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Three-dimensional direct numerical simulations are used to characterize turbulent buoyant
convection in a box-shaped Rayleigh–Bénard cavity with a rough bottom plate made of a
series of square based blocks separated by valleys. The cavity is filled with water. The
Rayleigh number varies over five decades up to 1010. As mentioned in the literature, three
successive heat transfer regimes are identified: from inactive roughness (I) to a regime (III)
where the heat transfer increase is larger than that expected from only surface increase due
to roughness. The heat transfers of the transitional regime II are particularly intense. After
validation against experimental and numerical data from the literature, we highlight the
role of the fluid retained within valleys (the inner fluid). It is shown that only the heat
transfer across the fluid interface between the cavity bulk and the inner fluid is responsible
for changes in the overall heat transfer at the rough plate, with an exponent of the heat
transfer scaling law close to 1/2 in regime II. The valley flow typifies the limits of this
regime: the blocks protrude from the thermal boundary layer while remaining within the
kinetic boundary layer. As compared with regimes I and III, regime II is characterized
by larger temperature fluctuations, especially near the rough plate, and a larger friction
coefficient. A fluctuating rough fluid layer overlaying both blocks and valleys appears in
regime III, in addition to the classic boundary layers formed along the plate geometry.

Key words: Bénard convection, turbulent convection

1. Introduction

The addition of wall roughness to thermal systems involving turbulent convection is
a common strategy to enhance the heat transfer of industrial systems. Roughness also
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constitutes a major factor in many turbulent flows encountered in nature. To explain the
physical mechanisms involved in a flow interacting with roughness and at the origin of
the intensification of heat transfer, many efforts have been made in the specific case of
Rayleigh–Bénard (RB) convection. The classic RB convection consists in a fluid flow
enclosed in a cavity heated from the bottom and cooled at the top. The corresponding flow
depends on the following main control parameters: the Rayleigh number, Ra, the Prandtl
number, Pr, and the cavity aspect ratio, Γ , while the main response of the system can be
expressed in terms of a dimensionless heat transfer i.e. by means of the Nusselt number,
Nu. The dependence of the Nusselt number on the control parameters (Nu ∼ αRaβPrζ )
has been widely investigated (see Ahlers, Grossmann & Lohse 2009; Chillà & Schumacher
2012 for reviews), and the unifying theory of Grossmann & Lohse (2000, 2001) has been
proposed to describe the multiple scaling laws of the Nusselt number in the (Ra − Pr)
parameter space. This theory follows the pioneering works of Malkus (1954) and Priestley
(1954), that predict β = 1/3, assuming that the heat flux does not depend on the distance
between the plates. Many numerical and experimental studies agree with this scaling,
although there is some controversy about deviations reported in the literature. When the
diffusive processes become negligible, a larger exponent is obtained (β = 1/2) (Kraichnan
1962; Spiegel 1963), which is sometimes referred to as the ultimate regime. Indeed, it
has been demonstrated that it is a rigorous upper limit on heat transport (Howard 1963;
Doering & Constantin 1996). Some experimental studies have reported this regime, such
as Chavanne et al. (1997) (see Roche (2020) for a review).

In the case of turbulent RB convection with rough plates, three successive heat transfer
regimes have been observed as Ra is increased. This was first demonstrated experimentally
by using a series of convection cavities with varying roughness aspect ratios λ, defined
as the pyramid-shaped roughness height over its base (Xie & Xia 2017). It has been
shown that the two transitions delimiting the enhanced heat transfer ‘regime II’ occur
when the thicknesses of thermal, then kinetic, boundary layers are of the same size as
the roughness height Hp. Similar results were obtained by Rusaouën et al. (2018) in
a cylindrical water RB cavity, where the horizontal plates were smooth at the top and
roughened by rectangular shaped obstacles at the bottom. They found an increase of the
scaling exponent β close to 0.5 in regime II. A heat transfer scaling law similar to those
of the smooth plate was further obtained in regime III but with an increased prefactor.
Several experimental studies describe results inside regime II (Roche et al. 2001; Qiu,
Xia & Tong 2005; Tisserand et al. 2011; Wei et al. 2014), while other configurations
correspond to regime III (Shen, Tong & Xia 1996; Du & Tong 1998, 2000; Wei et al. 2014).
In both cases, the intensification of the emission of the thermal plumes from roughness is
considered to be at the origin of the heat transfer increase. By means of a quantitative
analysis of the plumes (Belkadi et al. 2020), it has been shown that the plume density
and its velocity distribution are significantly affected by the presence of roughness, as
compared with the case of a smooth plate. By introducing a critical Rayleigh number Rac,
defined as the Rayleigh number for which the thermal boundary layer has the size of the
roughness height, Rusaouën et al. (2018) succeed in collapsing results obtained in different
asymmetric rough RB cavities over the three regimes, whatever the roughness shape.

