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Abstract. In this paper it is proved that the index of a Fredholm operator betweenp-adic Banach
spaces is preserved under compact perturbations. A case of special interest is provided when the
ground field is nonspherically complete. In this case the classical techniques are no longer valid and
the relation between the kernels of a Fredholm operator and that of a small compact perturbation turn
out to be in general much richer than in the complex context.
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1. Introduction

The problem of perturbations ofp-adic linear operators has been long studied
through several steps. A first approach was carried out by J. P. Serre in [11], where
he dealt with compact perturbations of the identity on Banach spaces having an
orthogonal base. A step further was taken by L. Gruson ([5]) for a more general
class of Banach spaces, always working on perturbations of the identity. A com-
plete study of perturbations of the identity was finally achieved by W. H. Schikhof
in [10].

In [6], P. Robba dealt with perturbations of injective operators, introducing the
index as a useful tool to study the theory ofp-adic differential operators (see also
[7]). This connection betweenp-adic differential operators and index theory still
represents an important current matter of research, as recent papers like [1], [2] and
[3], among others, are covering new trends. Also, in the latter paper, a remarkable
fact is that the restrictions on the perturbed operators have arisen for a large class
of spaces, but just working over locally compact fields.

In this paper, we aim at a general theory of the perturbations of continuous
linear operators between non-Archimedean Banach spaces by compact operators,
regardless of the base field, and extend previous results. In this way, even if in
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the case whenK is spherically complete the proofs of the classical theorems can
somehow be adapted, the non-Archimedean theory turns out to be in general much
richer than the corresponding one given for real or complex, spaces. In particular
when the base field is not spherically complete, we are able to assure that not only
results about the preservation of the index hold, but also the geometrical structure
of the kernels is in some way preserved, arriving at a surprising result when the
vectors of the kernel are not topologically complemented: in this case, the kernels
of the original operator and the perturbed one coincide. This is clearly far apart
from the case when dealing with real or complex Banach spaces, where all finite-
dimensional subspaces are topologically complemented, and no similar approach
can be taken. These results suggest that the tools used to study these perturbations
when working over the real or complex numbers are no longer valid in our theory,
forcing us to seek a completely different way to attack the problem.

2. Preliminaries

Throughout this paper,K is a commutative field endowed with a nontrivial non-
Archimedean valuation| · |, and complete with respect to the metric induced by its
valuation.

LetX be a vector space overK. For any subsetD of X, the linear hull ofD is
denoted by〈D〉. Also, a linear subspaceM ofX is said to be algebraically comple-
mented inX when there exists a linear projection fromX ontoM, or equivalently,
when there exists a linear subspaceN of X such thatX = M ⊕ N , where by this
last equality we mean thatX = M + N andM ∩ N = {0}. Such anN is called
algebraic complement ofM.

If X andY are vector spaces overK, L(X, Y ) is the set of all linear operators
from X to Y . Also, givenT ∈ L(X, Y ), Ker(T ) and R(T ) are the kernel and the
range ofT respectively. The identity map onX is denoted byIX.

Now, let X be a non-Archimedean Banach space overK. A set A ⊂ X is
called compactoid if for everyε > 0 there exists a finite setB ⊂ X such that
A ⊂ co(B)+{x ∈ X: ‖x‖ 6 ε}, where co(B) denotes the absolutely convex hull of
B. Also, a closed linear subspaceM ofX is said to be topologically complemented
in X if there exists a continuous linear projection fromX ontoM which, by the
Open Mapping Theorem ([8] Theorem 3.11), is equivalent to the existence of a
closed linear subspaceN of X such thatX = M ⊕ N . Such anN is called
topological complement ofM. On the other hand, for a real numbert ∈ (0,1],
a finite family{x1, x2, . . . , xn} of elements inX is said to bet-orthogonal if for all
λ1, λ2, . . . , λn ∈ K, t max16i6n‖λixi‖ 6

∥∥6n
i=1λixi

∥∥.
Finally, for non-Archimedean Banach spacesX,Y overK, we denote byL(X, Y )

the (non-Archimedean) Banach space of all continuous linear operators fromX to
Y , endowed with the norm

