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We investigate two-dimensional (2-D) axisymmetric flow in toroidal geometry, with a
focus on a transition between 2-D three-component flow and 2-D two-component flow.
This latter flow state allows a self-organization of the system to a quiescent dynamics,
characterized by long-living coherent structures. When these large-scale structures orient
in the azimuthal direction, the radial transport is reduced. Such a transition, if it can be
triggered in toroidally confined fusion plasmas, is beneficial for the generation of zonal
flows and should consequently result in a flow field beneficial for confinement.
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1. Two-dimensional turbulence and toroidal fusion plasmas

Thermonuclear fusion is a sustainable and carbon-free energy source. It can thereby
constitute a game changer in the context of energy regulation and climate change.
Currently the most advanced geometry to achieve the ultimate goal of a sustained
large-scale fusion reaction is the tokamak: in a torus-shaped reactor chamber, magnetic
fields are used to confine a plasma at a temperature of hundreds of millions of degrees,
in which energy is produced by fusion of hydrogen isotopes. A schematic of the toroidal
geometry, indicating the definitions of the toroidal and poloidal directions, is shown in
figure 1.

The largest obstacle for fusion is the confinement of a plasma. Indeed, if any reactor
is to produce energy by a fusion reaction, the ionized gas of hydrogen isotopes should
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Figure 1. Tokamaks are torus-shaped fusion reactors where the plasma is confined by a magnetic field.
The toroidal component of the magnetic field is dominant in realistic reactors. In the simplified description
considered here, we only consider this toroidal field and assume it to be strong enough to render the
plasma-dynamics invariant along the toroidal direction. This reduces the dynamics to a two-dimensional (2-D)
system, with three velocity components: two components in the poloidal plane, uP, and one toroidal component
uT . In the present schematic we indicate the major and minor axes R and a, respectively. The colour plot
indicates the (toroidal) vorticity associated with the poloidal velocity field.

be kept at a sufficient temperature, with a sufficient density for a long enough period of
time. This triple criterion (time, density and temperature) has been known since the 1950s
(Lawson 1957) and the goal of almost any magnetically controlled fusion experiment is to
enhance this triple product. Currently, tokamaks cannot work without continuous injection
of energy in the plasma, and they produce less energy than they need to sustain the
reaction. The ITER experiment aims at showing that tokamaks can reach, and go beyond,
the break-even point.

The main factor limiting the confinement in tokamaks is turbulence. The transport of
heat and matter by turbulent fluctuations degrades the confinement quality in all existing
tokamaks (Liewer 1985; Garbet et al. 2004). The presence of some turbulence does seem
inevitable given the enormous gradients of temperature and magnetic fields in the plasma
edge, but limiting the intensity of this turbulence as much as possible in the reaction
chamber is paramount. This explains the tremendous importance given to a transition
between two turbulent states, observed first experimentally in the ASDEX experiment
(Wagner et al. 1982). The transition from a highly turbulent, low-confinement mode (an
L-mode) to a more quiescent, high confinement mode (H-mode), is observed to increase
the confinement time considerably. Knowing how to trigger such a LH-transition, and keep
a plasma in H-mode, can thus be essential for the design of a successful fusion reactor.

The understanding of the LH-transition is still incomplete. Different propositions of
theoretical frameworks can be found in reviews on the subject (Connor & Wilson 2000;
Wagner 2007). It is now well accepted that in H-mode, confinement is improved by the
presence of shearing motion at the edge of the plasma (Shaing & Crume 1989; Groebner,
Burrell & Seraydarian 1990; Shats et al. 2007) and that interaction with the walls of the
plasma vessel might play a role in this dynamics (Dif-Pradalier et al. 2022). Such shearing
motion allows us to decorrelate radially propagating structures by a mechanism called
shear sheltering in the fluid mechanics literature (Hunt & Carruthers 1990; Hunt & Durbin
1999). In the tokamak community this insight has had a major impact (Terry 2000), in
particular since magnetized plasmas show the formation of zonal flows, radially sheared
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Two-dimensional three-component flow in toroidal geometry

poloidal flow structures, which contribute importantly to this shear sheltering (Biglari,
Diamond & Terry 1990; Diamond et al. 2005; Gürcan & Diamond 2015).

