ITERATIVE CRITERIA FOR BOUNDS ON THE GROWTH OF POSITIVE SOLUTIONS OF A DELAY DIFFERENTIAL EQUATION

RAYMOND D. TERRY
(Received 9 March 1976; revised 20 April 1977)
Communicated by N. S. Trudinger

Abstract

Following Terry (Pacific J. Math. 52 (1974), 269-282), the positive solutions of equation (E): $D^{n}\left[r(t) D^{n} y(t)\right]+a(t) f[y(\sigma(t))]=0$ are classified according to types B_{j}. We denote $$
\begin{aligned} & y_{i}(t)=D^{i} y(t) \text { for } i=0, \ldots, n-1 ; \\ & y_{i}(t)=D^{i-n}\left[r(t) D^{n} y(t)\right] \text { for } i=n, \ldots, 2 n-1 . \end{aligned}
$$

A necessary condition is given for a B_{k}-solution $y(t)$ of (E) to satisfy $y_{2 k}(t) \geqslant m(t)>0$. In the case $m(t)=C>0$, we obtain a sufficient condition for all solutions of (E) to be oscillatory.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 34 C 10; secondary $34 \mathrm{C} 15,34 \mathrm{~K} 05,34 \mathrm{~K} \mathrm{15,34K20,34K25}$.

In this paper a number of results are presented concerning the possible rate of growth of nonoscillatory solutions of a functional differential equation of even order. We let $R=(-\infty, \infty), R_{0}=[0, \infty), R^{*}=(0, \infty)$ and consider the equation

$$
\begin{equation*}
D^{n}\left[r(t) D^{n} y(t)\right]+a(t) f[\nu(\sigma(t))]=0, \tag{1}
\end{equation*}
$$

where $f(u)$ is a nondecreasing function in $C[R, R]$,

$$
\begin{array}{ll}
a(t) \in C\left[R_{0}, R^{*}\right], & r(t) \in C\left\{R_{0}[m, M]\right\}, \quad m>0, \\
\sigma(t) \in C\left[R_{0}, R^{*}\right], & u f(u)>0 \text { for } u \neq 0, \quad \sigma(t) \leqslant t \quad \text { and } \quad \lim _{t \rightarrow \infty} \sigma(t)=+\infty .
\end{array}
$$

In a special case, the main result will yield a criterion for the oscillation of all solutions of (1). When $r(t) \equiv 1$ and $n=1$, the main result and its corollary will reduce to Theorems 3 and 4, respectively, of Burton and Grimmer (1972).

A solution $y(t)$ of (1), or of the equation (7) below, is said to be oscillatory on $[a, \infty)$ if for each $\alpha>a$ there is a $\beta>\alpha$ such that $y(\beta)=0$. Following Terry (1974), we define auxiliary functions $y_{j}(t)$ by

$$
y_{j}(t)= \begin{cases}D^{j} y(t), & j=0, \ldots, n-1, \tag{2}\\ D^{j-n}[r(t) D y(t)], & j=n, \ldots, 2 n-1 .\end{cases}
$$

A solution $y(t)$ of (1) is of type B_{k} on $\left[T_{0}, \infty\right)$ if for $t \geqslant T_{0}, y_{j}(t)>0$ for $j=0, \ldots, 2 k+1$ and $(-1)^{j+1} y_{j}(t)>0$ for $j=2 k+2, \ldots, 2 n-1$. Since $\lim _{t \rightarrow \infty} \sigma(t)=+\infty$, there is a $T_{1}>T_{0}$ such that $\sigma(t) \geqslant T_{0}$ for $t \geqslant T_{1}$. As shown in Terry (1974), a positive solution $y(t)$ of (1) is necessarily of type B_{k} for some $k=0, \ldots, n-1$. Moreover, the following lemmas have been established.