‖T ‖ = inf{c > 0:‖T x‖ 6 c‖x‖ for all x ∈ X}.
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We write X′ and L(X) instead ofL(X,K) and L(X,X) respectively. IfT ∈
L(X, Y ) andM is a linear subspace ofX, T |M is the restriction ofT toM. Also,
T ∈ L(X, Y ) is called a compact operator ifT ({x ∈ X: ‖x‖ 6 1}) is a compactoid
subset ofY . Recall that a continuous linear operator is compact if and only if it
is completely continuous, that is, the limit of a sequence of operators of finite,
dimensional range (see [7] p. 87, [8] p. 142). The set of all compact operators from
X to Y is denoted byC(X, Y ). Again,C(X) := C(X,X).

For more basic facts on non-Archimedean Banach spaces, we refer to [8].

3. Some Basic Facts on Linear Operators with Index

In this sectionX, Y andZ are linear vector spaces overK.

DEFINITION 3.1. We say thatT ∈ L(X, Y ) has an index when bothη(T ) :=
dim Ker(T ) and δ(T ) := dimY/R(T ) are finite. In this case, the index of the
linear operatorT is defined asχ(T ) := η(T )− δ(T ).

A well-known property of the index of a linear operator which is very useful
when studying the index ofp-adic differential operators (see e.g. [7]) and that will
also be very useful in the sequel, is the following.

PROPOSITION 3.2 ([7] Proposition 7.1.6).If two of the three linear operators,
T ∈ L(X, Y ), S ∈ L(Y, Z) andST ∈ L(X,Z) have indexes, then the third one
also has an index, andχ(ST ) = χ(T )+ χ(S).

The concept of pseudoinverse given in [12] p. 251 for continuous linear operat-
ors between real or complex Banach spaces admits the following algebraic version
in our case.

DEFINITION 3.3. If T ∈ L(X, Y ), we say thatS ∈ L(Y,X) is an algebraic
pseudoinverse ofT if T ST = T .

Also, on the other hand, considering only the algebraic aspect of the proof of
[12] Theorem IV.12.9, we obtain the following result.

PROPOSITION 3.4.Every linear operator fromX to Y has an algebraic pseu-
doinverse.

By using Proposition 3.4 and attending only to linear projections and algebraic
direct sums, we can follow the same proof as the corresponding one given in [12]
p. 257 for continuous linear operators, to conclude that

THEOREM 3.5. If T ∈ L(X, Y ) has an index andF ∈ L(X, Y ) has finite
dimensional range, thenT + F has an index andχ(T + F) = χ(T ).
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From now on,X,Y andZ will be infinite-dimensional non-Archimedean Banach
spaces overK.

4. Fredholm Operators and Pseudoinverses

A continuous linear operatorT fromX to Y is called aFredholm operatorif it has
an index. The set of all Fredholm operators fromX to Y is denoted by8(X, Y ).
WhenX = Y we will write 8(X) instead of8(X,X).

PROPOSITION 4.1.If T ∈ 8(X, Y ), thenR(T ) is closed and for eacht ∈ (0,1)
there exists a continuous linear projectionP from Y ontoR(T ) such that‖P ‖ 6
t−1.

Proof.The fact that R(T ) is closed can be found in [7] Proposition 7.2.2. Now,
let t ∈ (0,1) and chooset ′ ∈ (0,1) such thatt < t ′ < 1. By [8] Theorem 3.15
we can take at ′-orthogonal family{Q(y1),Q(y2), . . . , Q(yn)} ⊂ Y/R(T ), that
forms a base ofY/R(T ), whereQ:Y → Y/R(T ) is the canonical quotient map.
For everyi ∈ {1,2, . . . , n}, take xi ∈ Q(yi) such that‖xi‖ 6 t ′t−1‖Q(yi)‖.
Then,J :Y/R(T ) → Y , J (Q(yi)) 7→ xi , is a continuous linear operator with
QJ = IY/R(T ), and‖J‖ 6 t−1. Finally, P := IY − JQ satisfies the required
conditions.

DEFINITION 4.2. GivenT ∈ L(X, Y ), a continuous algebraic pseudoinverse of
T is called a pseudoinverse ofT .