Indeed, in addition to zonal flows, another established ingredient of the H-mode is
its link with 2-D turbulence. It has been known since the works of Kraichnan (1967)
and Kraichnan & Montgomery (1980) that a fluid flow in two space dimensions has the
tendency to self-organize into large-scale structures. Examples of such self-organization
are cyclonic structures in the atmosphere, and controlled numerical and physical
experiments have verified this tendency to self-organization (McWilliams 1984; Sommeria
1986; Paret & Tabeling 1997). The turbulence in plasmas seems to behave in a similar
manner (Fyfe & Montgomery 1979), i.e. the turbulence also tends to form large scale
structures. This link between the formation of space-filling structures in 2-D flows and
the H-mode was stressed in experiments (Shats, Xia & Punzmann 2005). However, the
magnetic field is also present in the L-mode, so that the dynamics should not be far from
being 2-D. Therefore, it is not only the 2-D character of the flow which allows us to explain
the LH-transition.

In the present study we use a representation of a toroidal plasma which is deliberately
simplified as much as possible to study the dynamics of 2-D flow in a bounded toroidal
geometry. Thereby we certainly miss a number of features that are important in describing
the dynamics of fusion plasmas, but this approach allows us to understand a critical
transition between nearly 2-D flow with three dominant flow components, to a purely
2-D flow and the influence of this transition on confinement properties. The present study
is thereby complementary to investigations of simple models of plasma turbulence in
periodic slab-geometry, such as the Hasegawa & Mima (1978) and Hasegawa & Wakatani
(1987) models, which ignore the toroidal boundaries, while it remains simpler to interpret
than toroidal simulations using the full three-dimensional (3-D) magnetohydrodynamics
system or even more complex gyrokinetic descriptions (Grandgirard et al. 2006; Goerler
et al. 2011).

The motivation for the present work finds its origin in recent insights from theoretical
studies on axisymmetric turbulence, which we will now briefly review. We consider purely
axisymmetric flows, where not only the average flow quantities, but also every fluctuation
is exactly axisymmetric. In the absence of magnetic fields or other body forces, in neutral
fluids such a flow in the turbulent regime is difficult to establish. Therefore, in the fluid
mechanics community, this type of flow has received interest only recently, mostly in order
to extend ideas from statistical mechanics of 2-D flows to a case closer to three dimensions
(Leprovost, Dubrulle & Chavanis 2006; Naso et al. 2010; Thalabard, Dubrulle & Bouchet
2014). Since such a turbulence is hard to reproduce experimentally, the assessment of
theoretical ideas has been mainly achieved through direct numerical simulations of the
axisymmetric Navier–Stokes equations (Qu, Bos & Naso 2017; Qu, Naso & Bos 2018). In
a recent investigation (Qin et al. 2020) it was observed that a critical transition between
two types of axisymmetric turbulence can be observed, where one of the flow states is
characterized by typical 2-D behaviour, i.e. self-organization of large velocity structures,
whereas the other flow is 2-D, but involves three velocity components (see figure 3c,d
for an illustration). Even though this latter state is essentially 2-D, the large-scale flow
structures are inherently unstable and tend to lose their energy to smaller scales, a feature
reminiscent of 3-D turbulence: this change in cascade direction is a major difference
between 2-D and axisymmetric 2-D three-component (2D3C) turbulence.

Whereas neutral fluid turbulence is rarely in a close to axisymmetric state, this
changes for the case of electrically conducting fluids, or plasmas. Indeed, in the
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Figure 2. Spectral element mesh on the poloidal plane. The mesh consists of a central part and a
boundary-adapted circular part. The major radius of the torus is R and the minor radius is denoted a.

magnetohydrodynamic limit, the presence of a strong azimuthal magnetic field limits
the variations in the direction of the field (Moffatt 1967; Favier et al. 2010; Gallet &
Doering 2015). In a tokamak, a strong toroidal magnetic field is present, which renders the
flow close to axisymmetric. In general the strength of this field is an order of magnitude
larger than the poloidal field (associated with a toroidal current) which we will neglect in
our approach. The plasma in a tokamak is thereby close to a strictly axisymmetric state
and can be described, at first order, by an axisymmetric fluid flow. We suggest that the
transition which was discovered between two different axisymmetric turbulent states (Qin
et al. 2020) should carry over to the dynamics of tokamaks. To illustrate this possibility, we
have set up a numerical experiment in toroidal geometry and we will show the confinement
properties of the two axisymmetric flow states from a pure fluid mechanics perspective.

