
ON PLANAR CONTINUOUS FAMILIES OF CURVES 

TUDOR ZAMFIRESCU 

1. Introduction. In a recent paper (3), Grunbaum has found a general 
and unifying setting for a number of properties of some special lines associated 
with a planar convex body. Besides various interesting results, two conjectures 
are stated and two kinds of convexity and polygonal connectedness are 
introduced. 

In the present paper, we shall prove one of Grunbaum's conjectures (§ 3, 
Theorem 1); we consider the other in § 4 and establish some related results 
in §§ 5 and 6. Six-partite problems are studied in this general setting (§ 7) 
and a question raised by Ceder (2) is answered. We give a generalization of 
the notion of a continuous family of curves in § 8, and discuss some new 
kinds of connectedness in § 9. 

2. Definitions and notation. Throughout the paper, C will be a simple 
closed curve (topological image of a circle) in the plane and D the bounded 
domain with boundary C. Following (3), a family 2 of simple arcs (topological 
images of a segment) is called a continuous family of curves in D provided: 

(i) Each curve of 2 is contained in D, except for the extremities which 
belong to C; 

(ii) Each point p £ C is an endpoint of one and only one curve L(p) £ 2 
(throughout, L{p) denotes the curve in 2 with an endpoint at p £ C) ; 

(iii) The curve L(p) depends continuously on p £ C; 
(iv) If Li, L2 G 2 and L\ ^ L2, then Li Pi L2 is a single point. 

Let us remark that from axioms (i)-(iii) it follows that for different 
Li, L2 G 2, the endpoints of Lx separate on C those of L2. Consequently, 
Li Pi L2 9e 0, and axiom (iv) only points out that card (Li Pi-L2) = 1. In 
§§ 8 and 9 we shall use the term ''generalized continuous family of curves" 
for a continuous family of curves, in the preceding sense, satisfying the 
following weaker condition instead of axiom (iv): 

(ivr) If Li, L2 G 2, then Lx Pi L2 is connected. 
The set of all points in D that belong to at least q different curves in 2 is 

denoted by Ma{2). The set of those points each of which belongs to all the 
curves in 2 having endpoints in some non-degenerate arc of C is denoted 
by Mœ(2). Obviously, 

D = Mi (8) D M2{2) D...D Mg(2) D...D Mœ(2). 
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An arc in D consisting of n arcs of curves in 2 is called an n-curve. By a 
polygon we mean a connected open set in D bounded by finitely many arcs 
on C or on curves in 2, its intersections with these curves being empty. An 
ra-gon is a polygon bounded by m arcs of curves in 2 or of C, but not also by 
some m — \ arcs. For example, the bounded component of the complement 
of three non-concurrent curves in 2 is called a triangle (3-gon). 

In the following we shall also use the following notation: 
(1) —p for the other endpoint of L(p) ; 
(2) xy for the arc of a curve in 2, joining x and y, or, if x, y G C, for one of 

the arcs of C with endpoints x and y; 
(3) (ao, . . . , an) for the n-curve consisting of arcs a^ai, . . . , an-\an of 

curves in 2 ; 
(4) [b0, . . . , bm] for the (m + 1)-polygon bounded by arcs b0bi, • • • » 

bm-ibm, bmb0 of curves in 8 or of C; 
(5) xy for the line through x and y. 

3. A conjecture of Griinbaum. The following theorem improves a 
result and proves a conjecture in (3). I t involves the notion of an L2(2)-set: 
P is an L2(8)-set provided that for each pair x, y G P there is a 2-curve 
connecting x and 3/, and included in P (see also § 9). 

THEOREM 1. Let 2 be a continuous family of curves. Then lf3(£) is an L2(2)-set. 

Proof. Let us consider the point x G M%(2) and the curves L(pi), L(p2), 
and L(p%) which pass through x. We may suppose, without loss of generality, 
that 

(1) the order of the endpoints of L(pi), L(p2), L{p$) on C is the following: 
pi, P2, pz, —pu —p2, —pz, and 

(2) another arbitrary point y G M^(2) lies in the triangle [pi, x, p2] (see 
the notation (4) in § 2) or on its sides pix or p2x. 

Let L(qi), L(q2), and L(g3) be three (other) curves in 2 containing 
y G Ms(2). Now one has to distinguish between three essentially different 
cases. 

