/ (C) is contained in a component Vof Y — f(A). Thus , / (£ ) n V 
is closed relative to V and contains f(E). Hence, g is closed. Finally, 
/ ( C ) = V since g is open. 

The following theorems are easy generalizations of theorems due to 
Whyburn, [21, pp. 147, 131, and 189, respectively]. 

THEOREM A. Suppose that fis a proper open mapping of X onto Y where X 
is a generalized continuum. IfR is a domain in Y, thenf~x(R) has at most a 
finite number of components each of which maps onto R under f 

THEOREM B. Suppose that f is a proper light mapping of X onto Y where 
each of(X, d) and (Y,p) is a locally compact metric space. Ifc>0, there is 
8 > 0 such that for each closed and connected subset C of Y with diameter 
less than 8, each component off~(C) has diameter less than e. 

THEOREM C. Suppose that f is a proper light open mapping of X onto Y 
where X is a generalized continuum. If K is a generalized continuum in Y 
whose interior is dense in K, then f~l(K) is locally connected and each 
component off~l(K) is a generalized continuum. 

It is easy to obtain proofs of these theorems by first observing t h a t / i s 
proper and Y is locally compact. Now, adapt the proofs given by Whyburn 
[21] to the situation here. 
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3. Finite-to-one open and closed mappings on generalized continua 
having Newman's Property. We shall prove, in Section 6, that certain 
«-dimensional generalized continua have Newman's Property hereditarily. 
Indeed, we give generalizations, in Section 7, to certain light open 
mappings on a class of generalized continua. Clearly, «-manifolds 
(connected and metric) as well as Peano continua are special cases of 
generalized continua. 

We first give some easy and elementary proofs of theorems for 
generalized continua first proved for «-manifolds by Cernavskii [3], later 
proved by Vâisâlâ [19, 20], Duda and Haynsworth [7], and Church [4]. Our 
methods resemble those of Cernavskii but are far simpler using the easily 
proved results of Section 2 and some of the theorems proved below. We do 
not need to use manifold theory and the important Alexander-Spanier 
Cohomology Theory used in [19] and elsewhere. First, we state a key 
property which will be seen to be equivalent to the bounded multiplicity 
property for finite-to-one open and closed mappings on «-manifolds (and 
more general spaces). 

Definition. A metric space (X, d) is said to have Newman's Property if 
and only if for each open set U a X, there is an e > 0 such that iff is an 
open and closed mapping defined on X (from X onto some space Yf) and 
1 < N(f) < oo, then for some x <E U, the diameter of f~]f(x) ^ e. 

We can, of course, state Newman's Property for more general (non 
metrizable) spaces X using coverings. 

A space X is said to have Newman's Property hereditarily if and only if 
each domain U in X has Newman's Property. 

Since an «-manifold M is locally an «-manifold, it follows that M has 
Newman's Property hereditarily. 

Definition. A mapping h of X onto X is said to be an involution if and 
only if h is a homeomorphism of period 2, but not the identity. The orbit 
mapping (j> of h is a two-to-one open and closed mapping. We shall say 
that a finite-to-one open and closed mapping f is simple if and only if 
N(f) = 2. 

It is well known that if U and V are disjoint open subsets of an 
«-manifold M such that 

(1) Bd U = Bd V and (2) M ¥> Û U P, 

then there is no homeomorphism h of U onto V such that h(x) = x for 
x G Bd U. See [19, 5.2, p. 6]. Suppose that there is such a homeo­
morphism. 

Let / be the quotient mapping consisting of the singletons on M — 
(U U V) and the sets (orbits) {x, h(x) } for i e [/. Thus, fis a finite-
to-one open and closed mapping which is one-to-one on the open set 
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M — (U U V). This implies that M does not have Newman's Property 
with respect to simple mappings. Thus, this property used in [19, 5.2] is 
only a special use of Newman's Property for «-manifolds. Indeed, it is 
equivalent to this special case. 

Notation. Suppose tha t / i s a discrete open mapping of X onto Y. We use 
B to denote f~l f(Bf) where 

Bf = {.x|/is not a local homeomorphism at x}. 

Also, 

A = C\{x\x e B and B separates X locally at x}. 

We shall prove theorems in the remainder of this section which are of 
interest independently of their usefulness in establishing our main 
results. 

THEOREM 3.1. Suppose that X is a generalized continuum and that f is a 

finite-to-one open and closed mapping of X onto Y such that X — B is 

connected. Then N(x,f) is constant on X — B. 

Proof Suppose that for some p and q in X — B, N(p, f) ¥= N(q, f). 
There is a simple arcpq from;? to q in X — B [cf. 21]. 

Now, f(pq) is a Peano continuum P mf{X — B). There is a simple 
arc R from f(p) to f(q) in P. By using Theorem 2.5, it is seen that 
X — B z> f~l(R) and f~l(R) is the union of a finite number of simple 
arcs xtyt such that 

(1) / (* / ) = / ( /> ) , 

(2) f(yi) =f(q\ and 

(3) f\xtyi is a homeomorphism of xz^z onto R. 

Since N(p,f) ¥" N(q,f), some two of the arcs x^i must have at least one 
point in common. Thus, some common point z is a point at which/is not a 
local homeomorphism. Hence z e Bf. This is a contradiction. (See also a 
similar result in [21, 6.1, p. 199].) 

THEOREM 3.2. Suppose that X is a generalized continuum which has 
Newman's Property hereditarily and that f is a finite-to-one open and closed 
mapping of X onto Y. If X — B is not connected, then f is one-to-one on each 
component C of X — B. 

Proof. Suppose tha t / i s not one-to-one on some component C of X — B. 
Let 

Q = {x\x G C - C a n d i G C\(X - C) }. 
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Then Q is closed and separates C from X — C in X. That is, there is a 
separation X - Q = S U T where n C a n d T D l - C . 

Let B} = Q n Kt(f) for each /. 
Since 

oo 

Q = u £,-, 
/ = 1 

it follows from the Baire Theorem that for some k, the interior U of Bk 

with respect to Q is non empty. Let W be an open set in X so that 
W D Q = U. Now, 

#* ( / ) z> £/ and N(x,f\U) ^ A: for each x e U. 

Hence, there is x\ e (7 SO that 

/c â N(xhf\W) = n ^ N(xJ\W) for each x e U. 

Let ^2, X3, . . . , xn be the other points (distinct from each other and from 
x\) of W n f~Xf{x\), if any; otherwise, let V = W. Choose pairwise 
disjoint open sets W{ containing xt for each / = 1, 2, . . . , n such that 
W D JK/. Let 

v= wx nf-^nJiW;)). 

Then N(x,f\ V) = 1 for each x ^ V C\ Q. (We have used an idea from [19, 
proof of 5.4, p. 7].) 