We are not aware that such an elementary fluid set-up has been investigated previously.
Most fluid mechanics studies in toroidal geometry have focused on liquid metal flows
(Baylis & Hunt 1971), and very few studies consider the axisymmetric limit (Poyé et al.
2020). We think that, even if the transition that we will assess is shown in a too simple
set-up to claim a one-to-one correspondence with the LH-transition, it does illustrate the
robustness of the 2D3C to 2-D two-component (2D2C) transition in toroidal geometry,
and its ability to dramatically change the flow physics and self-organization properties of
the flow.

In the next section, we describe in detail the model we use to describe a turbulent plasma
in toroidal geometry. In § 3 we discuss the numerical details. In § 4 we present the results
of our numerical experiments. Finally in § 5 we conclude.

2. Modelling and governing equations

The system we consider is a model representation of a magnetically confined plasma
in toroidal geometry. Since we assume axisymmetry, the dynamics can be described
by a three-component dynamics in the poloidal plane. This simplifies the numerical
experiments considerably. The poloidal domain on which we focus is shown in figure 2,
where we indicate the coordinate system. The major radius is R and the minor radius a.
The cylindrical coordinate system is centred around the major (z) axis of the torus. In this
coordinate system the radial and vertical directions in the poloidal plane are defined r, z.
We also define a local coordinate system, centred in the circular cross-section, with polar
coordinates ρ, θ .
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Two-dimensional three-component flow in toroidal geometry

In the present section we will first introduce the fluid description. Then we will focus
on the forcing protocol, representing the plasma instabilities, and we will explain how we
measure the confinement quality of the plasma.

2.1. A fluid mechanics modelling of toroidal plasmas
Plasmas can be described by a hierarchy of physical models (Boyd & Sanderson 2003).
The most precise, but thereby also least tractable, description is a kinetic approach
involving all charged particles of the plasma and their non-local interactions (Diamond,
Itoh & Itoh 2010). The coarsest approach is probably a fluid approach, where the plasma
is described using continuum mechanics (Biskamp 1997). In the present investigation
it is this latter description which is adopted. We will omit all kinetic effects from our
system. Furthermore, we will assume the dynamics to be isothermal, solenoidal and we
do not model the detailed interaction of the plasma with electrical currents and magnetic
fields. The only influence of magnetic fields which is retained in the present system is the
influence of a toroidal magnetic field, assumed to be strong enough to render the dynamics
perfectly axisymmetric. Physically this corresponds to the fact that charged particles can
freely move along magnetic field lines, whereas perpendicular motion is constrained
by Coulomb forces. This quasibidimensionalization of the flow is well documented in
magnetohydrodynamical turbulence (Alexakis 2011; Bigot & Galtier 2011) and can even
be exact when the magnetic Reynolds number is low enough (Gallet & Doering 2015).

In such an axisymmetric set-up, the dynamics are entirely described by the two velocity
components in the poloidal plane uP = (ur, uz), and one component uT perpendicular
to it (see figure 1). Such a system does not represent the instabilities associated with
temperature, density and magnetic field gradients. In fusion plasmas, these gradients are at
the origin of the turbulent fluctuations and these sources of instabilities are here modelled
explicitly by appropriate external force terms.

We start by writing the axisymmetric Navier–Stokes equations:

∂uP

∂t
+ uP · ∇uP + ∇P − ν�uP = N P + F P, (2.1)

∂uT

∂t
+ uP · ∇uT − ν�uT = NT + FT . (2.2)

The pressure P, in which we absorbed the constant density, ensures incompressibility
through the condition

1
r

∂rur

∂r
+ ∂uz

∂z
= 0. (2.3)

The last terms on the left-hand side of (2.1) and (2.2) represent the viscous stresses, with ν

the kinematic viscosity. In these terms the Δ indicates the axisymmetric vector-Laplacian
in polar coordinates.

