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CONTINUOUS AND D I S C R E T E HALANAY-TYPE INEQUALITIES

S. MOHAMAD AND K. GOPALSAMY

We consider continuous time and discrete time Halanay-type inequalities for nonau-
tonomous scalar systems with discrete and distributed delays. The results obtained
generalise the existing results of Halanay and improve certain results of Baker and
Tang. Furthermore, it is shown that the discrete time inequalities which are analogues
of continuous time inequalities preserve the stability conditions corresponding to the
continuous time Halanay-type inequalities.

1. INTRODUCTION

Differential inequalities have played a significant role in the analysis of continuous
and discrete time dynamical systems and elsewhere in nonlinear analysis (Halanay [5],
Lakshmikantham and Leela [6, 7], Walter [8], Agarwal [4]). Halanay [5, p.378] studied
the stability of the zero solution of

(1.1) ^j9- = au(t)+bu(t-T), t>t0, r > 0
at

by using a differential inequality in which the stability of the zero solution of (1.1) is
related to that of the zero solution of

= (a + b)u(t) when a + b < 0.
at

The following result has been used by Gopalsamy [4] in the derivation of sufficient con-
ditions for the stability of linear delay differential equations.

LEMMA 1 . 1 . Let v(t) > 0, t € K and T e [0, oo), t0 e R. Suppose

(1.2) v'{t) ^ -av(t) +b( sup v(s) ) , t > t0.

Ifa>b>0 then there exist constants 7 > 0 and k > 0 such that v{t) ^ ke"1^'^ for
t > t0 and hence v(t) -> 0 as t -»• 00.
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372 S. Mohamad and K. Gopalsamy [2]

Hereafter v'(t) as in (1.2) denotes the upper right derivative. Baker and Tang [2] have
considered a nonautonomous version of (1.2) and obtained a special case of a Halanay-
type inequality. In particular they have established the following result.

LEMMA 1 . 2 . Let v(t) > 0, t € R and let a(-), b(-) be continuous on R. Suppose
further that

(1.3) v'{t) ̂  -a(t)v(t) + b(t) ( sup v(s) 1 , t > t0

(1.4) v(t) = \(p(t)\ for t^

where <p(£) is bounded and continuous for t ^ to, a(t) ^ 0, b(t) ^ 0 for t € [£o,oo),
q(t) ^ t and q(t) -* oo as t —> oo. If there exists CT > 0 such that

(1.5) -a(t) + b(t) ^ -a < 0 for t^t0

then

(1.6) (i) v(t) sj HVJII^0 0 ' ' 0 1 , t ^ t 0 and (ii) v{t) ^ 0 as t ->• oo

where |M| (~°° l t o 1 = sup | ^ ( t ) | < oo.
te(-oo,to]

We note that discrete time versions of Halanay-type inequalities with finite and dis-
tributed delays have also been considered by Baker and Tang [2]. However, the discrete
versions considered by Baker and Tang [2] do not provide sufficient conditions for uniform
asymptotic stability obtained from the continuous time mother versions.

In this paper we consider nonautonomous continuous time Halanay-type inequalities
with finite and distributed delays. It will be shown that our results generalise the existing
results of Halanay [5, p.378] and improve those results of Baker and Tang [2]. Moreover,
we also consider discrete time analogues of the continuous time Halanay-type inequalities;
it is shown that our discrete time analogues preserve the stability conditions of their
continuous time counterparts. Sufficient conditions are obtained which also preserve the
convergence characteristics of solutions satisfying both types of inequalities.

2. CONTINUOUS HALANAY-TYPE INEQUALITIES

In this section we consider continuous time Halanay-type inequalities with finite
and distributed delays in nonautonomous delay differential inequalities. First we provide
results for the continuous time Halanay-type inequality with finite delays.

THEOREM 2 . 1 . Let x(-) be a nonnegative function satisfying

(2.1) ^ ^ -a(t)x(t) + b(t) I sup x(s) ) , t > t0
at \t-T(t)<sizt )

(2.2) x{s) - \<p(s)\ for se[to- r*,t0]
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where r(t) denotes a nonnegative, continuous and bounded function defined for t g R

and T* = sup r(t); <p(s) is continuous and defined for s € [to — T*,to\; a(t) and b(t),
teR

t 6 R, denote nonnegative, continuous and bounded functions. Suppose

(2.3) a(t) - b(t) ^a, teR

where a = inf (a(t) — b(t)j > 0. Tien tiere exists a positive number fl such that

(2.4) x(t)^( sup x(s) )e- ' i ( ' - t o ) , t > t0.
\ae[to-T',t0] J

PROOF: We define the function G as follows:

(2.5) G(t, n) = -a{t) +n + b{t)e"T', /»6R, teR.

