FINITE SUBLATTICES OF A FREE LATTICE

bJarni jónsson and James E. KIEFER

Introduction. It is known that every sublattice A of a free lattice satisfies the following conditions:
(W) For all $a, b, c, d \in A$, if $a b \leqslant c+d$, then $a b \leqslant c$ or $a b \leqslant d$ or $a \leqslant c+d$ or $b \leqslant c+d$.
(SD) For all $u, a, b, c \in A$, if $u=a+b=a+c$, then $u=a+b c$.
$\left(S D^{\prime}\right)$ For all $u, a, b, c \in A$, if $u=a b=a c$, then $u=a(b+c)$.
In fact, (W) is one of the four conditions used in Whitman (4) to characterize free lattices, and in Jónsson (3) it was shown that ($S D$) and ($S D^{\prime}$) follow from Whitman's canonical representations of elements of a free lattice.

This note is concerned with lattices that satisfy one or more of the above conditions, and especially with finite lattices that satisfy all three conditions. It turns out that under the additional assumption of finiteness these conditions have some rather strong and unexpected consequences, notably the fact that every representation of an element as a sum or a product of five or more elements is redundant.

The results presented here may be regarded as evidence in support of the conjecture that every finite lattice that satisfies Whitman's condition (W) and the special distributive laws $(S D)$ and $\left(S D^{\prime}\right)$ is isomorphic to a sublattice of a free lattice. The corresponding statement for infinite lattices is of course false, for every sublattice A of a free lattice satisfies the following conditions:

$$
\operatorname{dim} A \leqslant \boldsymbol{\aleph}_{0}
$$

(N) For each $u \in A$ there exists a positive integer $n(u)$ such that every representation of u as a sum or a product of more than $n(u)$ elements is redundant.

In fact, (Δ) was proved in Galvin-Jónsson (1), and (N) is an immediate consequence of Whitman's canonical representation. It seems highly doubtful that even these five conditions characterize the class of all sublattices of free lattices, and at the present the problem of obtaining a characterization looks rather inaccessible. In the finite case the chances of success appear considerably better, and it is hoped that in that connection the present investigations may prove helpful. But in any case, they do give a certain amount of information about the class of lattices under consideration, and for that reason should be of some independent interest.

[^0]1. The condition (W). Applying Jónsson (2, Theorem 1) with $\alpha=0$ and P equal to an unordered set X we obtain:
Theorem 1.1. A lattice A generated by a set X is freely generated by X if and only if (W) holds and every non-empty finite subset of X is additively and multiplicatively irredundant.
Theorem 1.2. If A is a lattice that satisfies the condition (W), and if a_{1}, a_{2}, a_{3}, $v \in A$ are such that
(i) $a_{1} \geqq a_{2}+a_{3}+v$, and cyclically,
(ii) $v \geqq a_{i}$ for $i=1,2,3$,
(iii) v is multiplicatively irreducible, then A contains a free sublattice with three generators.

Proof. Let $b_{1}=a_{1}+\left(a_{2}+v\right)\left(a_{3}+v\right)$, and cyclically. Clearly none of the three elements b_{1}, b_{2}, b_{3} is contained in the sum of the other two, and by 1.1 we therefore need only show that none of them contains the product of the other two. By symmetry it suffices to show that the condition

$$
\begin{equation*}
b_{1} b_{2} \leqslant b_{3} \tag{1}
\end{equation*}
$$

leads to a contradiction.
Assume (1). Observe that neither b_{1} nor b_{2} is contained in the sum $b_{3}=a_{3}+\left(a_{1}+v\right)\left(a_{2}+v\right)$, and that $b_{1} b_{2} 太 a_{3}$ because $v \leqslant b_{1} b_{2}$. Therefore, by (W), $b_{1} b_{2} \leqslant\left(a_{1}+v\right)\left(a_{2}+v\right)$. In particular, $b_{1} b_{2} \leqslant a_{1}+v$, and applying (W) again we find that

$$
b_{1} b_{2} \leqslant a_{1} \text { or } b_{1} b_{2} \leqslant v \text { or } b_{1} \leqslant a_{1}+v \text { or } b_{2} \leqslant a_{1}+v
$$