The left-hand sides of (2.1) and (2.2), respectively, describe purely 2-D fluid motion,
represented by the velocity vector-field uP(x, t) advecting the toroidal (out of plane)
component of the velocity uT(x, t). In a toroidal geometry the curvature introduces the
N terms, which couple the two fields. The curvature terms are

N P = u2
T/rer, (2.4)

NT = −uTur/r. (2.5)

These terms are reminiscent of the vortex-stretching terms, essential in 3-D energy
transfer, but absent in purely 2-D systems. All toroidal derivatives, ∂/∂φ are zero since
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we consider the axisymmetric case. Physically this assumption is justified by the presence
of a strong toroidal magnetic field.

Before discussing the forcing terms F P and FT , we will focus on the invariants of the
system. In the absence of forcing and dissipation, the nonlinear interaction conserves a
certain number of integral quantities. These quantities are not the same in the 2D2C or
the 2D3C state. In the 2D2C case, the inviscid poloidal dynamics conserve the poloidal
energy defined as

EP = 1
2 〈‖uP‖2〉, (2.6)

where the brackets denote a volume averaging. Furthermore, in this limit the enstrophy
Z = 〈‖∇ × uP‖2〉 is conserved. Furthermore, an infinite number of Casimirs (functions
of the vorticity ∇ × uP) can be defined (Kraichnan & Montgomery 1980). These latter
quantities play an important role in statistical mechanics, but are less important in
determining the cascade directions of the system.

In the (curved) 2D3C case, the nonlinear dynamics conserve the total energy ET + EP,
where the toroidal energy is defined as

ET = 1
2 〈u2

T〉. (2.7)

The enstrophy is no longer a conserved quantity, but the helicity,

H = 〈(∇ × u) · u〉, (2.8)

becomes an invariant of the system. In cylindrical geometry (Qin et al. 2020), it was shown
using energy and transfer spectra that the 2D3C–2D2C transition changes the cascade
properties associated with the above invariants. The inverse transfer of poloidal energy
EP in the 2D2C case changed towards a direct transfer of the total energy EP + ET to
small scales in the 2D3C configuration. The assessment of energy cascades and fluxes is
less convenient in the present set-up since we will consider solid boundaries and spatially
localized forcing terms. We will therefore focus on a physical space characterization of the
system.

An interesting feature is that, when the major radius of the torus tends to infinity (more
precisely the ratio R/a, see figure 1), the curvature and the associated N terms tend to
zero. The axisymmetric 2D3C system tends to a Cartesian 2D3C system where it is no
longer the total energy which is conserved, but ET and EP are conserved independently,
and the poloidal dynamics behave as in the 2D2C case. In such a 2D3C geometry, the
helicity degenerates to a correlation between the toroidal vorticity and the toroidal velocity,
a quantity recently investigated in Linkmann, Buzzicotti & Biferale (2018) and Yin et al.
(2024). It is not known at present how large R/a must be to neglect the transfer. However,
in the present investigation we will not vary the geometry, and the N terms cannot be
neglected. The transfer between the components is thus possible and the total energy is an
inviscid invariant of the system.

2.2. Forcing protocol
An important feature associated with a heated magnetized plasma is the presence of a
number of instabilities leading to the generation of turbulent fluctuations. The forcing
terms F P and FT are added to our system to reproduce the main features of sources of
turbulent fluctuations in realistic plasmas (such as the interchange instability (Boyd et al.
2003)), which are located at the tokamak edge, where the pressure, density and temperature
gradients are large. Modelling the ensemble of these instabilities together by artificial force
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Two-dimensional three-component flow in toroidal geometry

terms might not represent certain important features associated with the feedback between
the flow and the forcing, and this is necessarily left for future study.

To generate the poloidal velocity fluctuations, we add a Rayleigh–Bénard type instability
as follows. We compute the advection of a scalar-field by the poloidal velocity field,

∂b
∂t

+ uP · ∇b = κ�b + S′. (2.9)

The term S′ represents a source of scalar in the edge region of the plasma. More precisely,
the value S′ is constant and is non-zero only in a shell near the boundary. The boundary
condition at r = a is the Dirichlet condition b = 0. Thereby, on average a negative radial
gradient builds up between the radial location of the source term and the boundary. The
poloidal forcing term is

FP = CPbeρ + Fβ. (2.10)

The first term in this expression leads then to the Rayleigh–Bénard-type (linear) instability,
through the coupling of the poloidal velocity (i.e. (2.1)) and the scalar (i.e. (2.9)).