Since a(t) and b(t) are continuous and bounded for t e R we consider the function F

defined by

(2.6) F(/i)=supG(t,/i), ^eR.
teR

Clearly, F is a continuous function of fj. e R. By applying the assumption (2.3) we have
from (2.6) that

(2.7) F(0) = sup G(t, 0) = sup (-a(t) + b{t)) = - inf (a{t) - b(t)) = -a < 0.
teR teR >• / teR V /

Moreover, by the boundedness of a(-) and &(•) we have

(2.8) - a ' + f j . + b . e " T ' = F , { I J ) ^ F { n ) < F'(fi) = - a . + ft + b ' e ^ ' , f i e R

where

a, — inf a(t), a' = sup a(t), b, = inf b(t) and b' = sup b(t).
teR teR t e R teR

We observe that F,(fi) —¥ oo and F*(fj) -* <x> monotonically as n -» oo and hence from
(2.8) we deduce that

(2.9) F{fi) = sup G(t, (j.) -> cxi monotonically as // -> oo.
teR

Now let 0 < a < a. It follows from (2.7), (2.9) and the continuity of F(y) that there
exists a number Jl > 0 such that

(2.10) F(Ji) = sup G(t, Ji) = -a < 0 where 0 < a < CT,
teR
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and this implies that

(2.11) -a(t) + fx + &(*)e?T* ^ -a < 0 for all t 6 K.

Now we define

(2.12) 5(*) = H ) e W M > ) ' t>t0

\x(t), to-T*^t^ t0.

We have from (2.12) and (2.1),

at at

^ i-a(t)x{t) + b{t) ( sup x(s)) } e^-40' + x(t)tuP^-^, t > t0
{ \t-T-Hs$t J )

(2.13) ^ (-a{t)+ji)x{t) + b{t)e>iT' ( sup x{s)) , t > t0.

Since ip(t) is continuous and defined for t € [to — T*,t0], we let

sup \cp{t)\ = M, M > 0 .
[ t \ t ]

Let 8 > 1 be arbitrary. FYom (2.2) and (2.12) we have x(t) < 5M for t € [to - T*,t0]. We
claim

(2.14) x(t) < SM for t > t0.

Suppose (2.14) does not hold. Let *i > t0 be the first time for which

(2.15) x{t) < 6M for t0 - T* ^ t < tu x(tx) = SM and —^ ^ 0.
at

We have from (2.13) and (2.15),

0 ^ — ; — ^ I — a(ti) + n]x(t\) + 6(tj)e'1T I sup x(s) I
at \ I \ti-T'^s^ti )

(2.16) ^ -aSM < 0 (due to (2.11))

from which we have a contradiction. Hence the claim (2.14) holds. Since 6 > 1 is
arbitrary, by allowing S —¥ 1+ we have x(t) ^ M for t > tg. It then follows from (2.12)
and the definition of pt that x(t) ^ Me"5'1"101 for t > t0 and hence the assertion (2.4) is
satisfied. This completes the proof. D

We consider in the following an inequality with delays distributed over an unbounded
interval [0,oo).
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THEOREM 2 . 2 . Let x(-) be a nonnegative function satisfying

(2.17) ^ ^ ^ -a{t)x(t) + b(t) [ K(s)x{t - s)ds, t > t0

(2.18) x(s) = \<p(s)\ for se(-co, io]

where ip(s) defined for s € (-oo, £0] is continuous and sup \f{s)\ = M, M > 0; a(t)
se(-oo,<o]

and b(t) are defined for < 6 R and denote nonnegative, continuous and bounded functions;
the delay kernel K(-) is assumed to satisfy the following properties

(2.19) K : [0, oo) >-> [0, oo) and / K(s)et"ds < oo
Jo

for some positive number \i. Suppose further that
/•oo

(2.20) a{t) - b{t) / K ( s ) d s ^ a , t £ R
Jo

where a = inf (a(t) — b(t) /0°° K(s)ds) > 0. Tien there exists a positive number Jl such

that

(2.21) x(t) < ( sup x(s)) e-^- t o ) , i > t0.
\se(-oo,t0) J

PROOF: It follows from (2.19) that we can find a critical value n* > 0 such that
/•oo

(2.22) / K(s)e'"ds < oo for 0 < n < /A

For example, let K(s) = e~' for s € [0,oo) and we have /0°° e~seli'ds = 1/(1 - fi) for
which the critical value is fi* = 1. Along with this observation we define the function
G(t,ii) by

/•OO

(2.23) G(t,n) = -a{t)+fi + b(t) K(s)e"sds, t e R, ^ € (-oo,//).