The order of endpoints of the six curves considered in 2 on the arc —pipi 
of C containing p2 is the following: 

(a) pi, qiy p2, q2l pz, g3. Using the Jordan curve theorem, L(gi) must intersect 
either p\X or p2x at a point z situated between x and either L(pi) Pi L(q2) or 
L{p2) r\L(qz). The arcs yz (if not degenerate) of L(qx) and zx (if not de
generate) of L(pi) or L(p2) are included in {x, y] added to the triangle whose 
boundary consists of arcs of L(q2), L(p%), L{q%). Hence, the union T of all 
triangles with arcs of curves in 2 as sides contains (xz ^J zy) — [x, y). 

(b) Pi, qi, <?2, £3, P2, pz. At least one of the arcs pzx and — pzx of L{pz) 
contains at least two points of L(qi) \J L(q2) \J L(g3). We may suppose, 
without loss of generality, that 

L(Pz) H (L(q2) U L(g3)) C -pzx. 
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Setting [z] = L{q2) H L(£3), the triangle formed by L(qi), L(p2), L(qz) 
contains yz — \y) and the triangle formed by L(pi), L(p2), L(g3) contains 
zx — {x} (if x 9e z). I t follows that 

xz\J zy C T \J {x,y}. 

(c) pu Q.u Ç2, p2, #3, pz- In thiscase,let {z} = L(q2) H (pixVJ p2x). Equalities 
x = z or 3; = z are possible. The arcs yz of L(g2) and zx of L(pi) or L(/>2) are 
contained (except for x and y) in the triangle formed by L(gx), L(p3), L(g3). 
Therefore, 

xz \J zy C 7" U {x, y}. 

Now, by (3, Lemma 2), L C M3(8); it follows that in every case xs U s;y 
is a 2-curve completely included in ikf3(8). Hence, ilL3(8) is an L2(8)-set. 

4. Topological properties of Mn(2) for even and odd n. Let ? be a 
continuous family of curves. 

THEOREM 2. Le/ w fre an even number. 
(1) int(M»(8) - Mn+i(8)) = 0, 
(2) if Afw(8) - Afœ(8) 5* 0, /fee» int Mw+1(8) 5* 0. 

Proof. Let 
x G Mn(8) - Mœ(8). 

There exist at least n curves L(p0)y . . . ,L(pn_i) £ 8 that pass through x. 
If pn = —^0, then we may consider, without loss of generality, that pQ, . . . ,pn 

lie in this order on C. Let us consider the points qt in the arcs pipi+i with 
disjoint interiors of C (i = 0, 2, 3, . . . , n — 2), such that the triangles 7\ and 
77 formed by L(qt), L(pi), L(p2), and L(p0), L(qt), L(pn_i), respectively, 
do not degenerate; this is possible since x (? l fœ(8) . I t is easy to verify that 
either L0 C\ Tt or 7Y C\ T{ is not void; denote it by U i (i = 2, . . . , n — 2). 
Then x is a boundary point of each Ut. There must exist \n — 1 polygons £/,-
with non-void intersection since 

{ Ut: Ui C Lo} ^ 0 implies {HE/,: ^ C L0} ^ 0, 

{ £/<: Ui C TV} ^ 0 implies ( O ^ tf, C L0'} ^ 0, 

and if { Ut: Ut C L0} and { Ut: Ut C L0'} have cardinality at most \n — 2, 
then card{ Ut} ^ n — 4, which is absurd. Let £7̂ - be these polygons with 
non-void intersection (J = 1, . . . , \n — 1). Their union is evidently either 
included in L0 or in TV, and x is a boundary point of 

\n-\ 

v= n £/„. 
Through each point of Tt U L / pass two curves of 8, one with an endpoint 

in the arc ptqt and the other with an endpoint in the arc qtpi+1. I t follows 
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that each point of Ut (i = 2, . . . , n — 2) belongs to four curves of 8 with 
endpoints on the arcs poqo, qopi, PtÇtu ÇiPi+i- Finally, each point of V lies on 
poqo, qopu PiiÇn, ÇnPn+i, • • • , Pi^-i^n-i, g<j„-i^ij„-i+ii a n d on pip2 if V C T0 

or on pn-ipn if F C TQ'. Thus, V C Afn+i(8). Since F is open, (2) is proved. 
For each point x G Mn(%) — Mœ(%) (n even) we found an open set Mn+1(x) 

included in Mn+i(2), such that x £ bd Mn+1(x). Therefore, x G int Mw+i(8), 
and 

Mn(8) - ^«,(8) C i n t M n + 1 ( 8 ) ; 
whence, 

Mn(8) - Mn+i(8) C bd int M„+i(8), 

which proves part (1) of the theorem. 

5. Condition implying non-empty M5(8). When a non-degenerate 
triangle with sides on curves in 8 exists, intil/f3(8) ^ 0. We seek a similar 
condition implying int MOT(8) 9e 0 where, of course, m > 3 is odd. Now, 
let m = 5. 