Notice that although every linear operator betweenK-vector spaces has an al-
gebraic pseudoinverse (Proposition 3.4), the same is not true in general when we
consider continuous linear operators between Banach spaces (see the comments
before Proposition 4.7). The situation in this last case is described in the next
proposition whose proof follows as in [12] Theorem IV.12.9.

PROPOSITION 4.3.For T ∈ L(X, Y ), the following statements are equivalent

(a) There exist linear projectionsP ∈ L(X) andQ ∈ L(Y ) such that

R(P ) = Ker(T ), R(Q) = R(T );

(b) There exist closed subspacesW ⊂ X andZ ⊂ Y such that

X = Ker(T )⊕W, Y = Z ⊕ R(T );

(c) T has a pseudoinverse.

In particular, by Proposition 4.1, for Fredholm operators we have
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COROLLARY 4.4. T ∈ 8(X, Y ) has a pseudoinverse if and only ifKer(T ) is
topologically complemented inX.

Remark. Observe that sinceX andY are infinite dimensional spaces, when
T ∈ 8(X, Y ) has a pseudoinverseS ∈ L(Y,X), necessarilyS 6= 0.

Again, with the same proof as in [12] Theorem IV.13.5, we obtain the following
lemma.

LEMMA 4.5. Suppose thatT ∈ 8(X, Y ) admits a pseudoinverseS ∈ L(Y,X)
(that is,Ker(T ) is topologically complemented inX). If B ∈ L(X, Y ) is such that
IX + SB ∈ 8(X) andχ(IX + SB) = 0, thenT + B ∈ 8(X, Y ) andχ(T +B) =
χ(T ).

If in addition IX + SB is bijective, we also haveδ(T + B) 6 δ(T ) andη(T +
B) 6 η(T ).

THEOREM 4.6. Let T ∈ 8(X, Y ) be such that there exists a closed subspace
M of X with X = Ker(T ) ⊕M. ThenT |M has a pseudoinverse. Also, for each
pseudoinverseS of T |M and for eachB ∈ L(X, Y ) with ‖B‖ < ‖S‖−1 we have

(a) T + B ∈ 8(X, Y ),
(b) χ(T + B) = χ(T ),
(c) δ(T + B) 6 δ(T ),
(d) η(T + B) 6 η(T ).

In particular, if T is surjective, we have

(e) T + B is surjective,
(f) η(T + B) = η(T ).

Proof.ClearlyT |M is injective and R(T |M) = R(T ). Hence,T |M ∈ 8(M,Y )
and, by Corollary 4.4, we obtain thatT |M has a pseudoinverseS ∈ L(Y,M).
Also, S := iS ∈ L(Y,X) (wherei:M → X is the canonical inclusion fromM
into X) is a pseudoinverse ofT with ‖S‖ = ‖S‖. Now, givenB ∈ L(X, Y ) with
‖B‖ < ‖S‖−1 = ‖S‖−1, we have that‖SB‖ < 1 and soIX+SB is bijective. Then,
the conclusions follow from Lemma 4.5.

Remark. In the particular case whenT is an injective Fredholm operator and
S is a continuous left inverse ofT , Theorem 4.6 appears in [7] Proposition 7.2.3,
being this last result a useful tool to study the index of p-adic differential operators.

Recall that ifK is not spherically complete, there are Banach spacesX over
K for whichX′ = {0} ([8] Corollary 4.3) and hence, by Corollary 4.4, every non
injective Fredholm operatorT from X into an arbitrary Banach space has not a
pseudoinverse because no nontrivial finite-dimensional subspace ofX is topolo-
gically complemented inX. The situation is in sharp contrast with the classical
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case: indeed, whenX and Y are Banach spaces over the real or complex field,
everyT ∈ 8(X, Y ) has a pseudoinverse ([12] Theorem IV.13.2).

The next result, which will be useful later, characterizes the finite-dimensional
subspaces of non-Archimedean Banach spaces that are topologically complemen-
ted.