Since a(t) and 6(i) are continuous and bounded for t € K we consider the function F
defined by

(2.24) F(u) = sup G(t, n) for \i e (-oo,/i*).

Clearly, F(/x) is continuous and defined for \i € (-oo,/x*). By applying the assumption
(2.20) we have from (2.23) and (2.24) that

= sup
t€R

-a(t) + b{t) [ K(s)
Jo

(2.25) = - inf (a{t) - b(t) f K(s)ds j = -a < 0.
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We also observe that

-a'+n + b. f K(s)e>isds = F.(JJ) ^ F(n) ^ F'
(2-26) Jo

= -a.+n + b* / K(s)e^ds for fi e ( -oo, fj.')
Jo

and F.(/x) —> oo and F*(/i) —t oo monotonically as fj, -t n*_. Hence

(2.27) F(n) = sup G(t, n) -¥ oo monotonically as p, -t (j.*_.
t€R

Now let 0 < a < a. By (2.25), (2.27) and the continuity of F(fj,) there exists a number
Ji satisfying 0 < /Z < (i* for which

(2.28) F(/Z) = sup G(t, ji) = - ? < 0 where 0 < 5 < a.
t€R

Hence it follows that
/•oo

(2.29) - a ( t ) + // + 6(<) / ^(s je^ 'ds ^ -a < 0 for all t G R.
«/o

Now we define

(2.30) x(t)
\x(t),(), -oo

We have from (2.30) and (2.17),

o(«)a:(t) + b(t) I K{s)x(t - s)ds\ e^'^ +

(2.31) = (-a(t) + £)i(i) + 6(t) A K(s)eJi'x{t - s)ds, t > t0.

', t > t0

Let 5 > 1 be arbitrary. We have from (2.18) and (2.30) that x[t) < 6M for t e (-oo,t0]-
We claim

(2.32) x(t) < SM for t > t0.

Suppose (2.32) does not hold. Let ti > to be the first instant for which

(2.33) x(t) <6M for - oo < t < tu x{U) = SM and ^j^- > 0.
(XL
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It then follows from (2.31) and (2.33) that

J™ ^ - s)ds

f°° -
/ K{s)e"sds
Jo

^ (-a(ti) + J1 + b(ti) rK{s)e^ds\ SM

(2.34) ^ -o8M < 0 (due to (2.29))

and this leads to a contradiction. Hence the claim (2.32) holds. Since 5 > 1 is arbitrary,
by allowing 5 —> 1 + we have x(t) < M for t > t0. It then follows from (2.30) that
x(i) ^ Me"'' '1"'0' for t > to and hence the assertion (2.21) is satisfied. This completes
the proof. D

3. DISCRETE HALANAY-TYPE INEQUALITIES

While discrete time dynamical systems are important in their own right, such sys-
tems often arise in the numerical solutions and computer simulations of continuous time
systems. While there are a plethora of methods by which discrete time analogues of
continuous time systems can be obtained, the asymptotic behaviour of the two types of
systems do not often coincide. For simulation purposes, it is important that a discrete
analogue faithfully inherits the characteristics of the continuous time parent system. It
is with this intention that we have obtained discrete analogues of continuous systems in
this section.

We consider a discrete time analogue of the continuous time Halanay-type inequality
(2.1). While there is no unique way of obtaining a discrete time system from its continuous
time counterpart we approximate the inequality (2.1) in each disjoint interval of the form
t € \nh, (n + l)/i), n € Z where Z denotes the set of integers and h is a finite positive
real number denoting a uniform discretisation step size. We consider an approximation
given by

(3.1) djW^_a(\t]h)x{t)+b(\±]h\( sup

t € [nh, (n + l)/i), n^n0, n o e Z

where T(-) = r{[t/h] h) and the interval n ^ no denotes n € {no, no + 1, no + 2 , . . . }.
Equation (3.1) is known as an equation with piecewise constant arguments in which
[r] denotes the integer part of the real number r. Equations with piecewise constant
arguments have been used by Cooke and Gyori [3] in numerically approximating solutions
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of delay differential equations on an infinite interval. By applying a semi-implicit Euler-
type scheme to (3.1) we obtain

s u p

t € [nh, (n+l)h), n

and after some simplification we have

(3.2)

where we let [t/h] = n, [s/h] = j , [T(-) / / I] = «;(•) and we have used the notation f(n) —
f(nh). The variables n and j are integers. The parameters a(n) and b(n) denote real
valued, nonnegative and bounded sequences defined for n € Z while the delay parameter
n(n) defined for n 6 Z denotes an integer valued, nonnegative, and bounded sequence.
The initial values associated with (3.2) are given by

x(n) = \<p(n)\, n € [n0- /c*,n0]

where n* = sup n(n) is a positive integer and the interval [no — «*,no] denotes {no —
ngZ

K*,n0 — K* + 1 , . . . , n 0 } . In the next result we provide results for the discrete time
Halanay-type inequality with finite delays.