In this section we shall answer the following natural question: Which is the 
smallest number n such that the existence of an n-gon implies int M$(2) ^ 0? 
We are now concerned only with polygons having arcs of curves in 8 as sides. 

LEMMA 1. The existence of a hexagon {a 6-gon) does not imply int M5(%) ^ 0. 

Proof. The proof will be given by means of an example. Let pu p2, pz, pi, pb, pe 
be the vertices of a customary convex hexagon (with segments as sides) in the 
plane, with the property that it is included in the triangle with vertices 
P1P2 H p4p5} p2ps H pspe, pzp± C\ pepi (see notation (5) in §2). Now, con
struct the circle C containing the preceding triangle in its interior, denote by 
Ltj and X*/ (say i < j) those components of C — U*=i Pkpk+i which have 
all their endpoints on pipi+i and pjpj+i {pi = pi), and associate with every 
pointy Ç Li:i the chordL(p) of Cpassing through^? andp t j = pipi+i r\pjpj+i. 
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Defined in this way, 8 = {L(p)\ is a continuous family of curves, and the 
union of all open triangles with sides on members of 8 equals ikf3(8) — M4(8) ; 
thus, M6(8) = {pij} and int M5(8) = 0. 

Let C be again an arbitrary simple closed curve, D the bounded component 
of its complement, and 8 a continuous family of curves in D. 

LEMMA 2. If Llt . . . , Ln Ç 8, 2/̂ rc £> — Ul=i £* Aas at most \{n2 + n + 2) 
components. 

Proof. If any three curves in 8 have void intersection, then the planar graph 
formed by 

CU U Lt 

obviously has (?) + 2n vertices, and n2 + 2n edges. Now, from Euler's 
formula, it follows that there are \{nl + n + 2) components in D. If there 
exist triples of curves in 8 with non-void intersection, then the number of 
components in D is clearly less than \(nl + n + 2). 

I am indebted to the referee for suggesting this more elegant proof. 

Next we shall associate 5 ''crosses" to each component of D — U^=i L(pt), 
where L(pi), . . . , L{pn) G 8, having incidence order s, i.e. included in 
Ms(2

f), where 8r is any continuous family admitting L(pi), . . . , L(pn) as 
elements and s is the largest possible. I t appears to be more useful to find 
"global" estimations of the sum of all such associated crosses than of the 
particular incidence orders of isolated components, in order to establish the 
existence of components of higher incidence order. 
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LEMMA 3. Let L(pi), . . . , L(pn) £ 8, each quadruple of these curves having 
void intersection, and let pi, . . . , pn be consecutive points on C. If t is the number 
of triples of curves among L(pi), . . . , L(pn) having non-void intersection, then 
the total number of crosses is at least n2 — St. 

Proof. Let B\, B2 be the pair of opposite components of D — (L (pi) VJ L (p2) ) 
whose boundaries contain pip2 and —pi(—p2), respectively (pip2 and 
—pi(—p2) are arcs on C not containing —pi and pi). Suppose that 

L(Pi)r\L(p2)r\ U L(pt) = 0. 

If 

u (L(pt) r\npi)) r\ (Bi u 52) = 0, 

then there are exactly n components of D — U"=i L(pt) in ^1 \J B2. If not, 
the number of these components is greater than n. Each point in Bi VJ B2 

belongs to a curve of 2 with an endpoint in the arc pip2 of C. We may associate 

with every component of (Bx U B2) — Ul=i ^(^z) one cross and add in the 
same fashion other crosses, when the other n — 1 arcs p2p%, . . . , pn-ipn, —pipn 

on C are considered. Thus, the total number of crosses is at least n2 and one 
obviously loses three crosses when a triangle degenerates. 

LEMMA 4. If there exists a 2m-gon, then the total number of crosses is at least 
7m2 — 9m + 6. 

Proof. Let P be a 2w-gon in Z), with sides on Li, . . . , L2w 6 8. Consider 
again the pair of opposite components Bi, B2 of D — (Li \J L2), such that 
the boundary of Bi contains the arc pip2 C C (pi, p2 are consecutive endpoints 
of Li, L2 on C). 
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There are no triples of concurrent curves in {Li, . . . , L2m}. Therefore, 

2m 

If 
i1ni!nui( = 0. 