PROPOSITION 4.7.Let {x1, x2, . . . , xn} be a finite family of linearly independent
vectors inX. ForD := 〈x1, x2, . . . , xn〉 the following statements are equivalent

(a) D is topologically complemented inX.
(b) For anyx ∈ D \ {0} there existsf ∈ X′ with f (x) 6= 0.
(c) There existf1, f2, . . . , fn ∈ X′ such thatfi(xj ) = δi,j (Kronecker’s delta) for

all i, j ∈ {1,2, . . . , n}.
Proof. (a) ⇒ (b) follows from the fact thatD′ separates the points ofD ([8]

Theorem 3.15). For(b)⇒ (c) see the proof of [4] Theorem 2.2. Finally, for(c)⇒
(a), takef1, f2, . . . , fn as in(c). Then, notice thatP :X→ D, x 7→∑n

i=1 fi(x)xi ,
is a continuous linear projection fromX ontoD.

Remark. It follows from Proposition 4.7 that ifX′ separates the points ofX
(e.g. whenK is spherically complete), every finite-dimensional subspace ofX is
topologically complemented. In this case, by Corollary 4.4, everyT ∈ 8(X, Y )
has a pseudoinverse. As a consequence, Theorem 4.6 proves in particular that ifK
is spherically complete the index of a Fredholm operator under a small perturba-
tion does not change. Unfortunately, as we saw above, whenK is not spherically
complete Ker(T ) is not necessarily topologically complemented, which forces us
to seek for new techniques to deal with the problem of small perturbations of
Fredholm operators. This will be the purpose of the following section.

5. The Nonspherically Complete Case

If X andY are non-Archimedean Banach spaces andT ∈ 8(X, Y ), we denote
by X̂ the Banach spaceX/Ker(T ) endowed with the quotient norm, and bŷQ the
canonical quotient map̂Q:X → X/Ker(T ). ClearlyQ̂ is continuous and‖Q̂‖ 6
1. Also, notice thatQ̂ ∈ 8(X, X̂) and χ(Q̂) = η(T ). Also, if T̂ denotes the
injective linear operator from̂X to Y associated toT , thenT̂ ∈ 8(X̂, Y ), R(T̂ ) =
R(T ) and, by Corollary 4.4,̂T has a pseudoinverse. This pseudoinverse plays an
important role in the next result which will be crucial to our purpose.

THEOREM 5.1. Let T ∈ 8(X, Y ) and letS be a pseudoinverse of̂T . For any
B ∈ L(X, Y ) with Ker(T ) ⊂ Ker(B) and‖B‖ < ‖S‖−1 we have

(a) T + B ∈ 8(X, Y ),
(b) χ(T + B) = χ(T ),
(c) δ(T + B) = δ(T ) (in particular, if T is surjective, then so isT + B),
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(d) Ker(T + B) = Ker(T ).

Proof. Let B̂: X̂ → Y be given byB̂(Q̂(x)) = Bx, x ∈ X. Clearly B̂ is a
well defined continuous linear operator such that‖B̂‖ = ‖B‖ < ‖S‖−1. Applying
Theorem 4.6 we conclude that

(a′) T̂ + B̂ ∈ 8(X̂, Y ), (b′) χ(T̂ + B̂) = χ(T̂ ),
(c′) δ(T̂ + B̂) = δ(T̂ ) = δ(T ), (d′) η(T̂ + B̂) = η(T̂ ) = 0.

By Proposition 3.2,T + B = (T̂ + B̂)Q̂ ∈ 8(X, Y ), and

χ(T + B) = χ(T̂ + B̂)+ χ(Q̂)
= χ(T̂ )+ χ(Q̂)
= χ(T ).

Then (a) and (b) follow.
To prove (d), observe that by (d′), T̂ + B̂ is injective and so Ker(T + B) =

Ker(Q̂) = Ker(T ).
Finally, (c) is a direct consequence of (b) and (d).

In the rest of the section, we will assume thatK is not spherically complete.

PROPOSITION 5.2.If D is a one-dimensional subspace ofX which is not topolo-
gically complemented inX, then for each Banach spaceY and eachK ∈ C(X, Y )
we have thatD ⊂ Ker(K).

Proof.Assuming the contrary, suppose thatK(x) 6= 0 for somex ∈ D. SinceK
is a compact operator, it follows from [8] Theorems 3.16 and 4.40 that R(K)′ separ-
ates the points of R(K) and consequently there existsf ∈ R(K)′ with f (K(x)) 6=
0. Now, fK ∈ X′ and satisfiesfK(x) 6= 0 which, by Proposition 4.7, is in
contradiction with the fact thatD = 〈x〉 is not topologically complemented in
X.