Next, choose a domain D containing x\ such that f\D is closed and 
V z> Z). Thus, / | i ) n g is one-to-one. Since x\ ^ Q and C is a component 
of X - B, 

D n (X - C) ^ 0. 

Let g = / | C U D. Clearly, f\C is closed since f~]f(Bf) = B is closed. 
Thus, g is a closed and open mapping on the domain C U D . Let m denote 
the quotient mapping defined with singletons on D — C and the various 
sets g~xg(x) for x e C. Thus, m, is an open and closed mapping of 
bounded multiplicity, i.e., N(m) = N(f\C) which is constant by Theorem 
2.1 and greater than 1 by assumption. Since m is one-to-one on the non 
empty open set D — C, it follows that X does not have Newman's 
Property hereditarily. This is a contradiction. The theorem is proved. 

Remark. Instead of assuming that Xhas Newman's Property hereditari­
ly, assume that X has Newman's Property and that/]Bd C is one-to-one 
where C is a component of X — B. Assuming that / i s not one-to-one on C, 
let m be the quotient mapping defined by the singletons on X — C and the 
s e t s / _ 1 / ( x ) n C. Consequently, if X — B is not connected, then m is 
one-to-one on the non empty set X — C. This contradicts the assumption 
that Xhas Newman's Property. It follows that / ]C is one-to-one. 
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THEOREM 3.3. Suppose that X is a generalized continuum and that j is a 
finite-to-one open and closed mapping of X onto Y. Furthermore, C is a 
component of X — B {where B = f~xf(Bf) ) such that f\C is one-to-one. 
Then C is contained in a component C of X — A (where A = Cl {x\x e B 
and B separates X locally at x} ) andf is one-to-one on C'. 

Proof If B = 0 = A, then C = X and fis one-to-one on X. If B * 0, 
let 

F = {x\x G C n ^ a n d i ^ C\(X - C) }. 

For each x e F, there is a domain Dx containing x and no point of 
C\(X - C). Clearly, C = C U F is connected and F n A - 0. However, 
A D B n (C - F). It follows that C is a component of X - A. 

Suppose tha t / i s not one-to-one on C. Then there are two points/? and 
q in C such tha t / ( /? ) = f(q). There are disjoint domains Dp and D^ 
containing/? and q, respectively, such that f(Dp) = f(Dq). Consequently, 
there are points x G Dp n C and j G D^ n C so tha t / (x ) = f(y) which 
contradicts Theorem 3.2. Thus , / i s one-to-one on C 

THEOREM 3.4. Suppose that X is a generalized continuum with Newman's 
Property hereditarily and that fis a finite-to-one open and closed mapping of 
X onto Y. Furthermore, Q is a closed subset of B such that 

(1) C\ and C2 are two components of X — Q, 
(2) / ( C , ) = / ( C 2 ) , 
(3) f\Cj is one-to-one, 
(4) f\Cj is closed (and, open, of course), 
(5) D is a domain such that f\D is closed, 
(6) N(x,f\D) = I for each x G D n Q, and 
(7) D Ci Q * <ô_fori = 1, 2. 

7%£?« D - (Ci U C2) = 0. 

Proof Suppose that D — (C\ U C2) ^ 0. Let m be the quotient 
mapping defined by the singletons on D — (C\ U Ci) and the sets 
fXf(x) n (Ci U C2) for each x e Cj. It follows that the domain 
D U C\ U C2 does not have Newman's Property since m is one-to-one 
on Z) — (C\ U C2). This is a contradiction. The theorem is proved. 

THEOREM 3.5. Suppose that X is a generalized continuum with Newman's 
Property hereditarily and that f is a finite-to-one open and closed mapping 
from X onto Y. If X — B is not connected, then there is p G Bf and at least 
two components C\ and C2 of X — B such that 

(1) p e C,n C2, 
(2) / ( C , ) = / (C 2 ) , 
(3) f\Cj is one-to-one, and 
(4) f\B is a local homeomorphism m at p. 
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Indeed, there exist components C\ and C^oj X — A containing C\ and C^ 
respectively, such thatf\C\ is one-to-one. (Recall that B = f~ Xf{Bf) and that 
A = Cl {x\x G B and B separates X locally at x}.) 

Proof. Let Bt = B n Kj(f) for each i. As in the proof of Theorem 3.2, 
there is some k such that the interior U of Bk relative to B is non empty. As 
shown there, there is/? = x\ e Uand an open set Fin Xcontaining/? such 
that 

U D V n B and N(x,f\V) = 1 for each x e V n B. 

Since U D f~V(p)> there is no loss of generality in assuming that/? e Bf 
a n d / i s not a local homeomorphism at/?. 

There is a sequence {yt} ~^f(p) such that for each /, 
(1) yt £ f(B) and 
(2) there are pointspt and gz i n / ^j^) where/?, ^ gz, {/?,} —»/?, and 

For each /, there are components Wt and Zz of ^ — B such that /?, e W/, 
<& G Z z , / ( ^ ) = / ( Z z ) , and ^ n Zz = 0._ 

Suppose that for infinitely many /, /? £ Wt. By Lemma 2.3, there is a 
domain Z) containing/? so that/|Z) is closed. Also, assume that V D Z). 
Hence, N(x,f\D) = 1 for each JC G Z) PI 5. For some /, Z) n Wt ¥= 0, 
Z) n Z, T̂  0, and /? £ H^. Now, define a quotient mapping m on 
Z) U Wt U Z, with singletons on Z) - (JFr U Z,) and the s e t s / - 1 / ( x ) n 
( ^ U Z,) for each JC e W,. Now, Z) U Wt U Zr has Newman's Property. 
By Theorem 3.4, 

Z) - (Wt U Z,) = 0. 

This is a contradiction. Thus, there is TV so that if / > TV, /? <E W,- and 
/? G Z-. 

If there is some /" and/, i > j > TV, so that/(Wz-) ^ f(Wj), then choose a 
domain Z) containing/? so that/|Z) is closed and N(x,f\D) = 1 for each 
x e Z) n £. 

Now,/(Wi) =/(Z l - ) . Also, 

Z) - (Wt U Zz) ^ 0 

since/? G Z), /? e T^, and ^ n (Wt U Zz) = 0. 
Again, we can define a quotient mapping on D U W{ U Zz, similar 

to the above, and obtain a contradiction to Theorem 3.4. Thus, 
fiWi) = / ( » ; ) for each /, / > tf and, similarly, / (Z z ) = / (Z y ) for 
/', j > TV. Consequently, we have proved that there is M so that for each 
/ > TV, pj <E Wf and qj e ZZ for each / > M. 

The final part of the theorem follows from an application of Theorem 
3.3. 
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Definition. A pair (X, Y) where each of X and 7 is a space is said to have 
The Invariance Of Domain Property if and only if for any pair ([/, V) such 
that 

(1) X D [/, 
(2) Y D V, and 
(3) there is a homeomorphism h of U onto F, 

then [/ is open implies that V is open and conversely. 