The first inclusion is ruled out because $v \leqslant b_{1} b_{2}$, the second is excluded because v is multiplicatively irreducible and is strictly less than b_{1} and b_{2}, and the fourth one cannot hold because $a_{2} \leqslant b_{2}$. Thus the third inclusion must hold, whence it follows that

$$
\left(a_{2}+v\right)\left(a_{3}+v\right) \leqslant a_{1}+v .
$$

However, this is easily seen to violate (W). For, by (i), neither factor on the left is contained in the sum on the right, by (ii) the product is not contained in a_{1}, and by (i) and (iii) the product is not contained in v. Thus (1) leads to a contradiction, and the proof is complete.

Corollary 1.3. If A is a finite lattice that satisfies (W), then every representation of an element of A as a sum, or a product, of more than four elements is redundant.

Proof. If $u=a_{1}+a_{2}+\ldots+a_{n}$ with $n \geqslant 5$ were irredundant, then 1.2 (i)-(iii) would be satisfied with $v=a_{4}+\ldots+a_{n}$. As regards (iii), this is true because of the fact that in a lattice satisfying (W) every element is either additively or multiplicatively irreducible. Thus A would contain a
free sublattice generated by a three-element set, which is impossible because such a lattice is infinite.

Corollary 1.4. A finite lattice A that satisfies (W) and ($S D^{\prime}$) contains at most four atoms.

Proof. If $p_{1}, p_{2}, \ldots, p_{n}$ are distinct atoms of A, then $p_{i} p_{j}=0$ for $i \neq j$, therefore $p_{i}\left(p_{0}+\ldots+p_{i-1}+p_{i+1}+\ldots+p_{n}\right)=0$ by $\left(S D^{\prime}\right)$. Consequently the atoms p_{i} form an additively irredundant set, so that $n \leqslant 4$ by 1.3 .
2. Refinements and canonical representations. Given two sumrepresentations of a lattice element u,

$$
u=\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{n} b_{j}
$$

the first is said to be a refinement of the second if and only if each a_{i} is contained in some b_{j}. A sum-representation of u is said to be canonical if and only if it is irredundant and is a refinement of every other sum-representation of u. It is easy to show that two canonical sum-representations of the same element are identical except for the order of the terms. When applied to free lattices this notion therefore agrees with the concept of a canonical representation introduced in Whitman (4).

Theorem 2.1. If u is an element of a lattice A, then the following conditions are equivalent:
(i) For all $a, b, c \in A, u=a+b=a+c$ implies that $u=a+b c$.
(ii) For any positive integers m, n, and for all $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots$, $b_{n} \in A$,

$$
u=\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j} \quad \text { implies that } \quad u=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} .
$$

(iii) Any two sum-representations of u have a common refinement.

If u has a canonical sum-representation, then (i)-(iii) hold. If A is finite and if (i)-(iii) hold, then u has a canonical sum-representation.

Proof. Assuming (i), we shall prove that the following statement $P(m, n)$ holds whenever m and n are positive integers: For all $v, a_{1}, a_{2}, \ldots, a_{m}, b_{1}$, $b_{2}, \ldots, b_{n} \in A$, if

$$
u=v+\sum_{i=1}^{m} a_{i}=v+\sum_{j=1}^{n} b_{j}
$$

then

$$
u=v+\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} .
$$

Since $P(1,1)$ is precisely the hypothesis (i), we assume that $m+n>2$, and that $P\left(m^{\prime}, n^{\prime}\right)$ holds whenever $m^{\prime}+n^{\prime}<m+n$.