Remarks.(1) Notice that, by Proposition 5.2, givenT ∈ L(X, Y ), any x ∈
Ker(T ) such that〈x〉 is not topologically complemented inX is also contained in
Ker(T + K) for every compact operatorK, a result which does not have a real or
complex counterpart.

(2) On the other hand, Proposition 5.2 does not hold in general for finite
dimensional subspacesD with dimD > 1, as the following example shows.

TakeX = K ×(`∞ /c0) andD = 〈x1, x2〉, wherex1 = (1,0) andx2 = (1,
π(1,1, . . ., 1, . . .)), beingπ : `∞ → `∞ /c0 the canonical quotient map.

Since(`∞/c0)
′ = {0} ([8] Corollary 4.3) we have thatD is not topologically

complemented inX.
Now, if Proposition 5.2 above was true, for thisD and thisX, takingY = K, we

obtain that〈x1〉, 〈x2〉 ⊂ Ker(f ) for anyf ∈ X′, which contradicts Proposition 4.7,
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becauseM = {(λ, π(an)) ∈ X: λ = 0} is a closed algebraic complement of both
of 〈x1〉 and〈x2〉 in X (and hence topological, by the Open Mapping Theorem).

Now, Theorem 5.1 and Proposition 5.2 allow us to state the following result.

THEOREM 5.3. AssumeT ∈ 8(X, Y ) satisfiesKer(T ) = 〈x1, x2, . . . , xn〉, where
{x1, x2, . . . , xn} is a finite family of linearly independent vectors inX such that,
for any i ∈ {1,2, . . . , n}, 〈xi〉 is not topologically complemented inX. LetS be a
pseudoinverse of̂T . Then, for anyK ∈ C(X, Y ) with ‖K‖ < ‖S‖−1 we have

(a) T +K ∈ 8(X, Y ),
(b) χ(T +K) = χ(T ),
(c) δ(T +K) = δ(T ) (in particular, if T is surjective, then so isT +K),

(d) Ker(T +K) = Ker(T ).

Remark. Now we are going to give an example of continuous linear operators
T , K satisfying the hypotheses of Theorem 5.3, for which R(T +K) 6= R(T )
(although, by property (c) of this theorem, we always have thatδ(T +K) = δ(T )).

BeingK not spherically complete, there exists a Banach spaceX and ana ∈
X \ {0} such that(X/〈a〉)′ separates the points ofX/〈a〉, butX′ does not separate
the points ofX (see [9] p. 214).

TakeY = K× (X/〈a〉) andT :X→ Y , x 7→ (0,Q(x)), whereQ:X→ X/〈a〉
is the canonical quotient map. Then,T is a (non surjective) Fredholm operator
fromX to Y for which Ker(T ) = 〈a〉 = ∩f∈X′Ker(f ) and so, by Proposition 4.7,
Ker(T ) is not topologically complemented inX.

Let S be a pseudoinverse of̂T and chooseg ∈ X′ \ {0} with ‖g‖ < ‖S‖−1.
Then,K:X → Y , x 7→ (g(x),0), is a compact operator fromX to Y for which
‖K‖ = ‖g‖ < ‖S‖−1. Hence,T andK satisfy the hypotheses of Theorem 5.3.

However, for everyx ∈ X with g(x) 6= 0, we have that(g(x),Q(x)) is an
element of R(T +K) which does not belong to R(T ).

Observe that this example also shows the existence of continuous linear op-
eratorsT andK under the hypotheses of Theorem 5.1, for which R(T + K) 6=
R(T ).

The example given in Remark 2 after Proposition 5.2 also shows the existence
of non-Archimedean Banach spacesX and finite-dimensional subspacesD =
〈x1, x2, . . . , xn〉 such that〈xi〉 is topologically complemented inX for all i ∈
{1,2, . . . , n}, butD is not (obviously, by [8] Theorem 3.15, topological comple-
mentation ofD implies the same for each〈xi〉, i ∈ {1,2, . . . , n}). This fact makes
the proof of the following result be not so straightforward as one could expect at a
first glance.