This is a well known property for pairs (X, Y) where each of X and Y is 
an «-manifold (without boundary). 

Question. What pairs (X, Y) have the Invariance Of Domain Property? 

THEOREM 3.6. Suppose that X is a generalized continuum with Newman's 
Property hereditarily and that fis a finite-to-one open and closed mapping of X 
onto Y. Furthermore, the pair (X, Y) has the Invariance Of Domain Property. 
Then Bf does not locally separate X. 

Proof. Let 

F = Cl {x\x e Bf and Bf separates X locally l a t x } . 

It follows from Lemma 2.4 that if Bf separates X locally at x, then F 
does. 

Let Bj = F n Kj(f) for each i. Thus, by the Baire Theorem, there is 
some k such that the interior U of Bk relative to F is non empty. Let W be 
open in X such that W n F = U. Since Kk(f) 3 [/, 

N(x,f\W) g k for each x e [/. 

Hence, there is x\ G [/so that 

fc ^ # ( * ! , / ] W) = « ^ JV(jc,/|JF) for each x €= [/. 

As shown before, there is an open set F in X so that 

[/ D V n F and # ( J C , / | F ) = 1 for each x e F n F. 

Since JCJ G f, there is g e By n F a t which #y(and hence T7) separates 
X locally at q. Choose a domain D containing q such tha t / ] / ) is closed, 
V D Z>, and D — F is not connected. Since 

int £y = 0 = int £, 

D — B is not connected. 
Now, Z) is a generalized continuum and g = / | D is a finite-to-one open 

and closed mapping of D onto f(D). Furthermore, D has Newman's 
Property. Now, 

g-]g(Bg) = B n D. 

By Theorem 3.5, there exists/? ^ Bg = Bf n D, components C\ and C^ of 
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D - B such that 

(1) g(Cx) = g(C2)9 

(2) p G d n C2, 
(3) g|Cz is one-to-one, and 
(4) g\B a local homeomorphism at;?. 

There is a domain Z)̂  containing p such that Z) z> Z^, glZ)̂  is closed, 
and 

JV(x, g|Z)p) = 1 for each x £ Dp n B. 

There are components Z\ and Z2 of Dp — B such that Q 3 Zz. By 
Theorem 3.4, 

z>„ - (z[ u zi) = 0. 
Since g is one-to-one on Dp C\ B, it follows that Z\ Pi Dp is homeomorphic 
to g(Dp) which is open in Y. By the Invariance Of Domain Property, 
Z\ n Z)̂  is open in x and in Dp. Since Zj Pi Dp is also closed in Dp, it 
follows that Zj Pi Z)p = Z)p. This contradicts the fact that Z2 c Dp and 
Z\ C\ Z2 = 0. We are forced to conclude that Bf does not separate X 
locally at any point. 

COROLLARY 3.61. If each X and Y is a connected n-manifold without 
boundary, Xhas Newman's Property hereditarily (proved in Section 6), andf 
is a finite-to-one open and closed mapping of X onto Yy then Bf neither 
separates X nor separates X locally at any point. Indeed, dim Bf = n — 2. 
[cf 19, 5.4, p. 7]. 

Proof If dim Bf = n— 1, then Bf separates X locally at some point. 

Remark. We used Newman's Property to show, in the proof of Theorem 
3.6, that Dp — B consists of exactly the two components Z\ and Z2. 
A proof for a similar result in [19] where each of X and Y is an «-mani­
fold uses the following result: Suppose that X is an «-manifold 
containing disjoint domains U\ and £/2 such that Bd U\ = Bd £/2 and 
U\ U U2 ¥= X. Then there is no homeomorphism h of U\ onto £/2 which 
keeps the common boundary, Bd U\, fixed. 

It is remarkable that this result is equivalent to Newman's Property with 
respect to simple mappings. 

In [3, Theorem 1], the proof is given for «-manifolds. However, it holds 
true for certain generalized continua as follows: 

THEOREM 3.7. Suppose that X is a generalized continuum which has 
Newman's Property hereditarily and f is a finite-to-one open and closed 
mapping of X onto Y. Then N(f) < 00. 

Proof Suppose that N(f) = 00. Let 

Ei = E,(f) = Cl(int Kt(f) - K,-X{f)) 
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for each / where KQ = 0. For some z, E} 7̂  0 by the Baire Theorem. We 
shall prove that 

(1) KM) - *,-_,(/) = Hi(f) is dense in Bd Er 

Choose x G Bd Et such that N(x,f) ^ N(y,f) for each y G Bd £,-. Of 
course, /' g N(x,f). Suppose that / > N(x,f). Then there is z G f~]f(x) 
such t h a t / l ^ is not a local homeomorphism at z. However, /]Bd £, is a 
local homeomorphism at z by choice of x. There is a domain Z), containing 
z such that 

N(pJ\Dz) = 1 for each;? G DZ n Bd £,-, 

/ ] / ) - is closed, and 

Z)z - Bd Et = Vx U K2, 

two separated sets where £,- z> Fi and £z n F2 = 0 (Bd £, separates int £,-
from X — /?,-). 

Let m be the quotient mapping consisting of the singletons of V2 and 
the sets f~]f(x) n F^ Thus, m is an open and closed mapping on D-
which is one-to-one on the open set V2. This contradicts the hypothesis 
that X has Newman's Property hereditarily. Thus, N(x,f) = / and / / / ( / ) 
is dense in Bd Et. 

Choose x G Bd E, such that N(x,f) = /'. There is z G f'xf(x) c Bd £,-
such that / is not a local homeomorphism at z but /]Bd El is a local 
homeomorphism at z. Let Z)z be a domain such that/ |Z)z is closed and 

N(pJ\Dz) = 1 for each/? G £>2 n Bd Er 

We shall prove that 

(2) {N(qJ) \q G Dz - E,} is unbounded. 

If this is not the case, then there is k so that 

N(q,f) < k for each q G Dz - Er 

Define a quotient mapping m consisting of singletons on Ex n Dz and the 
s e t s / _ 1 / ( x ) n Dz — Et. Again, m is an open and closed mapping on Dz 

with N(x, m) < k. Thus, m being one-to-one on int Et contradicts the 
hypothesis that X has Newman's Property hereditarily. The statement (2) 
is true. 

Let 

00 

M = X - U int Kiif). 
I = I 

Thus, if x G M, then M z> / ~ ^ (x) . Also, if x G M and £/x. is an open set 
containing x, then N(p,f\Ux) is unbounded. Note that 
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00 

M D U Bd Er 

Let Mj = M n Ki(f). By the Baire Theorem, there is k so that the interior 
of Mk relative to M is a non empty set UAix e U, then 

U =>/"!/"(*) and N(x,f) ë fc. 