THEOREM 3 . 1 . Let h > 0 and let x(-) be a nonnegative sequence satisfying

(3.3) x(n +1) < * x{n) + , ( " ^ , f sup x(j)) , n^n0

1 + a{n)h 1 + a(n)h ^ n _ K ( n )^^ n J
(3.4) x(n) = \<p{n)\ for ne[n0- K', n0]

where K(TI) denotes an integer valued, nonnegative and bounded sequence defined for
n € Z and K* = sup /c(n) is a positive integer; (f(n) is a real valued sequence defined

nez
for n € [no — K,*, no]; the parameters a(n) and b(n) defined for n € Z denote real valued,
nonnegative and bounded sequences. Suppose

(3.5) a{n) - b{n) ^ a, n e Z

where a = inf (a(n) - b(n)j > 0. Then there exists a real number A > 1 such that

(3.6) x(n) < ( sup x{j)\ ( T ) , n > n o .
VIO-K-O'^IO / \A/
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P R O O F : Define a real valued function G as follows:

Since a(n) and b(n) are bounded and nonnegative for n £ Z, we can consider the function
F defined by

(3.8) F{\) = sup G(n, A), A > 0.
nSZ

Clearly, F is continuous for A > 0. By applying the assumption (3.5) we have

( 3 . 9 )
a*/i

since a > 0, /i > 0 and a* = sup a(n) > 0. Moreover, by the boundedness of a(-) and
nez

6(-) we have

(3.10) F.(A) < F(A) ^ F'(A) for A > 0

where

a, = inf a(ri), a* = sup a(n), b, = inf 6(n), 6* = sup b(n).
n e z n€Z "6Z n6Z

We observe that F,(A) -+ oo and F*(A) —)• oo as A -» oo and hence from (3.10) we deduce
that

(3.11) F(X) = sup G{n, A) -> oo as A -> oo.
n€Z

Let 0 < a < a. From (3.9), (3.11) and the continuity of F(X), there exists a number
A > 1 such that

ez \^l + a(n)/i l + a(n)/i y ^ 1 + a'h

and this implies that

( 3 . i 2 ) _ * + ^ M ^ A " - + ^ i _ ^ * p forall n e Z

1 + a(n)h 1 + a(n)/i 1 + amh

0

https://doi.org/10.1017/S0004972700022413 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022413


380 S. Mohamad and K. Gopalsamy [10]

where the constant p satisfies 0 < p < 1 since 0 < a < a < a*.

Now we define

(x(n)Xn-no, n>n0
(3.13) x{n) = {

[x(n), n0 - K' ^ n ^ n0.

We have from (3.13) and (3.3) that

x(n + 1) = x(n + l)A"+1-no, n^n0

Let <5 > 1 be arbitrary. Since <p(n) in (3.4) is defined for n € [n0 — K*,n0], we let

sup |<p(n)| = M, M > 0.
ng[no—K'.no]

It follows from (3.4) and (3.13) that x(n) < SM for n € [n0 - K*,n0]. We claim

(3.15) x(n) < 6M for n > n0.

Suppose (3.15) does not hold. Let the integer n\ > nQ (the first time) be such that

(3.16) x(n) < SM for n0 - «* ^ n < rii and x(rii) ^ 6M.

We have from (3.14) and (3.16) that

SM ^ x(ni)

(3.17) sj pSM < SM (due to (3.12))

and this is a contradiction. Hence the claim (3.15) holds. Since 6 > 1 is arbitrary,
by allowing S —> 1+ we have x(n) ^ M for n > n0. It then follows from (3.13) that
x(n) $J M(l/A)"~"° for n > no and hence the assertion (3.6) is satisfied. This completes
the proof. 0

We consider a discrete time analogue of the continuous time inequality with dis-
tributed delays given by (2.17). By following a similar process of discretisation as before,
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we first approximate (2.17) by an equation with piecewise constant arguments given by

te[nh,(n+l)h), se[jh,{j + l)h), n>n0, j € {1,2,3,...}

where h > 0 denotes a uniform discretisation step size and [r] denotes the integer part of
the real number r. By applying a semi-implicit Euler-type scheme to (3.18) we obtain

te[nh,{n+l)h), s € [jh,{j+ l)h), n^n0, j e {1,2,3,...}

and after some simplification we obtain

( 3 1 9 ) ^ ^

where we let [t/h] = n, [s/h] = j and f(n) = f(nh). We note that for practical treatment
of (3.19) for instance in computer simulations and numerical solutions, the form of £(•)
can be chosen appropriately. Nonetheless, as far as our analysis is concerned the discrete
delay kernel K{-) will have certain properties which we shall mention later on.