Lemma 1. Let $y(t)$ be a solution of (1) of type B_{k} on $\left[T_{0}, \infty\right)$. Then there exist constants $N_{j, j-1}>0$ such that

$$
\begin{align*}
\left(t-T_{1}\right) y_{j}(t) & \leqslant N_{j, j-1} y_{j-1}(t), \quad t \geqslant T_{1}, \tag{3}\\
t y_{j}(t) & \leqslant 2 N_{j, j-1} y_{j-1}(t), \quad t \geqslant 2 T_{1} .
\end{align*}
$$

Lemma 2. Let $y(t)$ be a solution of (1) of type B_{k} on $\left[T_{0}, \infty\right)$. Let $2 k+1 \geqslant r \geqslant s$. Then there exist constants $N_{r, s}>0$ such that
and

$$
\left(t-T_{1}\right)^{r-s} y_{r}(t) \leqslant N_{r, s} y_{s}(t), \quad t \geqslant T_{1}
$$

$$
t^{r-s} y_{r}(t) \leqslant 2^{r-s} N_{r, s} y_{s}(t), \quad t \geqslant 2 T_{1}
$$

It is clear that the $N_{r, s}$ may be defined in terms of the $N_{j, j-1}$. Specifically,

$$
N_{r, s}=\prod_{j=s+1}^{r} N_{j, j-1}
$$

Estimates for the $N_{j, j-1}$ may be found in Terry (1974); those for the $N_{r, s}$ are in Terry (1975). We let $M_{0}=m$ if $y_{n}(t)<0, M_{0}=M$ if $y_{n}(t)>0, \omega_{k}=(2 n-2 k-1)$! if $2 k \geqslant n$, $\omega_{k}={ }^{\prime} M_{0}(2 n-2 k-1)$! if $2 k<n, \gamma_{k}=2^{2 k} \omega_{k} N_{2 k}$, where $N_{2 k}=N_{2 k, 0}$. In addition to this notation, we introduce the oscillation transform $I_{T, s}$ defined by

$$
I_{T, s}[y(u)]=\int_{T}^{s}(u-T)^{2 n-2 k-1} a(u) f\left[\gamma_{k}^{-1}(\sigma(u))^{2 k} y(\sigma(u))\right] d u .
$$

Repeated applications of the oscillation transform will be indicated in the sequel by standard notation for the composite of two functions, that is,

$$
\left(I_{T_{2}, s_{2}} \circ I_{T_{1}, s_{1}}\right)(f)=I_{T_{2}, s_{2}}\left[I_{T_{1}, s_{1}}(f)\right] .
$$

The product symbol $\prod_{i=1}^{n} I_{T_{i}, s_{i}}$ will be used, where appropriate, to represent multiple composition, not ordinary multiplication. In terms of this notation we may state the main result of this paper.

Theorem 1. Let $m(t) \in C\left[R_{0}, R^{*}\right]$. Suppose that there is a positive integer N such that any finite sequence $\left\{T_{i+1}\right\}_{i=0}^{N}$ with $0 \leqslant T_{1}$ and $T_{i}<T_{i+1}$

$$
\begin{equation*}
\int_{T_{N+1}}^{\infty} a\left(s_{N}\right) f\left[N_{2 k}^{-1}\left(\sigma\left(s_{N}\right)\right)^{2 k}\left(\prod_{j=0}^{N-1} I_{T_{N-j}, \sigma\left(s_{N-j}\right)}\left(\omega_{k} m\left(s_{0}\right)\right)\right)\right] d s_{N}=+\infty \tag{4}
\end{equation*}
$$

Then there is no solution $y(t)$ of (1) of type B_{k} for which $y_{2 k}(t) \geqslant m(t)$ for large t.