There is an open set W in X such that 

If H M = [ / and f~xf{W) = W. 

Thus, ^ n Bd ^ = 0 for / > k. If W n int £z # 0 for some / > A:, then 
either 

(a) int Ef ^ W or 

(b) W n Bd Ei ¥> 0. 

In case (a) N(w,f) ^ i for w ^ W. Case (b) can not be true because 

W O M = £/ c £*( / ) . 

Thus, it follows that, in any case, {N(p,f) \p e W} is bounded. This 
involves a contradiction since by statements (1) and (2), each open 
set containing a point of Bd Ek (such as W) has the property that 
{N(p, f)\p e W) is unbounded. Consequently, the theorem is true 
and N(f) < oo. 

THEOREM 3.8. Suppose that X is a generalized continuum with Newman's 
Property hereditarily and that f is a finite-to-one open and closed mapping of 
X onto Y. If X — B is not connected, then there are n > 1 components of 
X — B each of which maps homeomorphically onto Y — f(Bf). 

Proof By Theorem 3.5, there is a point/? e 2?y and two components C\ 
and C2 of X - B such that/? G Ci" n Z2,f(Cx) = / ( C 2 ) , / | Q is one-
to-one, and/ | i? is a local homeomorphism at/?. 

Let C], C2, . . . , C„ be the components olf~xf(Cx). Thus / (Q) = f(C\) 
and/ |C/ is one-to-one. Indeed, f\Ct is one-to-one. Let 

Z = {q\q ^ Bd Cz for some / } . 

Now, Z is closed and /? G Z. Consider 

Ô = z n C1(X - u Zt). 
; = 1 

Either 

(1) 0 = 0 or 

(2) 0 # 0. 
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We shall show that in case (1), 

X = U Q. 

If 

X ± U Q, 
/ • = 1 

then there is a sequence {#,•) —> g such that 

n 

q; £ U Cl and g G Bd Q for some /*. 
/ = l 

Thus, g ^ 0, contrary to this case. 

Let Bj = Q n £,•(/) for each /'. By the Baire Theorem, there is some k so 
that the interior U of 5^ relative to Q is non empty. By an argument 
similar to one used before, there is z G (/ and an open set V in X 

containing z such that 

U D V n Q and N(x,f\V) = 1 for JC G F n g. 

There is a domain R containing z such that/]/? is closed, N(x,f\R) = 1 
for x <= 7? n g, and 7? n Ct•• = 0 if z £ Bd Cz. Define a quotient mapping 
m on R with singletons on Q n i£ for each / so that Ct n R ¥= 6. (Recall 
t h a t / | Q is one-to-one) and the sets 

f~xf(x) n R for x G i? - U Q. 
/ = l 

If x G Bd Q Pi 7? for some z, then either 

x <s Q or x £ C1(Z - U Ç-). 
/ = l 

Consequently, m is an open and closed mapping on R. By Theorem 3.7, 
N(m) < oo. Thus, Xcan not have Newman's Property hereditarily since m 

n 

is one-to-one on the non empty open set R n ( U Cz), a contradiction. 

« 
X = U Cr 

i=\ l 

It follows tha t /maps each Cz homeomorphically onto Y — f(Bf) and the 
theorem is proved. 

Example. There is an example of a Peano continuum X and an open and 
closed mapping/of X onto Y such that N(f) = 4, X — B has infinitely 
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many components, and X has Newman's Property. However, X does not 
have Newman's Property hereditarily. Thus, Theorem 3.8 is false without 
this hereditary property. 

We construct the Peano continuum X by starting with an equilateral 
triangle ABC containing another equilateral triangle DEF where D, E, and 
F are the midpoints of the sides AC, CB, and AB, respectively. In each 
equilateral triangle ADF, DFE, DEC, and EFB, we remove the interior of 
an equilateral triangle such as abc having vertices as midpoints of the sides 
of the larger triangle. Continue removing the interiors of equilateral 
triangles on the remaining triangles in this manner. We obtain a 
1-dimensional Peano continuum X which has Newman's Property (see 
Section 6). Fold triangle ADF onto triangle DEE, BEE onto DEE, and 
DEC onto DEE to obtain an open and closed mapping/of X onto Y, the 
part of X contained in triangle DEE. Now, N(f) = 4 and Bj consists of 
the straight line intervals DE, EF, and DF. Both Bf and B = f~]f(Bf) 
separates X into infinitely many components none of which maps onto 
Y ~ f(Bf). 

A D C 
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Example. There is a finite-to-one open and closed mapping/of a simple 
closed curve X(l-manifold) onto the closed interval [0, 1] = Y such that 
N(f) = 4, X — Bf has 4 components, and / is one-to-one on each 
component. This is in contrast to Theorem 3.6. In this example, the pair 
(X, Y) does not have the Invariance Of Domain Property. Thus, without 
this property, B may separate X but in a very special way. 

Let X be the space consisting of 

X\ = {(x, y) \y - x = i, - 1 ^ x ^ o}, 
*2 = {(x9y)\y - x = - 1 , 0 â x g 1}, 

X3 = {(x9y)\x + y = 1,0 ^x ^ 1}, 

and 

X4 = { (JC, 7) |JC + y = - 1 , - 1 ë JC ^ 0} 

with the induced topology from the plane. 
Le t /map each of X3 linearly onto [0, 1] taking (0, 0) to 1 and (0, 1) to 0, 

X\ linearly onto [0, 1] taking (0, 1) to 0 and (— 1, 0) to 1, X4 linearly onto 
[0, 1] taking ( - 1 , 0) to 1 and (0, - 1 ) to 0, and X2 linearly onto [0, 1] 
taking (0, —1) to 0, and (0, 1) to 1. Clearly, X has Newman's Property 
hereditarily (Section 6), but (X, Y) does not have the Invariance Of 
Domain Property. Now, 

B = Bf= {(1,0) , (0, 1), ( - 1 , 0), (0, - 1 ) } . 

The remainder of the claim should be obvious. 
One can take X X [0, 1] and 7 X [0, 1] to construct a similar example in 

two dimensions. 

COROLLARY 3.81. Suppose that X is a generalized continuum which has 
Newman's Property hereditarily. If fis an open and closed mapping of X onto 
Y such that N(f) = 2 and X — B is not connected, then X — B consists of 
exactly two components C\ and C2. Furthermore, there is an involution h of X 
onto X such that h(x) = x if and only ifx e Bf and fis (topologically) the 
orbit mapping of h. 

The proof is an easy consequence of Theorem 3.8. 

COROLLARY 3.82. Suppose that X is a generalized continuum with 
Newman's Property and that f is a finite-to-one open and closed mapping of 
X onto Y. Then f{Bf) does not separate Y. 