LEMMA 5.4. Let D be a finite-dimensional subspace ofX with dimD = n.
Then, there existD0 and D1 subspaces ofD with D = D1 ⊕ D0, D1 topo-
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logically complemented inX, and 〈x〉 not topologically complemented inX for
anyx ∈ D0 \ {0}.

Proof.We can assume thatn > 0 and thatD is not topologically complemented
in X.

By Proposition 4.7,D0 := {x ∈ D:f (x) = 0 for anyf ∈ X′} is a not trivial
subspace ofD andD0 \ {0} coincides with the set of allx ∈ D \ {0} such that〈x〉
is not topologically complemented inX. Call {xr+1, xr+2, . . . , xn}, (0 6 r < n), a
base ofD0.

If r = 0 the conclusion obviously follows.
Now, suppose thatr > 1 and extend{xr+1, xr+2, . . . , xn} to a base{x1, . . . ,

xr , xr+1, . . . , xn} of D.
To finish, it will be enough to see thatD1 := 〈x1, x2, . . . , xr 〉 is topologically

complemented inX. But this is a consequence of Proposition 4.7 and the fact that
D0 ∩D1 = {0}.

Given T ∈ 8(X, Y ) with dim Ker(T ) = n, by Lemma 5.4, there exist sub-
spacesD0 andD1 of Ker(T ) such that

(α) Ker(T ) = D1⊕D0,
(β) D1 has a topological complementM in X,
(γ ) For eachx ∈ D0 \ {0}, 〈x〉 is not topologically complemented inX.

THEOREM 5.5.LetT ∈ 8(X, Y )with dim Ker(T ) = n and letD0,D1 ⊂ Ker(T )
andM ⊂ X be as in(α), (β) and(γ ) above. Then the restriction,T ∗, ofT toM is a
Fredholm operator. Also, ifS is a pseudoinverse of̂T ∗, then for everyK ∈ C(X, Y )
satisfying‖K‖ < ‖S‖−1 we have

(a) T +K ∈ 8(X, Y ),
(b) χ(T +K) = χ(T ),
(c) δ(T +K) 6 δ(T ),
(d) η(T +K) 6 η(T ).
In particular, if T is surjective, we have

(e) T +K is surjective,
(f) η(T +K) = η(T ).

Proof. WhenD0 = {0} orD1 = {0}, then the conclusions follow from Theor-
ems 4.6 and 5.3 respectively. So, we suppose that bothD0 andD1 are not equal to
{0}.

Takex1, . . . , xr , xr+1, . . . , xn ∈ Ker(T ) \ {0}, 0< r < n, such that

D1 = 〈x1, x2, . . . , xr 〉 and D0 = 〈xr+1, xr+2, . . . , xn〉.
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Since, by(β),X = 〈x1, x2, . . . , xr 〉⊕M, then for everyi ∈ {r + 1, r + 2, . . . , n},
there existλi1, λ

i
2, . . . , λ

i
r ∈ K andbi ∈ M such that

xi =
r∑
j=1

λijxj + bi. (1)

Applying (α) and (1) we easily deduce that

Ker(T ) = 〈x1, . . . , xr , br+1, . . . , bn〉 (2)

and consequentlybr+1, br+2, . . . , bn are linearly independent vectors inX.
Now, we are going to prove the following properties, (i), (ii) and (iii), onT ∗.

(i) R(T ∗) = R(T ).
This fact follows easily from(α) and(β).

(ii) Ker(T ∗) = 〈br+1, br+2, . . . , bn〉.
By (2) it is clear that〈br+1, br+2, . . . , bn〉 ⊂ Ker(T ) ∩M = Ker(T ∗).
Conversely, applying (2) again, everym ∈ Ker(T ∗) can be written as

m =
r∑
i=1

λixi +
n∑

j=r+1

µjbj

for someλi, µj ∈ K, i ∈ {1,2, . . . , r}, j ∈ {r + 1, r + 2, . . . , n}. Thenm −∑n
j=r+1µjbj ∈ 〈x1, x2, . . . , xr〉 and, on the other hand, it belongs toM, which by

(β) implies that it is zero. Hence,m =∑n
j=r+1µjbj ∈ 〈br+1, br+2, . . . , bn〉.