Proof. We argue by way of contradiction and suppose that $y(t)$ is a solution of (1) of type B_{k} on [T_{0}, ∞). If $k \geqslant n / 2$, we multiply (1) by $\left(s-T_{1}\right)^{2 n-2 k-1}$ and integrate by parts from T_{1} to t to obtain

$$
\begin{equation*}
\int_{T_{1}}^{t}\left(s-T_{1}\right)^{2 n-2 k-1} D^{n}\left[r(s) D^{n} y(s)\right] d s=R_{1}(t)-(2 n-2 k-1)!\left[y_{2 k}(s)\right]_{T_{1}}^{l} \tag{5a}
\end{equation*}
$$

where
$R_{1}(s)=\left(s-T_{1}\right)^{2 n-2 k-1} y_{2 n-1}(s)-\sum_{j=2}^{2 n-2 k-1}(-1)^{j}(2 n-2 k-1)_{j-1}\left(s-T_{1}\right)^{2 n-2 k-j} y_{2 n-j}(s)$
and $(n)_{k}=n(n-1) \ldots(n-k+1)$. If $k<n / 2$, we proceed as above, pausing momentarily at the stage where $r(s) D^{n} y(s)$ appears undifferentiated to change the equality to an inequality using $m \leqslant r(s) \leqslant M$. In this case we obtain

$$
\begin{equation*}
\int_{T_{1}}^{t}\left(s-T_{1}\right)^{2 n-2 k-1} D^{n}\left[r(s) D^{n} y(s)\right] d s \geqslant R_{2}(t)-M_{0}(2 n-2 k-1)!\left[y_{2 k}(s)\right]_{T 1}^{l} \tag{5b}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{2}(s)=\left(s-T_{1}\right)^{2 n-2 k-1} & y_{2 n-1}(s)-\sum_{j=2}^{n}(-1)^{j}(2 n-2 k-1)_{j-1}\left(s-T_{1}\right)^{2 n-2 k-j} y_{2 n-j}(s) \\
& -M_{0} \sum_{j=n+1}^{2 n-2 k-1}(-1)^{j}(2 n-2 k-1)_{j-1}\left(s-T_{1}\right)^{2 n-2 k-j} y_{2 n-j}(s) .
\end{aligned}
$$

When $r(t) \equiv 1$, the two expressions coincide. See Ladas (1971) for another application in this case. We note that $\omega_{k} y_{2 k}\left(T_{1}\right)$ and each of the component terms of $R_{i}(t)$ are positive. Omitting them, it follows that

$$
\begin{equation*}
\omega_{k} y_{2 k}(t) \geqslant \int_{T_{1}}^{t}\left(s-T_{1}\right)^{2 n-2 k-1} a(s) f[y(\sigma(s))] d s \tag{5c}
\end{equation*}
$$

Since $y(t)$ is of type B_{k} on $\left[T_{0}, \infty\right), t^{2 k} y_{2 k}(t) \leqslant 2^{2 k} N_{2 k} y(t)$ for $t \geqslant 2 T_{1}$, where $N_{2 k}=N_{2 k, 0}$. Moreover, since $\lim _{t \rightarrow \infty} \sigma(t)=+\infty$, there is a $T_{11}>2 T_{1}$ such that $\sigma(t) \geqslant 2 T_{1}$ whenever $t \geqslant T_{11}$. Thus, for $t \geqslant T_{11}$ the following chain of inequalities hold:

$$
\begin{aligned}
y(\sigma(t)) & \geqslant 2^{-2 k} N_{2 k}^{-1}(\sigma(t))^{2 k} y_{2 k}(\sigma(t)) \\
& \geqslant 2^{-2 k} N_{2 k}^{-1}(\sigma(t))^{2 k} m(\sigma(t)) \\
& =2^{-2 k} N_{2 k}^{-1} \omega_{k}^{-1}(\sigma(t))^{2 k} \omega_{k} m(\sigma(t)) \\
& =\gamma_{k}^{-1}(\sigma(t))^{2 k} \omega_{k} m(\sigma(t))
\end{aligned}
$$

Since $f(u)$ is a nondecreasing function of u,

$$
f[y(\sigma(s))] \geqslant f\left[\gamma_{k}^{-1}(\sigma(s))^{2 k} \omega_{k} m(\sigma(s))\right]
$$