First assume that $m=1$, and let $b_{n}^{\prime}=b_{1}+b_{2}+\ldots+b_{n-1}$. Then

$$
u=\left(v+b_{n}^{\prime}\right)+a_{1}=\left(v+b_{n}^{\prime}\right)+b_{n},
$$

so that by (i), $u=v+b_{n}^{\prime}+a_{1} b_{n}$. Therefore

$$
u=\left(v+a_{1} b_{n}\right)+a_{1}=\left(v+a_{1} b_{n}\right)+\sum_{j=1}^{n-1} b_{j},
$$

and it follows by $P(1, n-1)$ that

$$
u=v+a_{1} b_{n}+\sum_{j=1}^{n-1} a_{1} b_{j}=v+\sum_{j=1}^{n} a_{1} b_{j} .
$$

Now suppose $m>1$, and let $a_{m}^{\prime}=a_{1}+a_{2}+\ldots+a_{m-1}$. Then

$$
u=v+a_{m}^{\prime}+a_{m}=v+a_{m}^{\prime}+\sum_{j=1}^{n} b_{j},
$$

and it follows by $P(1, n)$ that

$$
u=v+a_{m}^{\prime}+\sum_{j=1}^{n} a_{m} b_{j} .
$$

Therefore

$$
u=\left(v+\sum_{j=1}^{n} a_{m} b_{j}\right)+\sum_{i=1}^{m-1} a_{i}=\left(v+\sum_{j=1}^{n} a_{m} b_{j}\right)+\sum_{j=1}^{n} b_{j},
$$

and we infer by $P(m-1, n)$ that

$$
u=v+\sum_{j=1}^{n} a_{m} b_{j}+\sum_{i=1}^{m-1} \sum_{j=1}^{n} a_{i} b_{j}=v+\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} .
$$

Thus $P(m, n)$ holds. By induction, $P(m, n)$ holds for all positive integers m and n, and therefore (ii) holds.
Clearly (ii) implies (iii). If (iii) holds, and if $u=a+b=a+c$, then these two representations of u have a common refinement.

$$
u=\sum_{i=1}^{m} d_{i},
$$

Since each d_{i} is either contained in a or else is contained in both b and c, it follows that $u=a+b c$. Thus (iii) implies (i).
If u has a canonical sum-representation, then this is a common refinement of all sum-representations of u, and therefore the equivalent conditions (i)-(iii) hold.
If A is finite, then u has only finitely many irredundant sum-representations, and if (iii) holds, then these have a common refinement which may also be taken to be irredundant, and is therefore easily seen to be canonical.

Corollary 2.2. If A is a finite lattice that satisfies (SD), then every element of A has a canonical sum-representation.
3. The lattice B_{4}. In Corollaries 1.3 and 1.4 the number four in the conclusion cannot be replaced by a smaller number. In fact, in a free lattice with four generators $x_{1}, x_{2}, x_{3}, x_{4}$, the four atoms $p_{1}=x_{2} x_{3} x_{4}, \ldots$ generate a lattice B_{4} of order 22 . This fact will be established below, but the main purpose of the present section and the next one is to show that this particular lattice plays a much more important role than as a mere counter-example.

Lemma 3.1. If a finite lattice A satisfies (W) and $\left(S D^{\prime}\right)$, and if the elements $a_{1}, a_{2}, a_{3}, v \in A$ are such that
(i) $a_{1} 太 a_{2}+a_{3}+v$, and cyclically,
(ii) $v \npreceq a_{i}$ for $i=1,2,3$,
then

$$
\left(a_{2}+a_{3}+v\right)\left(a_{3}+a_{1}+v\right)\left(a_{1}+a_{2}+v\right)=v .
$$

Proof. Let $b_{i}=a_{i}+v$ for $i=1,2,3, w_{1}=\left(a_{1}+v\right)\left(a_{2}+a_{3}+v\right)$ and cyclically, and $w=w_{1}+w_{2}+w_{3}$. Then $b_{1} \npreceq b_{2}+b_{3}+w$ and cyclically, and it follows by 1.2 that either one of the elements b_{i} contains w, or else w is multiplicatively reducible and hence additively irreducible.