2m 

card U (Lt H Lj) n (J3i U iJ2) = g, 

2m 
then there are exactly 2m + q components of D — U / i i Lt in 5 i U £ 2 

Since P has sides on curves in 8, there exists a triangle containing it, and 
therefore, there are at least three domains like B\ or B2 that include P . Suppose 
that P (Z Bi] let K be the boundary of P and i£i, i£2 the components of 
K — (Li VJ L2), where i£2 may be void. Let 

Mi = {U (LinLjy.i^lLtnK! ^0,L,C\Kx ^ 0 } , 
M2 = {U {Lir\Lj): i ^j,LtnK2 ^ 0, Lj C\ K2 ^ 0}, 

Wi = cardji: Lt H i£i) ^ 0}, and m2 = card{j: Lj H K2 9^ 0}. 

Since 

we have 
wi + m2 = 2m — 2, 

card Jlf I + card M2 = ( ^ ) + (»£«) fc 2 ^ " *) 

Repeating these arguments for the other two domains containing P and 
using Lemma 3, it follows that we have at least 

(2m)2 + 6< 
(m — l \ 
V 2 ) 

7m — 9m + 6 

crosses. 
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LEMMA 5. / / there exists a (2m + \)-gon, then there are at least 7m2 — 2m + 4 
crosses. 

Proof. All the arguments are just the same as in Lemma 4, except for 

Wi + m2 = 2m — 1 
and 

card M, + card * . - ( " ' ) + ( ? ) * fr) + ( V ) • 

THEOREM 3. If there exists a heptagon (a 7-gon), then int Mb(2) 9e 0. 

Proof. Let Li, . . . , L7 be the curves in 8 that form the heptagon. Let 
Du . . . , Du be the components of D — U*=i£* which have arcs of C on 
their boundaries. It is easily seen that one cross is associated with each of 
these fourteen domains. Following Lemma 2, D — U M ^ has at most 
29 components (in fact, exactly 29 components, since no triple of concurrent 
curves in {Lu . . . , L7} exists). Following Lemma 5, the total number of 
crosses is at least 61. Since Z>i, . . . , Du have only fourteen crosses, it follows 
that the other fifteen components of D — U*=i£* have at least 47 crosses, 
and therefore there exists at least one component, say Z>i5, with at least 
four crosses. Hence, Dlb C MA(2). If Du C ^ ( S ) , then obviously 

intM6(8) DD15 ^ 0. 

If £>i5 H M4(8) - M5(2) 9* 0, then int Mb(2) ^ 0 by Theorem 2. 
Hence, following Lemma 1 and Theorem 3, the least number n such that the 

existence of an ^-gon implies int M5(2) 9e 0 is n = 7. 

6. More information about ikf3(8) — M4(S). Our next aim is to obtain 
some information about the structure of ikf3(8) — MA(2) when an n-gon 
exists and int Af7(8) = 0. 

LEMMA 6. 7f int MT(%) = 0 awd if there exists a Am-gon with sides on 
Li, . . . , L4w G 8, £ftew /A^ number of disjoint polygons with sides on U Î i i Lu 

not included in MA(2), is less than 2(3m2 — 1). 

Proof. As in the proof of Theorem 3, it is easy to see that 8m domains 
formed by Li, . . . , L4m and C have only 8m crosses. Using Lemma 2, 
D — \jtLi Lt has 8m2 + 2m + 1 components, and following Lemma 4, there 
are at least 28m2 — 18m + 6 crosses. 

Now, suppose that there are 2 (3m2 — 1) polygons not included in ikf4(8). 
They have exactly 6 (3m2 — 1) crosses, and therefore 8m + 2 (3m2 — 1) 
domains have exactly 8m + 6 (3m2 — 1) crosses. Then the other 2m2 — 6m + 3 
components of D — \jT=\Lt have at least 10m2 — 26m + 12 crosses. Since 

10m2 - 26m + 12 
2m2 - 6m + 3 ' 
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there is a polygon with at least six crosses. I t follows (as in the proof of 
Theorem 3) that int MT(2) 9e 0, contrary to the hypothesis. 

LEMMA 7. If int MT(2) = 0 and if there exists a (4cm + 2)-gon with sides on 
Li, . . . , LAm+2 G 8, then the number of disjoint polygons with sides on U ? i t 2 Lu 

not included in ikf4(8), is less than 6ra2 + 4m -f 1. 

LEMMA 8. If int Mi(%) = 0 and if there exists a (2m + \)-gon with sides on 
Li, . . . , L2m+i G 8, then the number of disjoint polygons with sides on VjftX1 Lu 

not included in Mt($), is less than %m(3m + 1). 

The proofs of Lemmas 7 and 8 being similar to that of Lemma 6 will be 
omitted. 

Combining Lemmas 6, 7, and 8, we obtain the following theorem. 