Multiplication of this inequality by $\left(s-T_{1}\right)^{2 n-2 k-1} a(s)$ preserves the inequality
as does integration over the interval $\left[T_{1}, t\right]$. From (5c)

$$
\omega_{k} y_{2 k}(s) \geqslant \int_{T_{11}}^{s}\left(s_{0}-T_{1}\right)^{2 n-2 k-1} a\left(s_{0}\right) f\left[\gamma_{k}^{-1}\left(\sigma\left(s_{0}\right)\right)^{2 k} \omega_{k} m\left(\sigma\left(s_{0}\right)\right)\right] d s_{0}
$$

that is,

$$
\begin{equation*}
y_{2 k}(s) \geqslant \omega_{\bar{k}}^{-1} I_{T_{11}, s}\left(\omega_{k} m\left(s_{0}\right)\right), \quad s \geqslant T_{11} . \tag{5d}
\end{equation*}
$$

Since $\lim _{t \rightarrow \infty} \sigma(t)=+\infty$, there is a $T_{2}>T_{11}$ such that $\sigma\left(s_{1}\right) \geqslant T_{11}$ for $s_{1}>T_{2}$. Thus, we may let $s=\sigma\left(s_{1}\right)$ in (5d) so that

$$
y_{2 k}\left(\sigma\left(s_{1}\right)\right) \geqslant \omega_{k}^{-1} I_{T_{11}, \sigma\left(s_{1}\right)}\left(\omega_{k} m\left(s_{0}\right)\right) .
$$

Multiplying this by $2^{-2 k} N_{2 k}^{-1}\left(\sigma\left(s_{1}\right)\right)^{2 k}$,

$$
\left.y\left(\sigma\left(s_{1}\right)\right) \geqslant \gamma_{k}^{-1}\left(\sigma\left(s_{1}\right)\right)^{2 k} I_{T_{15} \sigma\left(s_{1}\right)}\right)\left(\omega_{k} m\left(s_{0}\right)\right) .
$$

Since (5c) holds with t replaced by s, s replaced by s_{1}, and T_{1} replaced by T_{2},

$$
\begin{aligned}
\omega_{k} y_{2 k}(s) & \geqslant \int_{T_{2}}^{s}\left(s_{1}-T_{2}\right)^{2 n-2 k-1} a\left(s_{1}\right) f\left[\nu\left(\sigma\left(s_{1}\right)\right)\right] d s_{1} \\
& \left.\geqslant \int_{T_{2}}^{s}\left(s_{1}-T_{2}\right)^{2 n-2 k-1} a\left(s_{1}\right) f\left[\gamma_{k}^{-1}\left(\sigma\left(s_{1}\right)\right)^{2 k} I_{T_{11}, \sigma(s)}\right)\left(\omega_{k} m\left(s_{0}\right)\right)\right] d s_{1} \\
& =I_{T_{2}, s}\left[I_{T_{1}, \sigma\left(s_{1}\right)}\left(\omega_{k} m\left(s_{0}\right)\right)\right] .
\end{aligned}
$$

Since $\lim _{t \rightarrow \infty} \sigma(t)=+\infty$, there is a $T_{3}>T_{2}$ such that $\sigma\left(s_{2}\right) \geqslant T_{2}$ for $s_{2}>T_{3}$. Thus, we may let $s=\sigma\left(s_{2}\right)$ in the above expression to obtain

$$
\omega_{k} y_{2 k}\left(\sigma\left(s_{2}\right)\right) \geqslant I_{T_{2}, \sigma\left(s_{2}\right)}\left[I_{T_{11}, \sigma}\left(s_{1}\right)\left(\omega_{k} m\left(s_{0}\right)\right)\right] .
$$

Proceeding in this way, it follows that there exist T_{2}, \ldots, T_{N} such that for $i=2, \ldots, N-1, T_{i+1}>T_{i}, \sigma\left(s_{i}\right) \geqslant T_{i}$ and

$$
\omega_{k} y_{2 k}\left(\sigma\left(s_{i}\right)\right) \geqslant \prod_{j=0}^{i-2} I_{T_{i-j}, \sigma\left(s_{i-j}\right)}\left[I_{T_{11}, \sigma\left(s_{1}\right)}\left(\omega_{k} m\left(s_{0}\right)\right)\right] .
$$