If $w \leqslant b_{1}$, then

$$
\begin{equation*}
\left(a_{2}+v\right)\left(a_{3}+a_{1}+v\right) \leqslant a_{1}+v, \quad\left(a_{3}+v\right)\left(a_{1}+a_{2}+v\right) \leqslant a_{1}+v \tag{1}
\end{equation*}
$$

In the first of these formulae, neither factor on the left is contained in $a_{1}+v$, and their product is not contained in a_{1} because $v \npreceq a_{1}$. Therefore, and by similar reasoning using the second formula in (1),

$$
v=\left(a_{2}+v\right)\left(a_{3}+a_{1}+v\right)=\left(a_{3}+v\right)\left(a_{1}+a_{2}+v\right)
$$

Hence the desired formula follows by the dual of 2.1.
If w is additively irreducible, then one of the summands w_{i} contains the other two, say $w_{2} \leqslant w_{1}$ and $w_{3} \leqslant w_{1}$. Since $w_{1} \leqslant b_{1}$, this implies that $w \leqslant b_{1}$, and the present case reduces to the one already considered.

Lemma 3.2.* If A is a lattice that satisfies (W), and if A is generated by an additively irredundant four-element set $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ such that

$$
\begin{equation*}
\left(p_{2}+p_{3}+p_{4}\right)\left(p_{3}+p_{4}+p_{1}\right)\left(p_{4}+p_{1}+p_{2}\right)=p_{4} \tag{i}
\end{equation*}
$$

and cyclically, then the order of A is 22 , and A is isomorphic to the lattice B_{4} generated by the atoms in a free lattice with four generators.

Proof. Let

$$
\begin{aligned}
z & =p_{1} p_{2} p_{3} p_{4}, \quad u=p_{1}+p_{2}+p_{3}+p_{4}, \\
q_{1} & =p_{2}+p_{3}+p_{4}, \text { and cyclically, } \\
a_{i, j} & =p_{i}+p_{j}, b_{i, j}=q_{i} q_{j} \text { for } i, j=1,2,3,4 \text { with } i \neq j .
\end{aligned}
$$

[^1]We shall show that these 22 elements satisfy the addition and multiplication tables indicated in Figure 1.

Figure 1. The lattice B_{4}.
It will be assumed throughout that i, j, k, l are distinct indices ranging from 1 to 4 . By (i), $p_{i} p_{j} \leqslant p_{k}$, hence $p_{i} p_{j}=z$. Also $p_{i} q_{i} \leqslant p_{j}$, hence $p_{i} q_{i}=z$. Since $a_{j, k} \leqslant q_{i}$ and $b_{i, k} \leqslant q_{i}$, this yields $p_{i} a_{j, k}=z$ and $p_{i} b_{i, k}=z$. Inasmuch as $p_{i} \leqslant a_{i, k}$ and $p_{i} \leqslant b_{j, k}$, this verifies the multiplication table for the case when one of the factors is p_{i}.

By (i), $a_{i, j} q_{i}=p_{j}$, while $a_{i, j} \leqslant q_{k}$. Therefore $a_{i, j} b_{i, j}=a_{i, j} q_{i} q_{j}=p_{j} q_{j}=z$ and $a_{i, j} b_{i, k}=a_{i, j} q_{i} q_{k}=p_{j} q_{k}=p_{j}$, while $a_{i, j} \leqslant b_{k, l}$. Again by (i), $q_{i} q_{j} q_{k}=p_{l}$, whence it follows that $q_{i} q_{j} q_{k} q_{l}=z$. Therefore $p_{i} \leqslant a_{i, j} a_{i, k} \leqslant q_{k} q_{l} q_{j} q_{l}=p_{i}$,
$a_{i, j} a_{i, k}=p_{i}$ ，and $a_{i, j} a_{k, l} \leqslant q_{k} q_{l} q_{i} q_{j}=z, a_{i, j} a_{k, l}=z$ ．This verifies the multi－ plication table for the case when one of the factors is $a_{\imath, j}$ ．

By definition，$q_{i} q_{j}=b_{i, j}$ ，and since it has already been observed that $q_{i} q_{j} q_{k}=p_{l}$ and $q_{i} q_{j} q_{k} q_{l}=z$ ，it follows that $b_{i, j} q_{k}=b_{i, j} b_{i, k}=p_{l}$ and $b_{i, j} b_{k, l}=z$ ，while $b_{i, j} \leqslant q_{i}$ ．This completes the checking of the multiplication table．