THEOREM 4. Let 

\\(n — l)($n — 1) if n is odd, 
f(n) = \f(3w2 — 16) if n is a multiple of 4, 

( | (3^ 2 - 4n + 4) ifn = 2 (mod 4). 

If int ^7(8) = 0 and if there exists an n-gon with sides on L\, . . . , Ln G 8, 
/&£?£ //z£ number of disjoint polygons with sides on Ul=i Lu not included in 
ikf4(8), is less than f(n). 

Remark. I believe that Theorem 4 provides a good evaluation for/(w), but 
I have not proved that it is the best. To prove or disprove this in the odd case, 
it may be useful to note that there are a 5-gon and a 7-gon with sides on 
Li, . . . , L5 G 2, and L / , . . . , L7 ' G 8', respectively, such that the number of 
disjoint polygons with sides on Ui=iLt ( U i = i ^ / ) , not included in 
MA($)(MA($')) is 6 (13), while/(5) = 7 and/ (7) = 15. 

7. Six-partite problems. As stated by Ceder (2), the so-called six-
partite problems are involved in his work in a generalized manner, many 
earlier results being, in fact, corollaries of Ceder's theorems. We shall give 
here further generalizations in the same direction, replacing the families of 
lines admitting continuous selections by continuous families of curves. 
"Continuous selections" for families of curves could easily be introduced, but 
no essentially new facts would be obtained. 

Let C be a simple closed curve and 8 a continuous family of curves. All 
six-partite problems (including the results of this section) have as origin the 
following very simple theorem. 

THEOREM 5. Iffufii 8 —» 8 are continuous functions, then there exists a curve 
L G 8 such that 

Lr\h(L)r\f2(L) ^ 0 . 
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Proof. If/i(L0) = f2(L0) for some L0 € 8, then obviously 

L 0 n / i ( L o ) n / 2 ( L o ) ^ 0 . 

If not, let /> be a point varying on C. L(p),fi(L(p)),f2(L(p)), and g(p) = 
f1(L(p)) C\ f2(L(p)) are continuous functions of p. Suppose that q(p) lies in 
the right component of D — L(p), viewed from p. Then clearly q(—p) lies in 
the left component of D — L(—p), as viewed from —p. Thus (by the con
tinuity of q(p)), there exists a point p* on C such that <?(£*) 6 L(p*). 

THEOREM 6. Let 0 < a < b < c and let 

g: ( 8 X 8 - { ( L , L ) : L G 8})->((),<;) 

&£ a rm/ continuous function with the following properties: 
(1) g(L, U) —» 0 when U —» L clockwise; 
(2) g(L, L") —> c w/ze?z L" —> L counter-clockwise; 
(3) if .4 £ is aw arc 0/ C having the same endpoints as L, then (gL, L(p)) is a 

strictly monotone function of p on A L — L. 
Then there exists three concurrent curves Lly L2, L% £ 8 such that g(L1} L2) = a 
and g(Lly L3) = b. 

Proof. The function g(L, L{p)) of p being continuous and one-to-one is a 
homeomorphism between AL — L and (0, c). It follows that 

h: (8 X 8 - {(L,L):L £ 8}) -» 8 X (0, c), 

defined by h(Liy L2) = (Li, g(Li, L2)) is also a homeomorphism. Now, 
obviously h~][(Lf a) and h~l(L, b) are continuous functions on L. 

Let / i , / 2 : 8 - > 8 be defined by h~l(L,a) = (L , / i (L)) and h~l(L}b) = 
(L,f2(L)). Since/1 and / 2 are continuous, we may use Theorem 5, and 

L1r\f1(L1)nf2(L1) ^ 0 

for a curve L2 Ç 8. 
Since 

(Li,g(Li, / i(Li))) = A(Li,/i(Li)) = (Li,a) 
and 

(LugiLuMLi))) = hiLuML^)) = (Li, 6), 

the concurrent curves Li, L2 = fi(Li) and L3 = f2(Li) satisfy both conditions 
g(Li, L2) = a and g(Lly L3) = 0, and the theorem is proved. 

Now, we formulate applications of Theorem 6, which are generalizations of 
(2, Theorems 1 and 2) and (partially) of (2, Theorem 3). 

THEOREM 7. / / 

(1) D has finite measure* c, 

*By measure we mean a regular measure for which curves in 8 have measure zero. 
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(2) for any triangle T with sides on Li, L2, L3 Ç 2, the measure of the com
ponent of D — (Li U L2) containing T plus the measure of the opposite 
component is greater than twice the measure of T, 

(3) 0 < a < b < c, 
then there exists three concurrent curves Li, L2, L3 £ 2, such that the union of 
two opposite components of D — (Li U L2) has measure a and the union of two 
opposite components of D — (Li W L3) has measure b. 

