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A Theorem on the Contact of Circles leading up to the
Theorems of Feuerbach and Hart.

By Dr JOHN DOUGALL.

(Bead 11th December 1914. Received 4th March 1915.)

1. According to Feuerbach's theorem, the inscribed and the
three escribed circles of a plane triangle are all touched by a circle.

Hart's Theorem extends the proposition to a spherical triangle,
or, which comes to the same thing, to a plane triangle formed by
three circular arcs.

The purpose of the present paper is to call attention to a theorem
closely related to these two, but more fundamental or less highly
specialised than either of them ; and to deduce the celebrated
results of Feuerbach and Hart from this new theorem.

2. Theorem I.

If the line EF meets the sides AC, AB of a plane triangle ABC
in E, F, and if EF be either parallel to BC or antiparallel to BC
(with respect to the sides AB and AC), then through E and F a circle
can be drawn to touch the two escribed circles opposite B and C,
and through E and F a circle can be drawn to touch the inscribed
circle and the escribed circle opposite A. In both cases the tangent
circle through E and F belongs to the same system as the common
tangent BC.

Let the escribed circle opposite B touch the sides a, b, c at
a»» Vv z* and that opposite C at xs, ya, z,.

Let FE be || BC.
We shall prove that a circle can be passed through E and F to

touch the circles xtf/fa and xsy^. To prove this, we show that
Casey's well-known condition that four circles should be tangible
by a circle is fulfilled for the circles xjytz2 and x,yzz3 with the point
circles E and F.
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If these four circles in order are called the circles 1, 2, 3, 4,
then Casey's condition is that, for one choice of the ambiguous
signs, we have

1 2 . 3 4 ± 1 3 . 2 4 ± 1 4 . 2 3 = 0,

where 12, 34 etc. denote the lengths of the common tangents of
circles 1 and 2, circles 3 and 4, etc.

In the present case, in accordance with the last sentence in
the theorem as stated above, 12 must be taken to be the length of
the direct common tangent of 1 and 2.

Put
Then 12

13= Eyt U = Fz3

= ±{y-(«-c)}» =± {*-(*-&)},

Now (y + a - b) (z + s - c) - (y - s - c) (z - s - b)

= y(s - c + s - b) + z(s - b + s - c)

= a(y + z).

Also *L-JL- 2

A1OU — T — ,

a b c
so that EF(b + c) = a{y + z).

Hence Casey's condition holds.
If EF were antiparallel to BG, i.e. if B, C, E, F were concyclic,

we would have

so that EF(b + c) = a(y + z),

as before.
The first part of Theorem I. is thus proved, and the second part

admits of similar proof.

3. Feuerbach's Theorem.

Take EF antiparallel to BG as to AB and AC. The circle
through E and F touching the two escribed circles opposite B and
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C, now shown to exist, is uniquely determinate, for it is orthogonal
to a certain fixed circle, viz. that circle of inversion of the two
escribed circles which has its centre at their external centre of
similitude, a point on BC.

The circle through E and F touching the inscribed circle and
the escribed circle opposite A is similarly uniquely determinate,
being orthogonal to that (imaginary) circle of inversion of the two
circles which has its centre at their internal centre of similitude, a
point on BC.

The two circles through E and F are in general distinct, but
we shall now show that there is one position of EF for which they
are identical. In other words, we have to show that a circle exists,
orthogonal to both the circles of inversion just mentioned, and
meeting AB and A C at points F and E such that B, C, E, F are
concyclic.

Now for a circle to be orthogonal to two circles with centres on
BC is the same thing as for it to pass through two definite points
on BC, viz. the two limiting points L^ and Z2 of the two circles.

Take the unique point S in BC such that
SL^SL^SB.SC.

Draw SEF antiparallel to BC to cut AC, AB in E, F.
Then the circle LXLJHF is the circle touching all four scribed

circles.
I t can be identified in various ways with the nine-point circle.
Another line of reasoning is interesting.
Let the circle through F and E tangent to the two escribed

circles meet AB again in F^i and let the circle through F and E
tangent to the inscribed and the third escribed circle meet AB
again in F2.

When F is given, the circle FEF, is uniquely given, so that /',
is uniquely given ; also when Fi is given, the circle FEFl is uniquely
given, for it will pass through £ ,on AC where /^ffj is parallel to
BC and it is orthogonal to a fixed circle. Hence there is a homo-
graphic relation connecting F and Fu similarly one connecting F
and Fu and therefore one connecting F^ and Fv The homographic
divisions Ft and F« have two double points, of which one is B
corresponding to F at infinity. If the second double point is F
and F^Et, is parallel to BC, a circle through Fo and En exists
which touches all four scribed circles.
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4. Extension to a circular triangle.

So far as I know, it is not possible to deduce Hart's Theorem
from Feuerbach's by any of the ordinary methods of transforma-
tion. It so happens, however, that Theorem I. can be very easily
extended to the general case in which the right lines BC, CA, AB
are replaced by circles.