To verify the addition table we need only observe that the dual of the hypothesis holds with p_{i} replaced by q_{i} ，and that the duals of the definitions of the 22 elements are satisfied if we interchange z and u, p_{i} and $q_{i}, a_{i, j}$ and $b_{i, j}$ ．

To show that the 22 elements are actually distinct，observe first that $z<p_{i}<a_{i, j}<b_{k, l}<q_{k}<u$ ．Therefore，if v is any one of the elements z ， $p_{j}, a_{k, l}, b_{i, k}, q_{i}$ ，then $p_{i} v=z<p_{i}$ ，so that $p_{i} 太 v$ ．Also，if v is any element other than $a_{i, j}, b_{k, l}, q_{k}, q_{l}$ ，then $a_{i, j} v \leqslant p_{i}<a_{i, j}$ ，so that $a_{i, j} 太 v$ ．Similarly， if v is not one of the elements $b_{k, l}, q_{k}, q_{l}, u$ ，then $b_{k, v}<b_{k, l}$ ，and hence $b_{k, l} \geqq v$ ，and if $v \neq q_{k}, u$ ，then $q_{k} v<q_{k}$ and hence $q_{k} \geqq v$ ．Therefore only the indicated inclusions hold，and the 22 elements are distinct．

We have shown that the hypothesis determines A up to isomorphism，and in order to prove that $A \cong B_{4}$ ，it therefore suffices to show that B_{4} satisfies this hypothesis．If the generators of the free lattice are $x_{1}, x_{2}, x_{3}, x_{4}$ ，then its atoms，the generators of B_{4} ，are $p_{1}=x_{2} x_{3} x_{4}$ ，and cyclically．These four elements form an additively irredundant set because $p_{i}+p_{j}+p_{k} \leqslant x_{l}$ and $p_{l} 太 x_{l}$ ．Furthermore，the three factors on the left in（i）are contained in x_{1}, x_{2} ，and x_{3} ，respectively，and their product is therefore contained in p_{4} ． Consequently（i）holds．

Theorem 3．3．If A is a finite lattice that satisfies（ W ）and（ $S D^{\prime}$ ），and if A contains a four－element subset that is additively irredundant，then A contains a sublattice that is isomorphic to B_{4} ．

4．The decomposition theorem．It will now be shown that under the hypothesis of 3.3 the given lattice A can be expressed as the union of certain sublattices，and that A is isomorphic to a sublattice of a free lattice if and only if each of the summands is isomorphic to a sublattice of a free lattice． This result can therefore be regarded as a reduction of the embedding prob－ lem．On the other hand，the process is reversible，for A is uniquely determined by the given sublattices．These results therefore provide us with a new method for constructing finite sublattices of a free lattice．

For the present purpose it is convenient to regard the empty set as a lattice， and as a sublattice of every lattice．

Theorem 4．1．Suppose A is a finite lattice that satisfies（ W ），（SD），and $\left(S D^{\prime}\right)$ and assume that the lattice B_{4} in Figure 1 is a sublattice of A ．Let

$$
\begin{aligned}
A^{\prime} & =A-\{x \mid x \in A \text { and } z<x<u\}, \\
C_{i, j} & =\left\{x \mid x \in A \text { and } a_{i, j}<x<b_{k, l}\right\} \text { for }\{i, j, k, l\}=\{1,2,3,4\} .
\end{aligned}
$$

Then A^{\prime} is a sublattice of A, each of the sets $C_{i, j}$ is a sublattice of A, and

$$
A=A^{\prime} \cup B_{4} \cup C_{1,2} \cup C_{1,3} \cup C_{1,4} \cup C_{2,3} \cup C_{2,4} \cup C_{3,4}
$$