Given its efficiency in transferring heat, many recent works have attempted to optimize
regime II and to extend its Ra-range of existence by modifying the roughness geometry
(Toppaladoddi, Succi & Wettlaufer 2015; Xie & Xia 2017; Jiang et al. 2018; Xia 2019;
Zhu et al. 2019). These studies have adopted sinusoidal-shaped roughness blocks in
two-dimensional direct numerical simulations (DNS) or pyramid-shaped roughness blocks
in experiments. Note that the first three-dimensional DNS of rough RB convection was
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performed in a cylindrical rough cell with V-grooved plates at the top and bottom
plates (Stringano, Pascazio & Verzicco 2006), in which a scaling exponent increase was
observed. For this kind of rough plate, an additional geometric parameter λ is used to
describe the roughness in terms of wavelength or pyramid aspect ratio (λ is the height over
the base of the element). It has been demonstrated that the roughness density and λ as
well, increase the β scaling exponent to a value close to 1/2, at least inside a particular
range of Ra. Similar trends have been obtained in the case of rectangular blocks. Wagner
& Shishkina (2015) and Emran & Shishkina (2020) performed three-dimensional DNS
in cubic or cylindrical domains where the roughness is modelled respectively by large
size straight or round bars. The influence of the gap width (g) between blocks and of the
roughness height (Hp) on the heat transfer and on the flow structure has been documented
for Rayleigh numbers up to 5 × 108 and Pr ∼ 1. Bulk flow has been shown to be enhanced
both by increasing Hp and g, while the secondary flow circulations located inside the
obstacle gap weaken as the width of the obstacle increases. This leads to an increase of Nu
when Hp and g become larger than the thermal boundary layer thickness. The influence of
rectangular-shaped obstacles on the flow has been previously investigated experimentally
at higher Ra in a water-filled cavity (Salort et al. 2014; Liot et al. 2017). It has been
shown that roughness does not clearly affect the mean flow, but enhances drastically the
velocity fluctuations in the whole cavity, which results in a short logarithmic layer above
the roughness blocks. Two potential mechanisms are put forward: a transition to a turbulent
boundary layer above the roughened plate and a plume emission increase, which relative
influences may vary with the roughness shape.

These previous studies demonstrate that the roughness geometry is a crucial factor in
the alteration of flow and heat transfer, illustrating the key role of the flow surrounding
roughness blocks. Taking advantage of the full three-dimensional information obtained
from DNS, this paper aims at describing the evolution of the fluid dynamics around the
roughness blocks for the three heat transfer regimes and to explain how it contributes to
enhancing heat transfer.

To this purpose, we simulate the flow inside an asymmetric RB cavity with a bottom
plate roughened by box-shaped obstacles, whereas the top plate is kept smooth. This
asymmetric geometry allows us to study separately the smooth and rough half-cavities
in a single simulation, provided that the bulk temperature is considered (Tisserand et al.
2011; Salort et al. 2014). Still, due to resolution requirements, numerical studies are usually
performed with simplified geometries (macroscopic scale roughness blocks, in limited
numbers, with specific symmetries or quasi-two-dimensional geometry), or at moderate
Rayleigh numbers (Wagner & Shishkina 2015; Zhu et al. 2019; Emran & Shishkina 2020).
To overcome this difficulty, we set Hp at a particular value which locates the first transition
between regimes I and II at a moderate Ra (here around 107). Both transition regimes are
then potentially feasible at intermediate Rayleigh numbers with a reasonable mesh size.
This supposition has been recently confirmed experimentally (Tummers & Steunebrink
2019) and numerically (Emran & Shishkina 2020) in set-ups where both horizontal plates
are rough. In addition, we seek to construct a spatial arrangement of box-shaped blocks
in sufficient number to consider that the influence of the flow along the vertical walls is
negligible in the central part of the cavity. It is worth noting that the critical Rayleigh
number of the present configuration is two to three decades smaller than in the previous
experiments using water (Wei et al. 2014; Xie & Xia 2017; Rusaouën et al. 2018).

In this paper, we report DNS results covering five decades in Rayleigh number (up to
1010). The first issue is to clearly establish the existence of the three heat transfer regimes in
the asymmetric cell, and to assess the relevance of the DNS results regarding experimental
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Figure 1. (a) Asymmetric RB cavity (R/S) with a rough bottom plate. (b) Characteristic lengths of the block
spatial arrangement.

data from the literature, despite the moderate values of the Ra range. Then, we investigate
which physical mechanisms in the neighbourhood of the roughness blocks may explain the
enhanced heat transfer of regimes II and III. In particular, we seek to identify the respective
roles of the flow above the top surface of the blocks, and of the fluid circulating within the
roughness valleys (called the inner fluid). Finally, we examine how the flow dynamics is
altered by the regime changes.