The second term, Fβ is a symmetry-breaking term, reminiscent of the anisotropic nature
of a magnetized plasma. Indeed, in magnetized plasmas, a natural tendency to organize
into concentric, toroidally invariant structures is observed related to the radial density
gradients. The resulting zonal flows are equivalent to the zonal flows in rapidly rotating
flows, such as the bands on Jupiter or Earth. To mimic this effect in the present set-up a
body force is added to the poloidal forcing in the spirit of the Hasegawa–Mima equation
(Hasegawa & Mima 1978; Gürcan & Diamond 2015):

Fβ = β ′ρeT × uP. (2.11)

This contribution to the poloidal force therefore does not inject energy in the system. As
we will see below, the Fβ term is not essential to trigger the transition from 2D3C to
2D2C, but it leads to enhanced confinement if the transition to a 2D2C state is obtained.
Simulations with and without this force will be presented.

The toroidal fluctuations are also assumed to originate from a linear mechanism and are
simulated by a linear forcing term. More precisely, for the toroidal forcing we use

FT = CT

[
uT − τ−1

σ

〈uTr〉
R

]
, (2.12)

and it is applied on the same shell as the source term S′. The notation 〈·〉 indicates a spatial
average over the poloidal domain. The second term allows us to avoid the build-up of
toroidal angular momentum. Indeed, the spontaneous generation of angular momentum
〈uTr〉 (or spin-up) in the system is of major interest (Rice et al. 2007), but we want to
disentangle this effect from the investigation of the transition between 2D2C and 2C3C
flows. The present form of the toroidal forcing term does, therefore, dominantly excite
the toroidal velocity fluctuations avoiding the build-up of mean angular momentum. In
plasma experiments, a transition to a 2D2C flow, like the one we discuss here, might be
accompanied by a global rotation associated with this angular momentum, which makes
the identification of the transition less trivial.

2.3. Passive tracer to measure confinement
Eventually, we are interested in the confinement quality of the plasma. In practice, a good
confinement in our system is associated with a small value of the radial turbulent diffusion.
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To measure turbulent diffusion, a passive tracer is injected continuously in the centre of the
domain, while homogeneous Dirichlet conditions are imposed on the wall. The quantity
ξ , which follows the flow as a small amount of ink in a water flow, does not affect the
flow, but allows us to measure the diffusion associated with the turbulent fluctuations. The
governing equation is, as (3.4), an advection–diffusion equation,

∂ξ

∂t
+ uP · ∇ξ = κ�ξ + fξ , (2.13)

where fξ = Cξ X(ρξ − ρ), where X is the Heaviside function, ρξ the radius of the source
and Cξ a constant. When the turbulent fluctuations are strong, the diffusion allows
efficient transport of the scalar, thus bad confinement, and the temperature in the centre
of the domain drops. Thereby the centre temperature (ξ(ρ = 0)) directly measures the
confinement quality of the flow. In the remainder of this article, we will call the scalar ξ

temperature, since we introduce it to measure the confinement of heat by the system. It
is important to distinguish it from the other scalar b, associated with the poloidal forcing,
since in our numerical set-up we decouple the dynamics of both scalars. This decoupling
is voluntary here since we want to independently measure the confinement and adjust the
forcing terms. In a fusion plasma the improved confinement of heat will necessarily lead
to modified temperature gradients in the plasma, so that confinement and forcing are there
coupled.

3. Normalization and numerical set-up

Before performing the numerical simulations, it is convenient to introduce an appropriate
normalization of the governing equations. This allows us to identify the key parameters
that will be varied. In this section we discuss the non-dimensionalization, the parameters
used in our simulations and the numerical method.