Proof. If f(Bf) separates Y, then flf(Bf) = B separates X. Thus, 
by Theorem 3.8, there are exactly n components of X — B, say, 
C\, C2, . . . , Cn such that / |C z is one-to-one and 

/ ( C ) =f(Cj) = Y-f(B). 
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Thus, Y — f(B) is connected. This involves a contradiction. 

COROLLARY 3.83. Suppose that X is a generalized continuum with 
Newman's Property hereditarily and that f is a finite-to-one open and closed 
mapping of X onto Y. Thenf(Bf) does not separate Y locally at any point. 

Proof Let U be a domain containing y at which f(Bf) separates Y 
locally and U — f(Bf) = S U T, two separated sets. 

Let E = S O f. Since N(f) < oo by Theorem 3.8, there is y G E such 
that 

N(y9f) = n ^ N(x,f) for each x G f\E) = F. 

There exists a domain D containing y such that f~\D) has exactly 
n components C\, C2, . . . , Cn such that / ( Q ) = D for each /'. Thus, 
f\ (F P Cz) is one-to-one. For some k, there is p G i?y n Q where 
/? G F. Now, these exist sequences {/?;} —> /?, {qt} —> p, and {j z} —>/? 
such that f(pi) = f(qi) G S and f(yt) G T. Let W,-, Zz, and Qt be 
components of Q — F such that /?z G Wz, gz G Zz, and yt G <2Z. It may 
happen that Wt = Zz, but clearly/( Wl•) = / (Z z ) in any case. 

Choose a domain F containing p such that / | V is closed and Q D F. 
There exists / such that 

F n J^r ¥= 0 and F n Qt * 0. 

Define a quotient mapping m on F with singletons on V — (Wt U Zt) and 
the sets f~lf(x) P (JF, U Z,) for je G W,. 

Suppose that x ^ Bd Wt P V. If x £ F, then there is a domain 7VA. 
containing x such that Nx P F = 6 and K D A^. Thus, Wr D A^ since Wr 

is a component of Ck — F and x G Bd W,, a contradiction. Thus, x G F. 
Since/ | (F P Q ) is one-to-one, it follows that m is an open and closed 
mapping on V. Furthermore, m is one-to-one on the non empty set V — 
(Wt U Zt). This contradicts the hypothesis that the domain V has 
Newman's Property. Hence, the corollary is proved. 

COROLLARY 3.84. Suppose that X is a generalized continuum with 
Newman's Property hereditarily and that f is a finite-to-one open and closed 
mapping of X onto Y. If B = Bf = f~xf(Bf),fis one-to-one on B, and 
X — B is not connected, then X — B consists of 2 components C\ and C^ 
and there is a periodic homeomorphism h of X onto X of period 2 such that 
h(x) = x for x G B and f is topologically the orbit mapping of h. 

Proof. By Theorem 3.8, there are exactly n components C\, C2 , . . . , Cn 

of X — B each of which maps homeomorphically onto Y — f(B). 
Let b G B. Then b G Bd Cj for some j . Let 1 ^ k ^ n. There is a 

sequence {pt} —» b such that/?z G CJ for each /'. Thus, 

{f-V(Pi))-*f-V(b) = b and qt e / " 1 / ^ - ) n Ck. 
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Since fis closed it follows that {qt} —> b and b e Bd Q . 
Suppose that n > 2. Let m denote the quotient mapping with singletons 

on Q for / > 2 and the s e t s / _ 1 / ( x ) n (Cj U C2) for x G CJ. Thus, m is 
an open and closed mapping on X which is one-to-one on the open set C3. 
This contradicts the hypothesis that X has Newman's Property. Thus, 
n = 2. 

Let f~lf(x) n Q be the singleton xz-. Now, define h{x\) = x2 and 
//(x2) = x\. For JC G Bp let /z(x) = x. The conclusion of the corollary 
follows. 

Example. Let X denote the unit 2-sphere 

{(jc,.y, z)\x2 + y2 + z2 = 1} 

and Y denote the 2-disk 

{{x,y^)\x2 + / g 1}. 

L e t / b e the vertical projection of X onto 7, i.Q.,f(x, y, z) = (x,_y). Thus , / 
is an open and closed mapping of the 2-manifold X onto the 2-manifold Y 
with boundary. Note that (X9 Y) does not have the Invariance Of Domain 
Property. Here, 

Bf = B = { (x, y, 0) \x2 + y2 = 1). 

Also, / is the orbit map of an involution g on X. 

4. More terminology and preliminary theorems. We shall prove that 
certain generalized continua possess Newman's Property. First, we state 
needed concepts and prove useful theorems. 

A collection K of subsets of a space X is said to be locally finite if and 
only if for each x e X, there is an open set U containing x which has a 
nonempty intersection with at most a finite number of the elements of K. 
A set A meets a set B if and only if A n B ^ 0. If K is an open covering of 
a space X, then N(K) will denote the nerve of K consisting of all elements 
of K (vertices) and all «-simplices 

a" = (VQ, Vh..., V„) 

such that 

V; G K and n K,- # 0 

for each natural number n. The nucleus, Mawl, of on is the set n F,. 

We shall be using Cech homology (cf. [22, chapter V] ). 
Suppose that K is a collection of subsets of X and A cz X. Then the star 

of A with respect to K is the collection 

{k\k G tf and fc n A * 0). 
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We shall make use of the well known theorems about open coverings of 
metric spaces (X, d). For example, for each open covering G of X, there is 
an open covering H of X which 

(1) refines G (each element of H is contained in an element of G) and 
denoted by H > G and 

(2) H is locally finite. That is, (X, d) is paracompact. 
If each element h of H has the property that h c g e G, then H closure 

refines G (denoted by H > G). 
We shall use covering dimension of (X, d) which we denote by dim X. 

The order of an open covering G of X is n if and only if at most n elements 
of G meet and some n elements of G meet. That is, there is an «-simplex in 
N(G) and N(G) contains no ^-simplex for k > n. It is well known that for 
each open covering G of a metric space (X, d) such that dim X = n, there 
is an open covering H such that 

(1)7/ star refines G, i.e., if h e H, then there is g e G such that each 
element of the star of h with respect to H lies in g, 

(2) H is locally finite, and 
(3) order H = n + 1 (cf. [14] ). 
A collection K of subsets of X is closure preserving if and only if for any 

subcollection H of T̂, 

u/z = "u/r 

Also, K is discrete if it is closure preserving and the closures of the 
elements of K are pairwise disjoint. We let K* denote the union of the 
elements of K. See [1]. 

The next two theorems are useful in constructing special coverings 
which we use to prove that certain generalized continua possess Newman's 
Property. In fact, we generalize two lemmas of Wilder [22; 8.7 and 8.8, 
p. 134]. The proofs use ideas of his but our results are stronger. 