Furthermore,

If $\{i, j, k, l\}=\{1,2,3,4\}$, then
$x \in C_{i, j}$ and $y \in C_{i, k}$ implies that $x+y=q_{l}$ and $x y=p_{i}$,
$x \in C_{i, j}$ and $y \in C_{k, l}$ implies that $x+y=u$ and $x y=z$.
(ii) If $x \in A^{\prime}$ and $z \leqslant y \leqslant u$, then
$x \geqq z$ implies that $x+y=x+u$,
$x \geq u$ implies that $x y=x z$.
Proof. First observe that p_{i} covers z in A. In fact, p_{i} covers some element $d \geqslant z$, and it follows that $p_{i} \npreceq d+p_{j}$, for otherwise we would have $a_{i, k} a_{i, l}=p_{i} \leqslant d+p_{j}$, in violation of (W). Consequently $p_{i}\left(d+p_{j}\right)=d$. Similarly $p_{i}\left(d+p_{k}\right)=d$ and $p_{i}\left(d+p_{l}\right)=d$, and it follows by ($S D^{\prime}$) that $p_{i}\left(d+q_{i}\right)=d$. We now apply 1.2 with $a_{1}=p_{i}, a_{2}=p_{k}, a_{3}=p_{l}$, and $v=d+p_{j}$. Since the conditions (i) and (ii) of 1.2 hold, but the conclusion fails, the condition (iii) must fail. Thus v is multiplicatively reducible, and is therefore additively irreducible. Inasmuch as $p_{j} \nless d$, this implies that $d \leqslant p_{j}, d \leqslant p_{i} p_{j}, d=z$. Thus p_{i} covers z. Dually, q_{i} is covered by u.

Next we show that $a_{i, j}$ covers p_{i} in A. If $p_{i} \leqslant d<a_{i, j}$, then $p_{j} \npreceq d$, $p_{j} d<p_{j}, p_{j} d=z$. Applying $\left(S D^{\prime}\right)$ to this equation and to the equation $p_{j} q_{j}=z$, we find that $p_{j}\left(d+q_{j}\right)=z$, so that $d+q_{j}<u$. Since q_{j} is covered by u, this implies that $d \leqslant q_{j}$. Therefore $d \leqslant a_{i, j} q_{j}=p_{i}, d=p_{i}$. Thus $a_{i, j}$ covers p_{i} and dually $b_{i, j}$ is covered by q_{i}.

Now consider an element $v \in A-B_{4}$ with $z<v<u$. The lattice quotient u / z cannot have more than four atoms, and since $p_{1}, p_{2}, p_{3}, p_{4}$ are atoms of u / z, one of them must be contained in v, say $p_{i} \leqslant v$. If the remaining three atoms are not contained in v, then $p_{i} \leqslant a_{i, j} v<a_{i, j}$, hence $a_{i, j} v=p_{i}$, and similarly $a_{i, k} v=p_{i}$ and $a_{i, v}=p_{i}$. Applying ($S D^{\prime}$) we therefore infer that

$$
p_{i}=v\left(a_{i, j}+a_{i, k}+a_{i, l}\right)=v u=v,
$$

contrary to our assumption that $v \notin B_{4}$. Thus at least two atoms p_{i} and p_{j} must be contained in v, and therefore $a_{i, j} \leqslant v$. Dually, v must be contained in one of the elements $b_{s, t}$, and since the only one that contains $a_{i, j}$ is $b_{k, l}$, it follows that $v \leqslant b_{k, l}$. Therefore $v \in C_{i, j}$.

Thus we see that A is the union of A^{\prime} and B_{4} and of the six sets $C_{i, j}$. Since $a_{i, j}$ is additively reducible, hence multiplicatively irreducible, and since, dually, $b_{i, j}$ is additively irreducible, the set $C_{i, j}$ is a sublattice of A. To complete the proof of the first part of the theorem it therefore remains only to show that A^{\prime} is a sublattice of A. Actually we shall show that $A-(u / z)$ is a sublattice of A, and after (ii) has been proved, it will follow that A^{\prime} is also a sublattice of A. By duality we need only verify that $A-(u / z)$ is closed under addition. This is equivalent to the assertion that, for all $c, d \in A$,

$$
z \leqslant c+d \leqslant u \text { implies that } z \leqslant c \text { or } z \leqslant d
$$

Assume that this fails. Thus $z=q_{1} q_{2} q_{3} q_{4}$ is contained in the sum $c+d$, but is contained in neither summand, and it follows that one of the factors q_{i} must be contained in $c+d$. Inasmuch as u covers q_{i}, this implies that $c+d=u$ or $c+d=q_{i}$.