3.1. Dimensionless equations
In order to non-dimensionalize the equations, we choose as a typical time scale the inverse
of the poloidal forcing rate T∗ = C−1

P . As length scale we use the minor radius L∗ = a.
This allows us to normalize the equations using ũ = uT∗/L∗, ∇̃ = L∗∇, and analogous for
�, P, b, ρ, ∂t. Removing after normalization all tildes, for notational ease, we obtain the
non-dimensional set of equations,

∂uP

∂t
+ uP · ∇uP + ∇P − 1

Re
�uP = u2

T/rer + ber + βρeT × uP (3.1)

and
∂b
∂t

+ uP · ∇b = 1
Pe

�b + S. (3.2)

These two equations define the poloidal dynamics. For the toroidal velocity component we
have in normalized form

∂uT

∂t
+ uP · ∇uT − 1

Re
�uT

= −uTur/r + γ

[
uT − τ−1

σ

〈uTr〉
R

]
, (3.3)
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and for the passive scalar

∂ξ

∂t
+ uP · ∇ξ = 1

Pe
�ξ + fξ . (3.4)

In these equations we define

Re = CPa2

ν
, Pe = CPa2

κ
, (3.5a,b)

γ = CT

CP
, β = β ′a

CP
, S = S′

aC2
P
. (3.6a–c)

The parameter γ = CT/CP measures the toroidal forcing strength compared with the
poloidal forcing. This means that if γ is small, the instability mechanisms mainly drive
the fluid flow in the poloidal plane. This ratio γ is the main control parameter of our
system.

3.2. Parameters
The major radius of the torus is R = 2 and the minor radius a = 1. The ratio R/a = 2 is of
the order of magnitude of typical tokamaks. For instance the JET tokamak is characterized
by an aspect ratio R/a = 2.4, ITER by a value close to three, while spheromaks have
R/a ≈ 1.

The Reynolds number is Re = 5000, which is a high enough value to ensure turbulent
motion in our system. A change in its value does not qualitatively change the main results
of the present investigation, as long as the flow remains turbulent. The Péclet number is
chosen equal to the Reynolds number Pe = Re. The value of CP = 10 is fixed and the
forcing ratio γ is varied in the range γ ∈ [0, 1.8]. The value of β = 0; 2; 8. The relaxation
time for the suppression of angular momentum is τσ = 0.25.

For the active scalar b the injection shell near the boundary is defined by inner and
outer radii [ρ1 : ρ2] = [0.87a : 0.90a] and the value of the source term is S = 0.8. For the
passive scalar ξ the source term is confined to a circular surface of radius ρξ = 0.1 in the
centre of the poloidal plane with injection rate Cξ = 0.1.

3.3. Numerical set-up
Direct numerical simulations are performed using the Nek5000 code (Fischer, Lottes
& Kerkemeier 2008), a robust and well-tested open-source code, based on the spectral
element method (Patera 1984). We solve the discretized Navier–Stokes equations and two
scalar advection–diffusion equations. We impose simple non-slip boundary conditions on
the circular walls of the numerical domain for the velocity, and trivial Neumann conditions
for the scalars.

All simulations of the axisymmetric system are performed on a 2-D grid which allows
fast computations compared with a full 3-D description. The computational domain is a
disk representing a poloidal cross-section of the tokamak (see figure 2). The numerical
grid consists of 640 spectral elements, with n = 12 the order of Lagrangian interpolant
polynomials. The time step is adaptative with a Courant–Friedrichs–Lewy condition
CFL = 0.3. All results are reported during statistically steady states.
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Figure 3. (a) Time-evolution of the volume-averaged poloidal energy EP and toroidal energy ET . For time
t < 2850 the value γ = 1.7. For time t ≥ 2850 the value of the ratio of the forcing strength is lowered to
γ = 1.35. The volume averaged energies illustrate a transition from (c) a 2D3C to (d) a 2D2C state,
respectively. The movement is in these visualizations plotted in the poloidal plane by colours indicating the
strength of the stream function. The toroidal velocity is illustrated by the out-of-plane morphology. (b) Influence
of the forcing anisotropy on the ratio ET/EP for β = 0. The two values of the forcing anisotropy γ = 1.35; 1.7
associated with the timeseries in figure 3(a) are indicated by red and green symbols, respectively.

4. Numerical experiments of the 2D3C–2D2C transition

Now that the system is modelled and the numerical set-up is specified, we will here discuss
the results of our simulations.

4.1. Characterization of the 2D3C–2D2C transition
As we will show, enhanced confinement needs, from the fluid mechanics viewpoint, two
ingredients. We will first focus on the first part, the transition from a 2D3C to a 2D2C flow.
We illustrate this by changing the anisotropy of the forcing, γ = CT/CP. In figure 3(a) we
show a time series of the toroidal and poloidal kinetic energy for a representative case
(Re = 5000, β = 0, CP = 10).