THEOREM 4.1. Suppose that Y is a generalized continuum and F is a closed 
subset of Y. If U is an open covering of Y, then there is a locally finite open 
refinement R of U which covers Y and an open set Q 3 F such that if the 
nucleus of a simplex of N(R) meets Q, then it meets F. In addition, the 
elements of R can be taken as connected. Also, R can be chosen to star refine 
U. If dim Y = n, then we can choose R to also have order n + 1. 

Proof There exists a locally finite open refinement W of U such that if 
w G W, then w is compact and w is connected. Let P denote the union of 
all elements w e W such that w P\ F ¥= &. Let 

if = {w\w n P * 0}. 

Let or be an /--simplex of N(U'). If its nucleus, N[or], meets F, then let 

p(or) e F n N[or); 
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otherwise, let p(or) denote any point of N[or]. Let M denote the set of all 
these points p(or). Since W is locally finite, M has no limit point. The 
elements of U are countable as U\, U2, . . . , Uh . . . . Replace each Ul by a 
collection Kt as follows: Let 

_ °° 
AX=(MC\ Ux) U[P - U Uj]. 

Cover A \ by a collection K\ such that 
(1) for k G K\, k is open and connected (indeed, uniformly locally 

connected), 
(2) Ux 3 k for each/: G ^ , 
(3) the elements of K\ are pairwise disjoint, and 
(4) K\ is closure preserving (use the fact that a metric space is 

collectionwise normal [1] and the collection of closed sets consisting of 

_ °° 
P U U U, 

.7 = 2 J 

and the points of M n U\ is discrete). 
Using induction, let 

_ / — 1 oo 

At = (M n Ui) U [/> - U A f - . U £/,-]. 
7 = 1 J y = z + l 

Cover y47- by a discrete collection ^ of connected open sets such that for 
each k e K, JJi z> /:. Now, let i? denote the collection of the elements of 
the various Kt and those elements of W not meeting P. 

Suppose that a simplex or of N(R) has a nucleus 7V[(/] that does not 
meet F where or = (b0, b\, . . . , br). Then 

x G 7V(ar) n F 

would imply that 

r _ 

x e n /?,. 
/ = 0 

There exist y'o, y'j, . . . ,jr such that 

bt c £/,-, JV(cO c nQ Uh = N[Sr] 

where 

8r = (Uj0, UJV . . . Ujr) e 7V(<7). 

This implies that F n 7V[Sr] ^ 0 and that/?(Sr) G #[a r ] which is contrary 
to the construction of R. Thus, if N[or] fails to meet F for <jr e N(/?), 
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then 

N[or] n F = 0. 

Let Q be any open subset of P which contains F and meets no N[or] that 
fails to meet F. 

In case dim Y = n, we first choose W io have the properties listed above 
and, in addition, order W = n + 1. The construction of R yields that 
order R = n + 1. 

THEOREM 4.2. Under the hypotheses of Theorem 4.1, there exists a locally 
finite open covering W of Y which star refines U such that if H is a 
subcollection of W each element of which meets F, then the intersection N of 
the elements of H is non empty only if N meets F. If dim Y = n, then W 
exists with the additional property that order W = n + 1. If dim Y = n, 
then W can be chosen so that in addition to the other properties, order 
W = n + 1. If dim Y = n and dim F = n — 1, then W can be chosen to 
have the additional properties that order W = n + 1 and order WF = n 
where 

WF = {w\w G W and w n F ^ 0}. 

Proof. Choose R and Q as in Theorem 4.2. As shown there, a set 

(b0, &i, . . . , br) = or 

of elements of R has a nucleus N[or] meeting F only if the same held true 
for N[8r] where 

8' = (Ujo,Ujl9...,Uj) 

with elements in U such that Uj. z> &,. By the way that g was chosen, such 
a set Af[ar] must meet F if it meets Q. That is, nuclei of simplices in N(R) 
either meet Q and hence i7 or lie in Y — Q. Replace the collection Kh for 
each /, by the collections 

K\ = {k n gljfc G A,-} and ^ = {k - F\k e #z-}. 

The covering W consisting of the elements of 7? not in any Kj along with 
the elements of the various collections K- and K" is the required 
covering. 

In case, dim Y = n and dim F ^ n — 1, start with £/ in Theorem 4.2 as 
an open covering of Y with the property that the collection Up of those 
elements of U which meet F has order ^ n relative to F (i.e., the 
collection 

U(F) = {u n F]u G £/F} 

has order ^ w) and the collection 

UY-p = {u\u G U and 1 / 0 ^ = 0 } 
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has order n + 1. Apply Theorem 4.1 and the proof above using such a 
covering U to obtain W. Observe that if 

WF = {w\w e W and w n F * 0} 

then order WF ^ n. 
We shall say that W is regular with respect to F when W satisfies the 

conclusion of Theorem 4.2. In case either dim Y = n or dim Y = n and 
dim F â n — 1, we require the appropriate additional restrictions or 
either W or W and WF. 

5. Special coverings. Suppose t ha t / i s a light open and closed mapping 
from X to Y when each of X and 7 is a generalized continuum. We shall 
construct what we shall call special coverings of X similar to those defined 
by Smith [18]. In the case t h a t / i s finite-to-one, dim X = dim Y = n, 
F = f{Bf), and dim F ^ n — 1, these special coverings have particularly 
nice properties. In fact, we shall construct the special coverings for this 
case. The generalization should be clear. 

Suppose that U is an open covering of Y. Now, use Theorem 4.1 to 
obtain R refining U and satisfying all of the conditions of the theorem 
including conditions on the orders of R and W. Now, obtain W satisfying 
Theorem 4.2 such that W is regular with respect to F. 

If w G W, w <£ K'h and w £ K'/7 t h e n / _ 1 ( w ) has a finite number of 
components each mapping onto w unde r / In fact, R and J^can be chosen 
so that if w G i?, the closures of the components o f / _ 1 ( w ) are pairwise 
disjoint. If N(f) = k, then for w G W where w Pi F = 0 , / _ 1 ( w ) con­
sists of exactly k components each mapping homeomorphically onto w 
under / 

Let gi, g2 ^ W, gj £ K'h and gj £ K"ior any i and each y = 1 , 2 . 
If gi n g2 ^ $> then the components off~\gj)J = 1 , 2 , can be ordered 

as gjh gj2, . . . , gjk such that gu n g2t ^ 0 if and only if / = /. 
These components of f~\w) constitute a distinguished family deter­

mined by W when W n F = 6. Each component will be a member of the 
special covering Wf. The remaining elements of Wf are as follows: If 
g €E AT- or g G ££ then there exists /c G ATZ such that either 

(1) g = k n g or 
(2) g = k — F (where g is the open set used in the definition 

of K>). 
In either c a s e , / \k) consists of a finite number of components u\, 

«2» • • • , us each mapping onto k under/ . Now, let 

»i = "inf-\Q) and v\ = ui-f-\F) 

depending on where case (1) or (2) holds true. Now, the remain­
ing elements of Wf are the various u\ and v\. Also, the collection 
{w'i, u'2, . . . , u's) and {vi, v'2, . . . , v^} are distinguished families determined 
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by g in either case (1) or (2). 
Suppose that (v0, Vj, . . . , vr) = or is an r-simplex in N(W). For each 

/, 0 ^ i ^ r, 

f-\vt) = vn U v/2 U . . . U v„, 

where [vih v/2, • • . , vz>7.} is the distinguished family determined by vt. 
Suppose that 

(voyi, v1/2, . . . , vrj) = 8r 

is an r-simplex in N(Wf). Now, there are such simplices since for each 
/ = 0, 1, 2, . . . , r; each 7* = 1, 2, . . . , nt\ and each /c = 0, 1, . . . , r; there is 
some / so that 

Vij n v ^ O 

and conversely, for each s = 1, 2, . . . , nt, there is p so that 

v*5 n vf> ^ 0. 