In the following we provide results for the discrete Halanay-type inequality with
distributed delays.

THEOREM 3 . 2 . Let h > 0 and let x(-) be a nonnegative sequence satisfying

n

(3.21) x{n) = \<p(n)\ for n e ( - o o , n 0 ]

where the interval n e (-co, n0] denotes n € {... , % - 2, n0 — 1, n 0 } ; ip(n) is a sequence

defined for n G (-co, no] and sup |v ( n ) | — M, M > 0; t ie parameters a(n) and
n6( -oo.no)

b(n) deBned for n € Z denote nonnegative and bounded sequences; the delay kernel £(•)
is assumed to have the following properties

(3.22)
oo

K{j) 6 [0, oo) for j € {1,2,3,...} and £ /C(j)AJ' < oo
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for some A > 1. Suppose

OO

(3.23) a(n) - b{n) V K(j) > a, n€

where a = inf I a(n) - b(n) £) K(j) I > 0. Then there exists a reai number A > 1 such

that

(3.24) x(n) ^ I sup x(j) I = I for n > n0.
\j€(—oo,no] / \A/

P R O O F : From our hypothesis in (3.22) we can find a critical value A* > 1 for which

(3.25)

For example, let K.{j) = e~j for j € {1,2,3 , . . . } and so

Te-i\*+1 = \jp(±y <oo for 1< A < A' = e.

] T K(j)Xi+l < oo for 1 < A < A*.
3=1

j=\

Along with this observation we define the function G by

(3.26) G(n,\)=,* +-M*
1 + a(n)n 1 + a(n) - 1, n € Z, 0 < A < A'.

^

Since the sequences a(n) and b(n) are nonnegative and bounded for n € Z we consider

(3.27) F{X) = sup G{n, A), 0 < A < A*.

Clearly, F is continuous and defined for 0 < A < A*. By applying the assumption (3.23)
we have

(3.28) = - i n f
ngZ

a(n) - b(n)

1 + a(n)h

\ I

ah

since h > 0, a > 0 and a* > 0. Moreover,

(3.29) F,(A) ̂  F{X) ^ F*{\) for 0 < A < A*
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where

a, = inf a(n), a* = sup a(n), b, = inf b(n), 6* = sup b(n).
» e z n€Z »6Z n€Z

We observe that F,(A) ->• oo, F*(X) -> oo as A ->• X*_ and hence it follows from (3.29)
that

(3.30) F(X) = sup G{n, X) ->• oo as A ->• Al.
nez

Let 0 < a < a. From (3.28), (3.30) and the continuity of F(X) there exists a number A
satisfying 1 < A < A* such that

l + a(n)ft 1 + a(n)h ^ u / ^ 1 + a*h

and this in turn implies that

(3.31) _ L ^ + JMLW(j)P + 1 <l - -^-=p for all n€v ' l+a(n)/i l + a(n)h^ v y l+a*/i

where the constant p satisfies 0 < p < 1 since 0 < a < a < a*.
Now we define

_, x fx(n)A"-no, n>n0
(3-32) x(n) = { ) '

{x(n), —oo < n ^ n0.

We have from (3.32) and (3.20),

<3-33> - I T ^ W S *<"» + r r fp
Let 5 > 1 be arbitrary. We have from (3.21) and (3.32) that x(n) < 6M for n € (-oo, no].
We claim

(3.34) x(n) < 5M for n > n^.
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Suppose (3.34) does not hold. Let the integer nx > n0 (the first time) be such that

(3.35) x(n) < SM, - o o < n < ni and x{nx) ^ 5M.

We have from (3.33) and (3.35),

(3.36) :* pSM < 6M (due to (3.31))

which leads to a contradiction. Hence the claim (3.34) holds. Since 5 > 1 is arbitrary,
by allowing 6 —> 1 + we have x(n) ^ M for n > n0. It follows from (3.32) that x(n) ^
M(l/A)n~n° for n > n0 and hence the assertion (3.24) is satisfied. This completes the
proof. D

We conclude with a remark that the results obtained in this article can be used
for the derivation of sufficient conditions for the existence of (uniformly asymptotically
stable) periodic and almost periodic solutions of certain nonlinear scalar systems. These
applications will be considered elsewhere.
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