Proof. We indeed have the continuous function 

« : ( 8 X ? - { ( L , L ) : L e 8 } ) - > ( 0 , c ) , 

where g(L1} L2) is the sum of measures of two components B\ and B2 of 
D — (Li \J L2) chosen such that L C\ C consists of two boundary points of 
Bi \J B2, when L varies counter-clockwise from L\ to L2. Obviously, con
ditions (1) and (2) of the preceding theorem are verified. We prove next that 
g(L} L(p)) is strictly monotone on A L — L (using the notation of Theorem 6). 

Let p, —p be the first and the last point of A L when C is described counter
clockwise and let x < y if x, y £ A L and y can be obtained from x varying 
counter-clockwise on A L. Also, consider pi, p2 G A Ly p\ < p2, and put 
qi = L{p) nUpi), q2 = L(pt) r\L(p2), q, = L(p2) C\L(p). Suppose, for 
example, that q2 belongs to the bounded domain with boundary L(p) VJ A L. 
Then, if ju is the given regular measure, 

MI>, P2, qz] + \A~P, 03, —pz] = \AP, Pu 0i] + /*[ — £> —Pu 0i] 
+ n[ — pu qi, 03, -P2] - /x[gi, q2, qz] + M[02, p2, Pi] = v[p, Pu Ci] 

+ »[—p, -PU 0l] + ^[02, —p2, ~P\\ + ^[02, p2, Pi] 

-2/x[0i, 02, qz] > A.P, Pu 0i] + n[-p, ~Pu 0i], 

following condition (2) in the statement. Thus, g(L, L(p)) satisfies all con
ditions of Theorem 6, and hence there exists three concurrent curves 
Li, L2, L3 G 2 such that g(Lly L2) = a and g(Li, L3) = b, which proves 
Theorem 7. 

Theorem 8 is an application of Theorem 7 and a generalization of case I in 
the proof of (2, Theorem 3). 

THEOREM 8. If 

(1) D has finite measure c, 
(2) all curves in 2 are area bisectors {divide D in pairs of domains of 

measure | c ) , 
(3) «i, a2, and a3 are non-negative numbers whose sum is \c, 

then there exists three concurrent curves in 2 dividing D into six parts of measures 
ai, a2, «3, OLI, OL2, and a3, respectively. 

Proof. Show that the conditions of Theorem 7 are verified. 
Conditions (1) of both Theorems 7 and 8 are identical. 
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Condition (2): For any triangle T with sides on Lly L2 , L3 , the measure of 
the component of D — (Li U L2) containing T equals the measure of the 
opposite component ; whence, their sum is greater than 2/J.T, as required. 

Condition (3): T a k e a = 2«i, b = 2ai + 2a2. 
T h e conclusion of Theorem 8 then follows from t h a t of Theorem 7. 

T H E O R E M 9. / / 

(1) C is rectifiable, of length c, 
(2) 0 < a < b < c, 

then there exists three concurrent curves Li, L2, L? £ ? such that the sum of 
lengths of two opposite components of C — (Li \J L2) equals a and the sum of 
lengths of two opposite components of C — L\ — L 3 equals b. 

Proof. Th i s is another application of Theorem 6. For, we can consider the 
continuous function 

g: (2X2- {(L,L);L£ 8 } ) - ( 0 , c ) , 

where g(Liy L2) is the sum of lengths of two components C\ and C2 of 
C — ( I i U L2) chosen such t h a t L C\ C C C\ U C2 when L varies counter
clockwise from L\ to L2. Obviously, all conditions of Theorem 6 are verified, 
and hence there are L1} L2, L 3 ( ? such tha t L\ C\ L2 C\ L 3 ^ 0, g(Li, L2) = a, 
and g(Lu L3) = 6. 

T h e easy consequence of Theorem 9 below leads immediately to Ceder 's 
result (2, Theorem 2) . 

T H E O R E M 10. / / 

(1) C is rectifiable, of length c, 
(2) all curves in 2 are arc bisectors (divide C in pairs of arcs of length \c), 
(3) ai, a2, and a3 are non-negative numbers whose sum is %c, 

then there exists three concurrent curves in 8 dividing C into six parts of lengths 
«i, «2, «3, «i, a2, and a3, respectively. 

Proof. I t suffices to observe t ha t the lengths of opposite components of 
C — (Li VJ L2) are equal (Li, L2 G 8) , and to take a = 2«i, & = 2ai + 2a2. 