Starting from a rectilineal triangle ABC, let a circle tangent to
the escribed circles opposite B and C cut AB in B', B" and AC in
C", G" so that B' C || BC ; and let another circle tangent to the
same escribed circles cut AB in F, Fx and AC in E, E^ so that
B, C, E, F are concyclic.

Then, obviously, B', G", E, F are concyclic, as also, we may note,
*veB",C\E,,Fv"

If, then, we consider the triangle formed by the right lines AB',
AC and the circular arc B' C, and if E, F arc points on AC, AB'
such that B', C, E, F are concyclic, then a circle can be drawn
through E and F touching the two escribed circles opposite B' and
C of the triangle AB' C, and belonging to the same system as B' C".

Similarly with the inscribed circle and the escribed circle
opposite A in such a triangle as AB' C.

Practically the same reasoning as in Art. 3 can now be
applied to deduce the extension of Feuerbach's Theorem to such
a triangle as ABC. For we prove, as in Art. 3, that a circle
passing through two definite points Z/, L.2' on the circle B' C will
touch all four scribed circles of the triangle AB'C, provided we can
find two points E', F in AC, AB' such that B', 6", E\ F are
concyclic, and also LL', L3', E', F'. But to find such points E', F'
we have only to draw through the common point S of the right
lines L{L! and B'C a line S'E'F' antiparallel to B'C as to
AB', AC. The second line of reasoning in Art. 3 applies equally
well.

Finally, since two intersecting circles can always be inverted
into right lines by inversion from one of their common points, the
general case of a triangle formed by three circular arcs can be
reduced immediately to the case before us of a triangle formed by
two right lines and one circular arc.

This proves Hart's Theorem.
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5. The extension of Theorem I. at which we arrive in Art. 4
may be put thus:—

Theorem II.—If we take two circles of one system touching two
given circles, and two circles of the other system touching the same
two given circles, tlten the eight points of intersection of the two
circles of the first system and the two circles of the second system lie
on other two circles.

Two methods of proof of this theorem, independent of each
other and of the former method, will now be indicated.

First Method.
Let the circles BC, EF of the first system, and the circles

BF, GE of the second system form the curvilinear quadrilateral
BCEF where B, C, E, F are concyclic. Then, dealing with angles
between circular arcs, we have

LB+LE= L.C+LF,

as we see at once by forming the rectilineal quadrilateral BCEF.

Thus ^B- LG= L.F- LE.

Hence if we consider EF as a variable circle of the first system
cutting two fixed circles of the second system, the difference of the
angles which EF makes with the two fixed circles is constant.

Suppose now that a circle of the first system is defined by a
parameter <x, and one of the second system by a parameter /?, then
the angle between the circles a. and (i is a function of a. and /3.
The above relation shows that this function has the form of the
sum of a function of <x alone and a function of ft alone.

We shall now prove this somewhat remarkable result inde-
pendently.

Let the two fixed circles be inverted into concentric circles,
centre 0, radii a and 6, b>a.

A tangent circle of one system, centre P, has its radius
= i(b-a) and OP=\{b + a).

A tangent circle of the other system, centre Q, has its radius
= %{b + a) and OQ = J(6 - o).

If these two tangent circles meet at X, the triangles QOP and
QXP have their sides equal.
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Hence the angle between the circles
= LQXP

= LQOP

= LAOP- LAOQ,

where OA is any fixed line through 0.
This proves the result wanted.
Theorem I. might now be based on this.

6. Second method for Theorem II.
For this method, which is analytical, it is convenient to take

the circles on a sphere.
Let A and B be two fixed circles on a sphere; A = 0, B = 0

the (linear) equations of the planes of the circles in any point
coordinates ; 2 = 0 the (quadric) equation of the sphere. Through
A and B two quadric cones pass, and the sections of the sphere
by tangent planes to these two cones are the circles of the two
systems touching A and B.

Let St = 0, 6'2 = 0 be the equations of the cones. If Px = 0,
Q,«0 are two tangent planes to Slt and P., = 0, <?2 = 0 to S2, we
have, as in plane conies, identities of the form

where a., is the plane through the generators along which Px and
Qi touch 5 , ; and similarly with a.,.

Again, since 2 passes through the intersection of S^ and &, we
have an identity which we may take to be

2 + # , -&, = ().
Eliminating S, and S3 we have finally the identity

2 - /\<2,+P&. + <v - < = o.
Thus the points at which 2 = 0, P,^, = 0 and P2Q, = 0 lie on the
planes «., + 04 = 0.

This is Theorem II.
Since the planes a., + «.„ are coaxial with the planes «., and ou,

we see by this method that the two circles on which the eight
points of Theorem II. lie.are coaxial with the two circles, either of
which passes through the four points of contact of two circles of
one system.
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