For t < 2850 the flow is in the 2D3C regime, with a value γ = 1.7. During this time
interval the order of magnitude of the two components of the kinetic energy is comparable
with a somewhat more bursty behaviour of the toroidal kinetic energy. At t = 2850 the
strength of the toroidal forcing is instantaneously lowered resulting in γ = 1.35. This value
of γ is apparently below the critical value for the transition and the flow becomes purely
poloidal as is illustrated by the purely poloidal dynamics in figure 3(d). Indeed, the value
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Figure 4. (a) Stream function patterns for 2D2C flows with two different values of the symmetry-breaking
force (β = 2 and β = 8). (b) Ratio of the scalar profiles associated with a passive scalar injected in the centre
of the domain. In addition to values associated with (a) and (b) we also show the profile for β = 0. In this
representation, TH(ρ) is the scalar profile in the 2D2C regime and TL(ρ) the profile in the 2D3C regime. These
profiles are obtained by averaging over time and over the poloidal angle θ .

of the toroidal energy drops to zero. The poloidal energy is not significantly affected.
Decreasing the value of the toroidal force-coefficient can therefore trigger the 2D2C state.

In figure 3(b) we report the results of a parameter-sweep for the parameter γ = CT/CP
for a fixed value of CP. All the data for the energy corresponds to temporal averages in
a statistically steady state. We observe, when increasing γ , a critical transition from the
2D2C state (characterized by ET/EP = 0) to a 2D3C state, where the toroidal energy is
non-zero. The influence of the parameter β will be discussed below.

Visualizations of the flow field in the two regimes are shown in figure 3(c,d). The main
feature is the non-zero value of the toroidal velocity fluctuations in figure 3(c). However,
another outstanding feature is the tendency to self-organization. Indeed, as observed by
inspecting the stream function associated with the velocity pattern in the poloidal plane,
in the 2D2C regime (figure 3d) a large scale self-organization is observed consisting of
two counter-rotating toroidal vortex rings.

4.2. Assessment of the confinement quality of the flow
Indeed, the double toroidal vortex rings observed in figure 3(d) are a generic feature of
fluid simulations in toroidal geometry (Bates & Montgomery 1998; Morales et al. 2012).
Such a self-organization of the flow into two toroidal vortex rings does not seem beneficial
for confinement in the centre of the fusion device, since the fluid or plasma between
the large-scale structures will be rapidly expelled. We have tested this by measuring the
turbulent diffusion of a passive scalar, injected in the centre of the poloidal cross-section.

We solve the additional advection–diffusion equation (3.4), with a constant source term
in the centre of the poloidal cross-section. By measuring the average profile of the scalar,
the confinement is quantified: a large value of the temperature in the centre corresponds
to good confinement and, conversely, a low core temperature indicates bad confinement.
Indeed, as illustrated in figure 4, for β = 0. the confinement is changed at most 10 %
between the two regimes.

Switching from a 2D3C state to a 2D2C flow is thus not enough to enhance the
confinement properties of an axisymmetric toroidal fluid flow. The case of non-zero β,
corresponding to the presence of an anisotropic force in the poloidal dynamics, will be
discussed now.
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Figure 5. (a) Overview of the dependence of the system on the parameter CT/CP for fixed CP and β = 8,
where we also show how the confinement is enhanced by this transition, as measured by the temperature in the
centre of the toroidal domain. (b) Influence of the forcing anisotropy on the nature of the flow for three different
values of β, associated with the symmetry-breaking term.

4.3. The importance of symmetry breaking
Indeed, one additional effect is needed to enhance the confinement. This is the symmetry
breaking, allowing us to modify the double vortex-pattern, observed in figure 3(d), to
a concentric pattern in the poloidal plane. In tokamak plasmas, this symmetry breaking
is associated with the strong radial gradients of density, pressure and temperature. We
show the effect of an anisotropic force-term in figure 4. The presence of this force allows
us to reorganize the large-scale structuring in a more concentric pattern, beneficial for
confinement. In figure 5(b) we show the results of a parameter scan for CT/CP for the
values of β = 0, 2, 8. For all three values, a critical transition is observed as in figure 3(b)
around a given ratio γ . The transition is therefore present for simulations with and without
the symmetry breaking force, but the value of this critical ratio γ decreases as a function
of β.