If $c+d=u$, then c and d cannot both be contained in q_{i}, and we may assume that $c \npreceq q_{i}$. Therefore $q_{i}+c=u$ and, since $q_{i}+p_{i}=u$, it follows by (SD) that $q_{i}+p_{i} c=u$. Since, by hypothesis, $z \npreceq c$, we have $p_{i} \npreceq c$ so that $p_{i} c<p_{i}$. But p_{i} is multiplicatively reducible and therefore additively irreducible, and p_{i} covers z. Therefore $p_{i} c \leqslant z \leqslant q_{i}$, which is clearly a contradiction.

If $c+d=q_{i}$, then c and d cannot both be contained in $b_{i, j}$, and we may assume that $c \npreceq b_{i, j}$. Therefore $b_{i, j}+c=q_{i}$, and together with $b_{i, j}+p_{j}=q_{i}$ this gives $b_{i, j}+p_{j} c=q_{i}$. But, as before, $p_{j} c \leqslant z$, and we obtain $b_{i, j}=q_{i}$, a contradiction.

If $x \in C_{i, j}$ and $y \in C_{i, k}$, then $a_{i, j}<x<b_{k, l}$ and $a_{i, k}<y<b_{j, l}$. Since $a_{i, j}+a_{i, k}=q_{l}=b_{k, l}+b_{j, l}$ and $a_{i, j} a_{i, k}=p_{i}=b_{k, l} b_{j, l}$, it follows that $x+y=q_{l}$ and $x y=p_{i}$. If $x \in C_{i, j}$ and $y \in C_{k, l}$, then $a_{i, j}<x<b_{k, l}$ and $a_{k, l}<y<b_{i, j}$. Since $a_{i, j}+a_{k, l}=u=b_{k, l}+b_{i, j}$ and $a_{i, j} a_{k, l}=z=b_{k, l} b_{i, j}$, it follows that $x+y=u$ and $x y=z$. Thus (i) holds.

Finally we show that if $x \in A^{\prime}$ and $x \nsubseteq z$, then $u \leqslant x+z$. From this the first part of (ii) readily follows, and the second part can then be inferred by duality.

If $u \npreceq x+z$, then $u(x+z)<u$, and $u(x+z)$ is contained in some element that is covered by u. Now u covers each of the elements q_{i}, and by the dual of $1.4, u$ cannot cover more than four elements. Therefore $u(x+z)$ is contained in some q_{i}. It follows that $p_{i}(x+z)=z$. Together with $p_{i} q_{i}=z$ this yields $p_{i}\left(x+q_{i}\right)=z$, which clearly implies that $u \$ x+q_{i}$. Since u is the unique element that covers q_{i}, we infer that $x \leqslant q_{i}$. Thus $z<x+z \leqslant q_{i}$ and consequently one of the elements p_{j} must be contained in $x+z$. Therefore

$$
u=q_{j}+p_{j}=q_{j}+x, \text { hence } u=q_{j}+p_{j} x
$$

and we find that $p_{j} \leqslant x$. But since $x \leqslant q_{i}$, this contradicts the hypothesis that $x \in A^{\prime}$.

Theorem 4.2. Under the hypothesis of Theorem 4.1, if A^{\prime} and all the lattices $C_{i, j}$ are isomorphic to sublattices of free lattices, then so is A.

Proof. First observe that u / z is isomorphic to a sublattice of a free lattice. In fact, consider a free lattice F with infinitely many generators, and let f be an isomorphism of B_{4} into F. By Jónsson (3, Lemma 2.3) each of the intervals $f\left(b_{k, l}\right) / f\left(a_{i, j}\right)$ contains as a sublattice a free lattice with infinitely many generators, and therefore there exists an isomorphism $f_{i, j}$ of $C_{i, j}$ into this interval. Let g be the function that agrees with f on B_{4} and with $f_{i, j}$ on $C_{i, j}$. It is then easy to observe that g maps u / z isomorphically into F.

Now consider an isomorphism h of A^{\prime} into F. Then $h(u) / h(z)$ contains as a sublattice a free lattice with infinitely many generators and we may therefore assume that the above function g maps u / z into $h(u) / h(z)$. Let k be the function that agrees with h on the lattice $A-(u / z)=A^{\prime}-\{u, z\}$, and with g on u / z.