(iii) For everyj ∈ {r + 1, r + 2, . . . , n}, 〈bj 〉 is not topologically complemented
in M.

We suppose, on the contrary, that there existsj0 ∈ {r + 1, r + 2, . . . , n} such
that〈bj0〉 is topologically complemented inM. Then, there exists a closed subspace
Mj0 of M such thatM = Mj0 ⊕ 〈bj0〉. By (β), X = 〈x1, x2, . . . , xr〉 ⊕Mj0 ⊕〈bj0〉. Now by (1), 〈x1, x2, . . . , xr〉 ⊕〈bj0〉 = 〈x1, . . . , xr , xj0〉. Hence,Mj0 is an
algebraic complement of〈x1, . . . , xr , xj0〉 inX (and hence topological, by the Open
Mapping Theorem). This implies (see the comments before Lemma 5.4) that〈xj0〉
is topologically complemented inX, which is in contradiction with(γ ).

Observe that (i) and (ii) imply thatT ∗ ∈ 8(M,Y ) andχ(T ∗) = n− r − δ(T ).
On the other hand, if we consider the compact operatorK∗ := K|M ∈ C(M, Y ),

it is clear that‖K∗‖ 6 ‖K‖ < ‖S‖−1. Then, Theorem 5.3 together with properties
(i), (ii) and (iii), allow us to conclude that

(a∗) T ∗ +K∗ ∈ 8(M,Y ),
(b∗) χ(T ∗ +K∗) = χ(T ∗) = n− r − δ(T ),
(c∗) δ(T ∗ +K∗) = δ(T ∗) = δ(T ).
Next, we are going to prove (a) and (b).
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According to(β), there exists a continuous linear projectionP fromX ontoM
such that Ker(P ) = 〈x1, x2, . . . , xr〉. ClearlyP ∈ 8(X,M) andχ(P ) = r.

Then, applying Proposition 3.2 in combination with(a∗) and(b∗), we deduce
that(T ∗ +K∗)P ∈ 8(X, Y ) and

χ((T ∗ +K∗)P ) = χ(T ). (3)

Also, observe that

T +K = (T ∗ +K∗)P +K(IX − P), (4)

where dim R(K(IX − P)) < ∞. Now (a) and(b) are direct consequences of (3),
(4) and Theorem 3.5.

To finish we will prove (d) (observe that (c) follows directly from (b) and (d)).
Since‖K‖ < ‖S‖−1, there existst ∈ (0,1) such that‖K‖ < t‖S‖−1. Also, by

Proposition 4.1, there exists a continuous linear projectionQ from Y onto R(T )
with ‖Q‖ 6 t−1. Then,T := QT ∈ L(X,R(T )) is a Fredholm operator fromX
onto R(T ) for which Ker(T ) = Ker(T ). Further, it is straightforward to verify that

S := S|R(T ) is a pseudoinverse of̂T
∗
, whereT

∗ = T |M.
On the other hand,K := QK is a compact operator fromX to R(T ) for which

‖K‖ 6 ‖Q‖‖K‖ < ‖S‖−1 6 ‖S‖−1.

Therefore, we can apply properties (a), (b) and (c∗) above, by takingY = R(T ),
T = T andK = K , to conclude thatT + K is a Fredholm operator fromX to
R(T ) such that

χ(T +K) = χ(T ) (5)

and

δ(T
∗ +K∗) = δ(T ) = 0, (6)

whereK
∗ = K|M.

By (6), we have thatT +K is surjective which, together with (5), imply that

η(T +K) = η(T ) = η(T ). (7)

Finally, observe that since Ker(T + K) ⊂ Ker(Q(T + K)) = Ker(T + K), it
follows from (7) thatη(T +K) 6 η(T ) which proves(d).

Remarks.(1) Although the structure of the kernel is in some way preserved, as
we saw in Remark 1 after Proposition 5.2, there existT andK as in Theorem 5.5
for which Ker(T +K) 6= Ker(T ), even whenT is surjective, as we can see in the
following example (compare with Theorem 5.3).
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First of all, note thatR: `∞ /c0 → `∞/c0, π(an) 7→ π (an+1 − an) (where
π : `∞ → `∞/c0 is the canonical quotient map) is a well defined linear and con-
tinuous operator such thatR is surjective and Ker(R) = 〈π(1,1, . . . ,1, . . .)〉.