A t the end of Ceder 's paper (2), one finds the following unsolved six-parti te 
problem: Given six numbers whose sum is the arc length of a convex curve, 
are there always three concurrent lines dividing the curve into six par t s 
having lengths equal to the given six numbers? 

This question posed for a circle receives a negative answer immediately. 
Consequently, by continuity, even for a larger class of convex curves, the 
answer remains negative. 

8. Genera l i zed c o n t i n u o u s f a m i l i e s of curves . As noticed in § 2, the 
notion of a continuous family of curves can be generalized by admi t t ing 
connected intersections of couples of curves in ? instead of only single point 
intersections. Although a suitable further generalization could be obtained 
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including in 2 not only Jordan arcs but also arbitrary simply connected arcs, 
we shall limit ourselves here to treat generalized families of curves as defined 
in § 2. 

Our aim in this section is to prove by an example how results on continuous 
families of curves can be extended to the generalized families. 

Most of the results of (3) remain valid if continuous families of curves 
(in Grunbaum's sense) are replaced by generalized continuous families of 
curves. For instance, although the proof of (3, Theorem 1) uses axiom (iv), 
we shall now show that this theorem is still valid if (iv') holds instead of (iv). 
Notice that, however, our proof is, in general, similar to that of Grunbaum. 

THEOREM 11. Let 2 be a generalized continuous family of curves. With at most 
one exception, each curve in 2 contains a point of M$($). 

Proof. Let L0, L(p) Ç 2, the endpoint p of L(p) varying on one of the two 
arcs in which L0 divides C. 

Choose arbitrarily the point q(L0, p) € L0 P\ L(p); if q(L0, p) is a strictly 
monotone function on p (for every choice of q(L0, p) in L0 H L(p)), then L0 

is said to be of type (a). It is easily seen that if L Ç 2 is not of type (a), then 

LC\MZ{2) 5*0. 

We shall prove that two different curves of type (a) do not exist in 2. 

Assume, on the contrary, that the curves L(px) and L(p2) are both of 
type (a). Let us say, for instance, that if p varies counter-clockwise on C, then 
q{L{pi)1p) varies on L(px) from px to —pi and q(L(p2),p) on L(p2) from 
p2 to —p2. With these orderings «i and co2 of L(pi) and L(p2) (the increasing 
sense being from pt to —pi), we set 

qi = min L(fix) O L(p2), qi = maxL(^i) C\ L(p2). 
" 1 C01 

If p is a point on the component — p2px of C — (L(pi) VJ L(p2)), then L(p) 
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must intersect at least one of the arcs piqi C L(pi) and —p2qi C L(p2). 
However, the inequalities 

L{p) C\ piqi * 0, L{p) C\ -p2qi 9* 0 

contradict 

Lip) H L(px) > q2, Lip) C\ LiPt) < qh 

respectively. The proof is now complete; it is valid for both cases: 

gi < q2 and q\ > q2. 
0)2 W2 

9. Some types of connectedness in D. In this section, 2 will be a 
generalized continuous family of curves in D. We shall be concerned with the 
notion of polygonal S-connectedness introduced by Grunbaum (3). This is an 
appropriate modification of a generalization of convex sets due to Horn and 
Valentine (4). A set P C D is said to be polygonally ^-connected if for each 
couple x, y G P , there is an m-curve, with arbitrary m (see the definitions in 
§ 2) in P, connecting x and y. P is an Ln(8)-set provided that for each pair 
x, y G P, there is an n-curve in P connecting x and y (note that every m-curve 
with m < n, is also an w-curve). P is called S-convex if and only if L Pi P is 
connected (or void) for each curve L G S. 

Now, let us add the following definitions: The subset P of D is finitely 
8-convexly connected provided that for every curve L G S, L Pi P has a finite 
number of components (or is void); P is said to be nth order ?-convexly 
connected if L r\ P has at most n components for each L Ç S. First-order 
S-convexly connectedness means precisely S-convexity. 

We shall denote by $X(P) the set of all points in P that can be joined to the 
point x G P by an m-curve (m depending on x) lying entirely in P , and by 
®x

n(P) the set of all points in P that can be joined to x by an ^-curve in
cluded in P . Furthermore, let us define the ^-kernel of a set P in D as the 
subset of P of all points that can be joined to every point x of P by an m-curve 
im depending on x). The nth order 2-kernel of P C D is the subset of P of 
all points that can be joined to every x G P by an n-curve. 