In particular, for $i=N$,

$$
\omega_{k} y_{2 k}\left(\sigma\left(s_{N}\right)\right) \geqslant \prod_{j=0}^{N-2} I_{T_{N-j}, \sigma\left(s_{N-j}\right.}\left[I_{T_{11}, \sigma\left(s_{1}\right)}\left(\omega_{k} m\left(s_{0}\right)\right)\right] .
$$

As in previous computations,

$$
\begin{align*}
y\left(\sigma\left(s_{N}\right)\right) & \geqslant 2^{-2 k} N_{2 k}^{-1}\left(\sigma\left(s_{N}\right)\right)^{2 k} y_{2 k}\left(\sigma\left(s_{N}\right)\right) \\
& \geqslant \gamma_{k}^{-1}\left(\sigma\left(s_{N}\right)\right)^{2 k} \prod_{j=0}^{N-2} I_{T_{N-j} ; \sigma\left(s_{N-j}\right)}\left[I_{T_{11}, \sigma\left(s_{1}\right)}\left(\omega_{k} m\left(s_{0}\right)\right)\right] . \tag{6}
\end{align*}
$$

An integration of (1) from T_{N+1} to t yields

$$
y_{2 n-1}\left(T_{N+1}\right)-y_{2 n-1}(t)=\int_{T_{N+1}}^{t} a\left(s_{N}\right) f\left[\nu\left(\sigma\left(s_{N}\right)\right)\right] d s_{N} ;
$$

that is,

$$
y_{2 n-1}(t)=y_{2 n-1}\left(T_{N+1}\right)-\int_{T_{N+1}^{\prime}}^{t} a\left(s_{N}\right) f\left[y\left(\sigma\left(s_{N}\right)\right)\right] d s_{N}
$$

so that

$$
\lim _{t \rightarrow \infty} y_{2 n-1}(t)=y_{2 n-1}\left(T_{N+1}\right)-\int_{T_{N+1}}^{\infty} a\left(s_{N}\right) f\left[y\left(\sigma\left(s_{N}\right)\right)\right] d s_{N}
$$

An application of (6) and the integral condition in the statement of the theorem shows that $\lim _{i \rightarrow \infty} y_{2 n-1}(t)=-\infty$. Since

$$
y_{2 n-1}(t)<0 \quad \text { and } \quad D y_{2 n-1}(t)=-a(t) f[y(\sigma(t))]<0
$$

it follows that $y_{j}(t)<0$ for $j=0, \ldots, 2 n-2$, contradicting the fact that $y(t)$ is of type B_{k} in addition to the hypothesis that $y_{2 k}(t) \geqslant m(t)>0$.

Remark 1. When $N=0$, the multiple integral of (4) reduces to a single integral. Even in this case the result is new.

Remark 2. When $n=1, k=0, m(t)>0$, we may choose $N_{2 k}=$ as discussed in Terry (1976). Moreover, for $r(t) \equiv 1, m=M=1$ so that $M_{0}=1$, $(2 n-2 k-1)!=1, \omega_{k}=1$ and $\gamma_{k}=1$.

$$
I_{T_{1}, s_{1}}[y(u)]=\int_{T_{2}}^{s_{1}}\left(s_{0}-T_{1}\right) a\left(s_{0}\right) f\left[y\left(\sigma\left(s_{0}\right)\right)\right] d s_{0} .
$$

The integral condition (4) reduces to

$$
\int_{T_{N+1}}^{\infty} a\left(s_{N}\right) f\left[I_{T_{N}, \sigma\left(s_{N}\right)}\left(\ldots\left(I_{T_{11}, \sigma\left(s_{3}\right)}\left(m\left(s_{0}\right)\right)\right) \ldots\right)\right] d s_{N}=+\infty
$$

which is a variant of the hypothesis of Theorem 3 of Burton and Grimmer (1972). The conclusion here is that there are no B_{0}-solutions $y(t)$ of

$$
y^{\prime \prime}(t)+a(t) f[y(\sigma(t))]=0
$$

such that $y(t) \geqslant m(t)>0$, which is the conclusion of Theorem 3 of Burton and Grimmer (1972).