The paper is organized as follows. Section 2 introduces the physical and numerical
problem. Section 3 presents the roughness effect on the global heat transfer for the three
heat transfer regimes and compares the DNS results to experimental data. Next, the study
details the respective contributions of the roughness blocks and the inner fluid retained
between them, and to global heat transfer in § 4. Finally, the roughness effect on the fluid
flow is described in § 5.

2. Physical configuration and governing equations

2.1. Physical set-up
We study the fluid flow occurring in an asymmetric RB rectangular cavity with a rough
bottom plate, as sketched in figure 1. The geometrical aspect ratios are set at Γx =W/H =1
and Γy = D/H = 0.5, where H is the height, D the depth and W the width of the cavity.
The smooth cold top plate (respectively the hot bottom plate including roughness blocks) is
isothermal at constant temperature TS (respectively TR). Vertical sidewalls are considered
to be adiabatic. No-slip conditions are imposed on walls. The physical problem depends on
the Rayleigh number defined as Ra = αg�TH3/(νκ) and the Prandtl number (Pr = ν/κ),
where α is the volumetric thermal expansion coefficient, g the gravity, �T = TR − TS
the temperature difference, ν the kinematic viscosity and κ the thermal diffusivity. The
Prandtl number is taken equal to 4.38, which corresponds to taking water as the working
fluid at a mean temperature of 40 ◦C.

The roughness is modelled by a set of square-based blocks. We call the fluid space
present between the blocks a valley. The typical size of the blocks (width Wp, depth Dp and
height Hp) and their horizontal distribution (Dr, Wr) has been chosen to meet two criteria:
(i) a roughness height sufficiently large to obtain the first transition between regimes I
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and II at a Rayleigh number close to 107; (ii) a spatial distribution of roughness blocks
sufficiently close to Lyon’s experiments (Salort et al. 2014) to facilitate comparison.

Accordingly, we set the roughness height to Hp = 0.03H. Following Rusaouën et al.
(2018), we estimate the critical Rayleigh number (Rac) of the first transition equal to
Rac = 9 × 106 based on an approximation of the thickness of the thermal boundary layer
(δθ ) estimated from the Grossmann–Lohse (GL) theory (Stevens et al. 2013). The retained
shape and distribution of roughness blocks (Wp = 0.075H, Dp = 0.075H, Hp = 0.03H
and Wr = 0.075H, Dr = 0.05H, see figure 1 for definitions) is equivalent to Lyon’s
experiment (Salort et al. 2014), leading to four rows of six box-shaped blocks to the
bottom plate. The resulting ratio between the heat-exchange surface (A) of the asymmetric
cavity and that of a fully symmetrical smooth cavity (hereafter respectively denoted as
R/S and S/S) is equal to Cs = (AR + AS)/(2AS) = 1.216. Here, AS and AR stand for the
dimensionless area of the smooth and the rough plates, respectively, using the cavity height
H as length reference, as applied in the following.

2.2. Governing equations and system response
We solve the Navier–Stokes equations under the Boussinesq approximation. Dimensionless
equations are written in the following form considering the cell height H as characteristic
length scale, �T as characteristic temperature scale and (κ/H)Ra0.5 as characteristic
velocity scale (one obtained from a balance between the friction and buoyancy forces,
equivalent to the free-fall velocity divided by Pr0.5)

∇ · u = 0, (2.1a)

∂tu + u · ∇u = −∇P∗ + PrRa−1/2∇2u + Prθez, (2.1b)

∂tθ + u · ∇θ = Ra−1/2∇2θ (2.1c)

where u = (u, v, w) is the velocity vector, t the time, P∗ the dimensionless driving
pressure, θ the temperature and ez the unit vector in the vertical upward direction.
The temperature of the top cold plate is taken as reference, so that the dimensionless
temperature θ ranges from θS = 0 to θR = 1.

The response of the system to the temperature difference �T applied to the two
horizontal plates is measured in terms of dimensionless heat transfer by the local Nusselt
number

Nu(x, t) =
√

Ra w(x, t)θ(x, t) − ∂zθ(x, t), (2.2)

where x = (x, y, z) is the coordinate vector. We note by NuR/S, the time and space average
of Nu(x, t) over the fluid volume contained in the upper part of the asymmetrical RB
cavity for z ≥ Hp. Similarly, RaR/S refers hereafter to the Rayleigh number imposed on the
asymmetric cavity.