That is, each member of the family determined by v, intersects some 
member of the family determined by vt and conversely. Thus, if q is in the 
nucleus of or, N[or], then 

f~\q) n Vjj =£ 0 for each /' = 0, 1, . . . , r andy = 1, 2, . . . , nv 

The orientation of 8r is to be that of or as indicated by the order given of 
the vertices v0zi, v1/2, . . . , vrir of 8r. 

Since f\vt) has nt components, there will be at least rij r-simplices in 
N{Wf) which are mapped to or by the simplical mapping 

fs:N(Wf)^N(W) 

induced by/ . If m = max {nt\i = 0, 1, . . . , r} , then there are m r-simplices 
in N(Wf) determined by or as indicated above. We say that this collection 
of r-simplices is the distinguished family of r-simplices determined by or 

(more precisely, determined by N[or] ). 
If N[or] n F = 0, then vt H F = 0 for some /* (recall that the vertices of 

</ are v0, vi, . . . , vr which are members of W). 
A standard argument yields the following theorem. 

THEOREM 5.1. The collection of all special coverings W of Y and WjofX 
are cofinal in the collection of all open coverings of Y and X, respectively. 

We now define special projections. Suppose that a special covering H of 
Y star refines a special covering G of Y. The special coverings Hf and Gf of 
X have the properties 

( 1 ) Hf star refines Gf and 
(2) if h G Hf h c g G Gf 

then each member of the distinguished family to which h belongs is 
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contained in exactly one member of the distinguished family to which g 
belongs. Suppose that 8r = (w0, u\, . . . , ur) is an r-simplex of N{Hf). We 
say that a projection 

ir:N(Hf) -> N(Gf) 

is special if and only if 77(Sr) = om in N(Gf), then each member 
Sr

h i = 1, 2, . . . , / , of the distinguished family to which 8r belongs is 
mapped by IT to a member of the distinguished family to which om 

belongs. 
Next, we define the chain operator o used by Cernavskii [3]. Observe 

that our constructions of the special coverings and the definition of o is 
much simpler than in [3] for obvious reasons. 

If 8m is an m-simplex in N(Wf) where Wf is a special covering, then 
either 

(1) N[Sm] nf~\F) ^ 0 or 

(2) N[Sm] nf~\F) = 0. 

In case (1), o8m = 0. In case (2), 

k 

where {8"l}i=] is the distinguished family to which Sm belongs. By 
definition, they have the same orientation. The definition obviously 
extends to any chain group in the usual way. 

LEMMA 5.2. The special operator commutes with the boundary operator, 
i.e., for an m-simplex, odôm = do8m. 

Proof. If N[Sn] n f~\F) ¥= 0, then Theorem 4.2 and N[8n] n f~\F) 
¥= 0 imply that for each face o11 ~] of 8", 

N[o"~l] C\f-\F) * 0. 

Thus, ad8n = do8n. 
If N[8n] n f~\F) = 0, then consider 

n + \ 

38" = 2 {-\)i+x8Ï~\ 

Either 

(a) N[ÔT1} nf~\F) = 0 or 

(b) N[Sr]] nf~\F) # 0. 
n — 1 

In case (a), the distinguished family of 8t contains k(n — 1)-
simplices 8^ , 8n

a , . . . , 8n
ik . Each is a face of exactly one «-simplex in 
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the distinguished family of 8n. The labelling may be arranged so that 
8"j is a face of 8j. In this case, 

«+1 

i=\ 

«+1 

= 2 a(--iy'+,8r 
-1 

«4-1 

= 2(-
/ = 1 

i)'+1 2 
7 = 1 

««— 1 

/c «4-1 

= 22 (-D' + 1. ç>« — 1 

On the other hand, 

k «4-1 

a5« = 2 Ô ; 3 S ; = 2 (-îy+'srj)1. 
7 = 1 1=1 

Thus, 

a(a«")= 2"2(-iy+ 1^ (- )
l . 

7 = 1 1 = 1 

Note that « " j / - 8?" 1 and o(d8n) = d(o8n). 
In case (b), 

k 

a f ip 1 = 0, aô" = 2 8? and 

i = i 

If N[8"j~l] n f~\F) * 0 for some j , it is true for each7 = 1, 2, . . . , k. 
Thus 

o8"j = 0 for each 7. 

Again, a88" = 8a8" and the lemma is proved. 

LEMMA 5.3. If dim Y = n, dim F ^ n — \, and N(f) = k, then 
oo8n = 0 mod k for each n-simplex in N(Wf) where Wf satisfies the 
conclusion of Theorem 4.2. 

Proof If o8n * 0, then 
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oS" = 2 «" 
/ = 1 

where N[8"] n f~\F) = 0. Now, 

a(a8w) = a 2 8" 
i=\ 

where {5"}/==1 is the distinguished family to which 8" belongs. Now, 

k 

o8" = 2J = 8J 
7 = 1 

so that 

k k k 

0(08") = 2 2 8" = 2 kSl = 0 mod A:. 
i=\ i=\ i=\ 

Observe that o maps «-cycles to «-cycles and takes essential «-cycles to 
essential «-cycles. Also, 8 commutes on «-chains with the special 
projections. 

6. Finite-to-one open and closed mappings on certain generalized 
continua and Newman's Property. It is easy to prove that a discrete open 
and closed mapping on a generalized continuum is finite-to-one. 

THEOREM 6.1. (Proof due to Vàisâlà [19] ). Suppose that f is a discrete 
open and closed mapping of X onto Y where each of X and Y is a generalized 
continuum. Thenf~]f(x) is finite for each x G X. 

Proof. Suppose that for some x G X, 

f~V(x) = {*b x2, • . • , xn, . . . }, 

an infinite set. Let d and p denote metrics for X and Y, respectively. 
Choose, for each /, zl ^ X — f~lf(x) such that 

d(zh Xj) <- and p(f{zt)J(x) ) < -. 
i i 

The set Z = {zj, z2, . . . , zn, . . . } is a closed set such t h a t / ( Z ) is not 
closed. This contradicts the assumption that fis closed. Consequently, fis 
finite-to-one. 