Remark 3. Suppose we define $\bar{\gamma}_{k}=2^{2 k} \bar{\omega}_{k} N_{2 k}$, where

$$
\bar{\omega}_{k}= \begin{cases}2^{2 n-2 k-1}(2 n-2 k-1)!, & k \geqslant n / 2 \\ 2^{2 n-2 k-1} M_{0}(2 n-2 k-1)!, & k<n / 2\end{cases}
$$

and let $I_{T_{1}, s_{1}}$ be defined in the same manner as $I_{T_{1}, s_{1}}$ with the exceptions that γ_{k} is replaced by $\bar{\gamma}_{k}$ and $\left(s_{0}-T_{1}\right)^{2 n-2 k-1}$ is replaced by $s_{0}^{2 n-2 k-1}$. Then

$$
y_{2 k}(s) \geqslant \bar{\omega}_{k}^{-1} \bar{I}_{T_{1}, s_{1}}\left(\bar{\omega}_{k} m\left(s_{0}\right)\right) .
$$

or $n=1$ and $k=0$

$$
\bar{I}_{T_{1}, s_{1}}[y(u)]=\int_{T_{1}}^{s_{1}} s_{0} a\left(s_{0}\right) f\left[\frac{1}{2} y\left(\sigma\left(s_{0}\right)\right)\right] d s_{0}
$$

This time the hypothesis of the theorem is the same as that of Theorem 3 of Burton and Grimmer (1972) except for the factor $\frac{1}{2}$ appearing in the integrand of $I_{T_{1}, s_{1}}$. The conclusions are identical.

Remark 4. When $k=0$ and $m(t)=C>0$, the conclusion is that there are no B_{0}-solutions $y(t)$ of (1) such that $y(t) \geqslant C>0$. However, a B_{k}-solution $y(t)$ of (1) satisfies $y(t)>0$ and $y^{\prime}(t)>0$. Thus, if (4) holds for all constant functions $m(t)$, the conclusion of Theorem 1 may be strengthened to exclude all positive nonoscillatory solutions of (1). When $n=1$ and $r(t) \equiv 1$, the above statement is formalized in Theorem 4 of Burton and Grimmer (1972).

Remark 5. The lemmas, the theorem and the above remarks hold for the more general equation

$$
\begin{equation*}
D^{2 n-i}\left[r(t) D^{i} y(t)\right]+a(t) f[y(\sigma(t))]=0 \tag{7}
\end{equation*}
$$

provided we redefine the $y_{j}(t)$ as follows:

$$
y_{j}(t)= \begin{cases}D^{j} y(t), & j=0, \ldots, i-1 \\ D^{j-i}\left[r(t) D^{i} y(t)\right], & j=i, \ldots, 2 n-1\end{cases}
$$

The details of this are left to the reader.

REFERENCES

T. Burton and R. Grimmer (1972), "Oscillatory solutions of x " $(t)+a(t) f[x(g(t))]=0$ ", Delay and Functional Differential Equations and their Applications, 335-342 (Academic Press, New York).
G. Ladas (1971), "On principal solutions of nonlinear differential equations", J. Math. Anal. Appl. 36, 103-109.
R. D. Terry (1974), "Oscillatory properties of a delay differential equation of even order", Pacific J. Math. 52, 269-282.
R. D. Terry (1975), "Some oscillation criteria for delay differential equations of even order", SIAM J. Appl. Math. 28, 319-334.
R. D. Terry (1976), "Oscillatory and asymptotic properties of homogeneous and nonhomogeneous delay differential equations of even order", J. Austral. Math. Soc. 22 (Ser. A), 282-304.

California Polytechnic State University
San Luis Obispo, California 93407
U.S.A.