Most importantly, the resulting 2D2C flow, for the non-zero values of β considered here,
confines the scalar significantly better. Indeed, in figure 5(a), it is observed that for a same
constant scalar injection rate, the temperature in the centre of the domain increases by a
factor around two.

The transition of the flow is therefore triggered by the anisotropy of the forcing. This
transition allows us to enter a fully poloidal flow regime for small values of CT/CP.
Such a purely poloidal flow has a tendency to self-organize. Indeed, in the absence of
toroidal flow, the system can be described by purely 2-D hydrodynamics. The shape of the
self-organized structures does depend on other factors, such as the poloidal β-effect here.

5. Conclusion

From the results presented in the previous paragraphs, it can be concluded that a recently
discovered critical transition in axisymmetric turbulence (Qin et al. 2020) survives in
toroidal geometry, forced by instabilities near the toroidal boundaries. Indeed, this mimics
in a crude way the dynamics of a tokamak, where a toroidally confined plasma develops
instabilities at the boundaries where the pressure, density and temperature gradients are
most important.

The present results share some properties with the LH-transition, but given the
complexity of a tokamak plasma, the ideas cannot be carried over directly. In the present
simplified fluid system to enhance confinement, one needs two ingredients. First, a
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dominance of the poloidal forcing over the toroidal forcing is required to be under a
threshold for the critical 2D3C instability. Second, the self-organization resulting from the
purely 2-D two-component dynamics needs a symmetry-breaking mechanism, allowing
the system to organize into a concentric pattern in the poloidal plane (zonal flows). The
main observations can then be summarized by figure 5(a), showing simultaneously the
dependence of the energy ratio and the confinement quality as a function of γ .

A feature which is deliberately removed from the dynamics by adding the damping in
(2.12) is intrinsic rotation. Indeed, linear forcing mechanisms lead, in toroidal geometry,
quite easily to build-up of toroidal rotation. While this is certainly an important feature
in tokamak operation, the addition of a global rotation in the toroidal direction does not
necessarily add to the 3-D character of the flow. Indeed, in the presence of global rotation,
the present transition should be assessed in a frame-of-reference moving with the global
rotation. In the presence of helically twisted field lines this will result in a far less obvious
observation of a transition from 2D2D to 2D3C and an investigation of this is left for future
studies.

An important point to be improved if the present set-up is to be compared with more
realistic approaches is to replace the artificial forcing terms by a self-consistent flux-driven
forcing, with an injection of temperature in the core of the plasma. This would possibly
allow us to add to the critical transition some of the tokamak features which are absent
in the present set-up, such as hysteresis between increasing or decreasing the drive and
the fact that zonal flows can exhibit a predator–prey-like dynamics (Gürcan & Diamond
2015).

In the present set-up it is not the zonal flows which trigger the transition: they are the
consequence of the 2D2C nature of the flow. In the 2D3C mode we observe a forward
energy cascade, which will destroy the coherence of large-scale structures, preventing
thereby the emergence of zonal flows. Once these zonal flows appear, they enhance the
confinement. With respect to these observations, a link can possibly be found between
the importance of the poloidal forcing to reach a mode of enhanced confinement and the
observation that in gyrokinetic simulations the injection of vorticity can trigger transport
barriers and thereby improve confinement (Strugarek et al. 2013; Lo-Cascio et al. 2022).

The observations reported here are simple and robust. We have not added any more
physics to the system than an axisymmetric fluid description with linear force terms.
We think that this identification of the essential ingredients of the transition is the most
important insight that we have gained. The fact that the observations do not contain any
precise plasma-instability, magnetic-field structure or kinetic effects allows us to transpose
the present observations to more specific plasma configurations.

Note finally that while magnetohydrodynamical and kinetic effects are obviously
fundamental in understanding the details of the LH-transition (Connor & Wilson 2000),
the objective here is to show that a transition observed in a minimal fluid dynamics
model can reproduce certain of its characteristics. Further understanding can be gained
by transposing these ideas to a more realistic setting. For instance, in future experimental
campaigns it can be tried to either enhance poloidal energy injection, or to reduce toroidal
fluctuations, leading to possibly unexplored magnetic fusion confinement protocols.
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