I t is interesting to compare our results below with the following lemma of 
A. M. Bruckner and J. B. Bruckner (1), in which Kx

n(P) and Z^-sets are 
defined in a similar way, replacing only * 'n-curve' ' by "n-sided polygonal line" 
(D-

If P is a compact simply connected set in the plane and x G P , then Kx
n(P) 

is a compact, simply connected L2m-set. 
Before giving other results, we note that $ / ( P ) and $*(P) are, respectively, 

an Lan (8)-set and polygonally 8-connected. 
The proof of the following lemma is straightforward. 

LEMMA 9. If P C L> is closed, then ®x
n(P) is compact. 
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CONJECTURE. If P C D is compact and simply connected, then $lx
n(P) is 

simply connected. 

The following theorem results immediately from Lemma 9, since the nth 
order g-kernel of P is f W ®zn(P). 

THEOREM 12. The nth order ^-kernel of a compact set P <Z_D is compact. 

LEMMA 10. If P C D is nth order 2-convexly connected, then $x(p) is nth 
order 2-convexly connected. 

Proof. Suppose that there exists a curve L G ? such that L Pi ®X(P) has 
at least n + 1 components. Then there are the consecutive points 

ai, bh a2, b2, . . . , an, bn, an+1 6 L 

such that all ai £ $X(P) and all bj € ®X(P). Since at Ç P and P is wth order 
S-convexly connected, there is an arc a^i+i of L included in P. Now, the 
union of afii with the ra-curve joining ax and x is an (m + 1)-curve with 
endpoints bi and #. Hence, 6Z £ ^zCP) and the contradiction shows that 
®X(P) is wth order 8-convexly connected. 

Let us note, without proof, the following simple remarks. 

Remarks. (1) Let P±, . . . , Pn be S-convexly connected sets of finite order 
(not only finitely 8-convexly connected), the orders being not necessarily 
equal. Then there exists a natural number m such that fYLi-P* is rath order 
8-convexly connected. 

(2) If {Pn}n = i is a sequence of second-order £-convexly connected sets, 
then n r = i Pn is not necessarily finitely £-convexly connected. 

LEMMA 11. If P C D is simply connected, and finitely %-convexly connected, 
then ËX(P) is simply connected. ®X(P) is not necessarily compact, even if P is 
compact. 

Proof. Suppose that there exists a bounded component A of the complement 
of $tx(P) in the plane. Since $tx(P) C P and P is simply connected, A <Z P. 
Take a £ A. Since 

PCD = Afi(8), 

there exists a curve L £ 8 passing through a. 
Let JBI, . . . , Bn be the components of L — P, and bt £ Bt. There is a point 

y % £ $*(-P) between a and bton L, since otherwise, owing to the connectedness 
and maximality of A, 

abtr^^x(P) = 0 

would imply that abt C A, and 4̂ would include the (unbounded) complement 
of P. Choose bj from {b\, . . . , bn) such that there is no bt between a and bj 
on L. In this case, obviously abj P\ P is connected; whence ayj C P . 
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Now, since yt G $£X(P), we also have a £ fc(P), contradicting a £ A. 
Hence, ®X(P) is simply connected. It is easy to find an example proving the 
existence of a compact set P such that ®X(P) is not compact for a suitable 
point x G P , even in the case of a continuous family of curves in Grunbaum's 
sense. 

The following theorem results from Lemma 10 for n = 1, since any inter
section of 8-convex sets in D is 8-convex, and the 8-kernel of P C D equals 

rwfc(P). 
THEOREM 13. The ^-kernel of an ^-convex set in D is 2-convex. 

Theorem 14 below is a consequence of Lemma 11, of Theorem 13, and of 
the obvious fact that each 8-convex set is finitely 8-convexly connected. 

THEOREM 14. The 2-kernel of a simply connected, ^-convex set in D is simply 
connected and ^-convex. 

The following theorem follows from Lemma 11. 

THEOREM 15. The %-kernel of a simply connected, finitely 2-convexly connected 
set in D is simply connected. 

Remark that in Theorems 13, 14, and 15, the 2-kernel may well be void. 

10. Final remarks. The study of these families of curves is of obvious 
interest in connection with planar convex bodies and families of lines as
sociated with them. A generalization of continuous families of curves applying 
to higher dimensional convex bodies would be most desirable, but this seems 
to be rather difficult, even for the three-dimensional case. On the other hand, 
it seems possible to give further topological generalizations of concepts first 
appearing in plane convexity. 
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During the publication of the present paper the following result (5) was 
added to (3, Theorem 1): 

If the intersection of all curves in the continuous family 8 is void, then on all 
curves of 8, with at most three exceptions, each of their dense subsets intersects 
M8 (8). 

Further, some kinds of closed curves can be associated with a continuous 
family, generalizing analogous curves already introduced for convex bodies 
in the plane. 
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