We shall consider the class C(k) k > 1, of all finite-to-one open and 
closed mappings / on a generalized «-dimensional continuum X such 
that 

(1) / m a p s X onto a generalized continuum Yf and 
(2) N(f) = k. 
We shall say that the generalized continuum X has Newman's Property 

with respect to C(k) if and only if for each open set A in X, there is a 
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positive number e such that if f ^ C(k), then for some x e A, the 
diameter off~xf(x) = e. Thus, X, has Newman's Property if and only if X 
has Newman's Property with respect to C(k) for each integer k > 1. 

The main theorem of this section follows: 

THEOREM 6.2. (cf. [2, pp. 154-158] ) Suppose that X is an n-dimensional 
generalized continuum. Furthermore, for each open set A in X, the Cech 
homology group, Hn(X, X — A, Zp) is nontrivialfor the prime p. Then X has 
Newman's Property with respect to C(p). 

The points of maximal multiplicity of f form a dense open set in X. This 
restricted property is equivalent to the definition given in Section 3 when applied 
to connected metric n-manifolds. 

Proof Suppose that A is an open set in X. Choose an open set D such 
that D D Â. Let U denote a locally finite open covering of X such that if B 
is a locally finite open covering of X which refines U with the property 
that the star of A with respect to B lies in D, then any projection of N(B) 
into N(U) takes an essential «-cycle zn(B) mod X — D to an essential 
«-cycle zn(U) mod X — A. 

Let € be the Lebesque number of the covering B. Suppose that / is an 
open and closed mapping of X onto a generalized continuum Y such 
that 

(1) N(f) = k > 1 and 

(2) iff~lf(x) n A * 0, 

then d i a m / _ 1 / ( x ) < € and consequently lies in an element of B. 
There is a special covering Gf of X which refines B such that each 

distinguished family of elements of Gf which covers an inverse setf~lf(x\ 
x e X, and meets A lies entirely in some element of B (and, hence, 
i n / ) ) . 

Consider a special projection <n\N(Gf) —> N{B) such that if some 
member gz of a distinguished family {gj, g^, . . . , gm} of elements of Gf 
meets A, then IT projects each gh i = 1, 2, . . . , m, to the same member b 
of B. 

Suppose that on is an «-simplex of N(Gf). If 

N[o»] c X-r\F) 

where F = f(Bf), then the distinguished family in N(Gf) which contains 
cf1 contains exactly p n-simplices. 

If zn(Gf) is an essential «-cycle mod X - D on A, then 

ozn(Gf) = xzn{Gf) where x G Zp. 

Now, 

oozn(Gf) = 0 = 2xzn(Gf). 

Either x = 0 or x = 1 in case p = 2. If JC = 1, then 
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oz"(Gf) = zn(Gf) and 

0 = ooz"(Gf) = ozn(Gf) = zn(Gf) = 0. 

This is a contradiction. Hence, x = 0. 
By construction of Gf mzn(Gf) ¥- 0. However, 

07TZn(Gf) = 7TOZn(Gf) = 0. 

This contradicts the fact that o takes essential «-cycles to essential 
«-cycles. Thus, it is false that 

diam / ~ lf(x ) < e for each x e A. 

The theorem is proved. 

The following corollaries are easy to establish. 

COROLLARY 6.21. If for each open set A of a generalized n-dimensional 
continuum, the Cech homology group Hn(X, X — A, Zp) is nontrivial for 
each prime p, then X has Newman's Property. 

COROLLARY 6.22. Suppose that X is an n-dimensional connected metric 
manifold. Then X has Newman's Property. 

COROLLARY 6.23. Suppose that each of X and Y is an n-dimensional 
connected metric manifold without boundary. Iff is a discrete open and closed 
mapping of X onto Y, then dim Bf = n — 2. 

Proof. By Theorem 6 . 1 , / i s finite-to-one. From Theorem 6.2, X has 
Newman's Property. Now, by Theorem 3.8,f(Bf) does not locally separate 
Y. Hence, 

dimf(Bf) g / i - 2 . 

If Bj locally separates X at some point x G X, then there is a domain D 
containing x such that/ |Z) is closed, open, and D — Bf is not connected. 
Now, g = f\D is open and closed. By Theorem 3.8, g(D) — g(Bg) = Z is 
connected. Each component C of g~l(Z) maps onto Z under g. Either 

(1) g~ ]g(Bg) separates D and g is one-to-one on each component C of 
g ^ ( Z ) o r 

(2) g is constant on the connected set D — g ]g(Bg). 
In case (1), Bg D Bf n D and since Bg c Bf n A 

Bf n D = Bg. 

If C is a component of g _ 1 (Z) , then let 

K = {x\x G Bg and x G C}. 

Then / ] K is one-to-one on K It follows that 

dim K = dim f(K) ^ n - 2. 
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Hence, K can not separate C from D — C which is a contradiction. 
In case (2), we have Bg = Bf Pi D and D — Bf is connected. Again, we 

have a contradiction. 

7. Generalizations. It should be clear that the dimension n of X is not so 
critical in the proof of Theorem 6.2 as the fact that Hn(X, X — A, Zp) is 
nontrivial. Thus, we can state appropriate generalizations of Theorem 6.2 
which can be proved by our methods. 

THEOREM 7.1. Suppose that X is a generalized continuum. Furthermore, 
there is a natural number n and a prime p such that for each open set A in X, 
Hn(X, X — A, Zp) is nontrivial. Then Xhas Newman's Property hereditarily 
with respect to C(p). 

If we consider light open and closed mappings / o n a generalized 
continuum which are not finite-to-one, then Bf may be X [24]. Another 
generalization is stated below. 

THEOREM 7.2. Suppose that X is a generalized continuum and that L is the 
class of all light open and closed mappings f of X onto some generalized 
continuum Yf {possibly different for different f) such that 

(1) int Bf = 0 and 
(2) there is a complete sequence of special coverings {GA of X and a 

prime p such that the distinguished families of r-simplices whose nuclei do not 
intersect f~f{Bf) consist of mp r-simplices where m is a natural number. 

Furthermore, there is a natural number n such that if A is an open set in X, 
then Hn(X, X — A, Zp) is nontrivial. Then X has the Generalized Newman's 
Property hereditarily with respect to L (that is, there is e > 0 such that if 
f <E L, then for some x e U, d i a m / - 1 / ( x ) ^ €). 

Problem. Characterize those generalized continua which possess New­
man's Property (Generalized Newman's Property). 

The Sierpinski plane universal 1-dimensional curve S has Newman's 
Property. There are other obvious examples. However, what (if any) 
topological property (or properties) characterize them? 
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