Clearly k maps $A-(u / z)$ and u / z isomorphically into F. Now consider $x \in A-(u / z)$ and $y \in u / z$. If $x \leqslant z$, then $x \leqslant y$ and

$$
k(x)=h(x) \leqslant h(z) \leqslant g(z) \leqslant g(y)=k(y)
$$

but if $x \leq z$, then

$$
\begin{gathered}
x+y=x+z=x+u \\
h(x)+h(z)=h(x)+h(u)=h(x+u)
\end{gathered}
$$

and since $h(z) \leqslant k(y) \leqslant h(u)$, it follows that

$$
k(x+u)=k(x)+k(y) .
$$

Thus in either case $k(x+y)=k(x)+k(y)$. Therefore, and by duality, k is an isomorphism.
5. Dimension and order. In Jónsson (3) it was shown that if a finite dimensional lattice A satisfies the conditions (W), ($S D$), and ($S D^{\prime}$), then it is finite. In fact, the argument used there shows that if the dimension of A is n, then the order of A is less than $2 \cdot(n!)$. Actually, this estimate can be considerably improved:

Theorem 5.1. Let f_{n} be the maximum order of an n dimensional lattice that satisfies $(W),(S D)$, and $\left(S D^{\prime}\right)$. Then* $(\sqrt{ } 2)^{n} \leqslant f_{n} \leqslant 2^{n}$.

Proof. Suppose A_{n} is an n-dimensional lattice of order f_{n} that satisfies the given conditions. By a method given in Jónsson (3, Theorem 2.5) we can then construct a lattice A_{n+2} of dimension $n+2$ and order $2 f_{n}+2$ that also satisfies these conditions. Hence $f_{n+2}>2 f_{n}$, and since $f_{0}=1$ and $f_{1}=2$, this yields the lower bound for f_{n}.

If p is an atom of A_{n}, then each of the sets

$$
\left\{x \mid p \leqslant x \in A_{n}\right\}, \quad\left\{x \mid x \in A_{n} \text { and } p x=0\right\}
$$

[^2]$$
\limsup _{n \rightarrow \infty} \sqrt[n]{f_{n}} \leqslant \rho
$$
where ρ is the positive root of the equation $\rho^{5}-\rho^{4}-\rho^{2}-1=0$. Easy calculations show that $\rho<1.571$. There is considerable evidence to indicate that
$$
\lim _{n \rightarrow \infty} \sqrt[n]{f_{n}}=\sqrt{2}
$$
is a sublattice of A_{n}. In the case of the latter set, this is a consequence of $\left(S D^{\prime}\right)$. Since the dimension of each of these sublattices is at most $n-1$, we infer that $f_{n} \leqslant 2 f_{n-1}$. This gives the desired upper bound for f_{n}.

References

1. F. Galvin and B. Jónsson, Distributive sublattices of a free lattice, Can. J. Math., 13 (1961), 265-272.
2. B. Jónsson, Arithmetic properties of freely α-generated lattices, Can. J. Math., 14 (1962), 000-000.
3. B. Jónsson, Sublattices of a free lattice, Can. J. Math., 13 (1961), 256-264.
4. P. M. Whitman, Free lattices I, Ann. Math. (2), 42 (1941), 325-330.

University of Minnesota

[^0]: Received July 5, 1961. These results were obtained and prepared for publication while the investigations of the first author were supported by N.S.F. grant G68886.

[^1]: *In the original versions of Lemma 3.2 and Theorem 3.3 the lattice A was assumed to satisfy $(S D)$ and $\left(S D^{\prime}\right)$. We are indebted to the reviewer for pointing out that in the proof of the lemma neither condition is needed, and that in the theorem only ($S D^{\prime}$) need therefore be assumed.

[^2]: *The lower limit for f_{n} was obtained by Patrick R. Ahern. By a more involved argument than the one given here, and using various results contained in this paper, the second author has obtained a considerably sharper upper bound. In fact, he has shown that