Now, takeX = K ×(`∞/c0), Y = `∞/c0 andT :X → Y defined asT ((λ,
π(an))) := R(π(an)). Then,T is a surjective Fredholm operator with Ker(T ) =
〈(1,0), (0, π(1,1, . . ., 1, . . .))〉.

Chooseα ∈ K \{0} with |α| < ‖ S‖−1, beingS a pseudoinverse of̂T ∗ (where
T̂ ∗ is defined as in Theorem 5.5). Then,K:X → Y , (λ, π (an)) 7→ −απ(λ,
λ, . . . , λ, . . .) is a compact operator with‖K‖ < ‖S‖−1.

Hence,T andK satisfy the hypotheses of Theorem 5.5.
On the other hand, we can easily see that Ker(T + K) = 〈(1, απ(1,2,3,

. . . , n, . . .)), (0, π(1,1, . . ., 1, . . .))〉, and so Ker(T + K) 6= Ker(T ), because
(1, απ (1,2,3, . . ., n, . . .)) 6∈ Ker(T ).

(2) Also we provide an example ofT andK as in Theorem 5.5 for which
δ(T + K) < δ(T ) andη(T + K) < η(T ) (compare again with Theorem 5.3). In
particular, this implies that, whenT is not surjective, Statements(e) and (f ) of
Theorem 5.5 are not true in general.

TakeX = Y = K ×K ×(`∞/c0) and defineT :X→ Y asT ((λ, µ,π(an))) :=
(0,0, R (π(an))), with R and π as above. We have that Ker(T ) = 〈(1,0,0),
(0,1,0), (0,0, π (1,1, . . . ,1, . . .))〉, and R(T )= {(λ,µ,π(an)) ∈X: λ = µ = 0}.
Hence,T ∈ 8 (X), η(T ) = 3, andδ(T ) = 2.

As in Remark 1, chooseα ∈ K\{0} with |α| < ‖S‖−1, beingS a pseudoinverse
of T̂ ∗. ThenK:X → Y defined asK((λ,µ, π(an))) := (αλ,0,0) is a compact
operator with‖K‖ < ‖S‖−1.

Hence, we again have thatT andK satisfy the hypotheses of Theorem 5.5.
But, on the other hand, we can easily see that

Ker(T +K) = 〈(0,1,0), (0,0, π(1,1, . . . ,1, . . .))〉
and

R(T +K) = {(λ, µ, π(an)) ∈ X:µ = 0}.
So we have that

1= δ(T +K) < δ(T ) = 2,

2= η(T +K) < η(T ) = 3.
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6. The Main Result

Finally, we are in a position to prove a final theorem which is an extension of the
corresponding one given in [3] Theorem 8.1.1 for a locally compact ground field
K.

THEOREM 6.1. For T ∈ 8(X, Y ) andK ∈ C(X, Y ) we have thatT + K ∈
8(X, Y ) andχ(T +K) = χ(T ).

Proof.WhenK is spherically complete Ker(T ) is topologically complemented
in X (see the remark after Proposition 4.7) and in this case we takeS to be as
in Theorem 4.6; otherwise,S is taken as in Theorem 5.5. By [8] Theorem 4.39,
compactness ofK implies the existence of anF ∈ L(X, Y ) with dim R(F ) < ∞
and such that‖K−F‖ < ‖S‖−1. ObviouslyK−F ∈ C(X, Y ). NowT +K−F ∈
8(X, Y ) andχ(T + K − F) = χ(T ): this follows directly from Theorem 4.6
whenK is spherically complete and from Theorem 5.5 whenK is not. Next, since
dim R(F ) <∞, we can apply Theorem 3.5 to conclude thatT +K = (T +K −
F)+ F ∈ 8(X, Y ), andχ(T +K) = χ(T +K − F) = χ(T ).

Remark. As an application of Theorem 6.1 we obtain that ifK ∈ C(X), then
IX+K ∈ 8(X) andχ(IX+K) = 0, which was already proved inp-adic Fredholm
theory (see e.g. [5], [10] and [11]).
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