Due to the geometrical asymmetry of the configuration, the bulk temperature θbulk
is no longer equal to the mean between smooth and rough plates temperatures, i.e.
θbulk /=(θR + θS)/2. In order to highlight the effect of the asymmetry of the temperature
field on each of the horizontal boundary layers (top and bottom), and in particular on
the heat fluxes transferred by them respectively, we define two additional temperature
differences (�θR and �θS); �θR corresponds to the temperature difference that would
be applied to a symmetric RB cavity with a temperature drop at the edges of the boundary
layers equivalent to that of the rough half-cavity (bottom) of this study and �θS is the same
but for the smooth half-cavity (top). Following Tisserand et al. (2011), one can then define
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two additional Rayleigh and Nusselt numbers related to each plate as follows,

�θS = 2(θbulk − θS), �θR = 2(θR − θbulk),

RaS = RaR/S �θS, RaR = RaR/S �θR,

NuS = NuR/S/�θS, NuR = NuR/S/�θR,

⎫⎪⎬
⎪⎭ (2.3)

where we denote by RaS (respectively RaR) and NuS (respectively NuR) the Rayleigh and
Nusselt numbers related to the smooth (respectively rough) plate. This is equivalent to
taking into account different reference heat fluxes (Φref

R = AS�θR and Φ
ref
S = AS�θS, here

expressed as dimensionless). Note that the issue of different temperature drops within the
lower and upper halves of the cavity has also been discussed previously in a context of RB
convection under non-Oberbeck–Boussinesq conditions (Weiss et al. 2018), which do not
correspond to the case in the present study.

2.3. Numerical methods and validation
A finite volume approach is applied to discretize the governing equations ((2.1)), by means
of the in-house SUNFLUIDH solver. A centred scheme is used for the spatial discretization
on a staggered grid and the time discretization is done by a second-order backward
differentiation scheme. The diffusive terms are implicitly treated and the convective terms
are approximated using the explicit second-order Adams–Bashforth scheme. This leads
to a Helmholtz-like equation for each velocity component and the temperature, which is
solved by applying the alternating direction implicit method and the Thomas algorithm.
The incompressibility constraint is ensured by using a prediction–projection method (Goda
1979; Guermond, Minev & Shen 2006). The resulting Poisson equation for the pressure is
solved by a multi-grid method coupled to the iterative successive over-relaxed algorithm
(Strang 2007). The flow incompressibility is assessed by calculating the L∞ norm of the
divergence of the velocity vector, which is kept at around 10−9. A domain decomposition
method is implemented using MPI as well as OpenMP in order to increase the level
of parallelism. In this context, the alternating direction implicit method is completed
by a Schur decomposition technique. Roughness blocks are not modelled, because we
have defined body-fitted meshes. As a consequence, Dirichlet boundary conditions are
applied to all walls for velocity and to the top smooth and bottom rough plates for
temperature, whereas homogeneous Neumann boundary conditions are applied to all walls
for the pressure and to the vertical walls for temperature. SUNFLUIDH code is a general
purpose solver for modelling quasi-incompressible fluid flows, such as rotating flows with
a free interface (Yang et al. 2020), turbulent flows (Derebail Muralidhar et al. 2019) or
multi-physics studies (Hireche et al. 2020).

Computations are performed for a large range of Rayleigh numbers (Ra ∈ [105 : 1010])
in order to cover the three heat transfer regimes. The initial condition corresponds to the
fluid at rest with a uniform temperature (u = 0 and θ = 0.5) for all cases, except for the
four highest Rayleigh numbers. In these cases, time integration of the governing equations
starts from data obtained at the lower Rayleigh number. Statistics sampling begins once
the flow regime is settled, which takes between 150 and 300 time units depending on the
type of the initial condition and the flow regime. Details about the test cases can be found
in table 1. A non-uniform Cartesian grid is constructed for each test case in order to resolve
the Kolmogorov microscale (η). The mesh size never exceeds 0.55η (or 0.76η) between
blocks (or within the cavity bulk, respectively). Moreover, the mesh is refined near the
horizontal plates. In particular, up to 56 nodes have been placed along the block height to
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RaR/S Nx × Ny × Nz τ NuR/S RaS NuS RaR NuR

105 320 × 200 × 320 —a 3.8 9.96 × 104 3.8 1.00 × 105 3.8
2 × 105 320 × 200 × 320 —a 4.8 2.00 × 105 4.8 2.00 × 105 4.8
5 × 105 320 × 200 × 320 300 6.3 5.03 × 105 6.3 4.97 × 105 6.4
106 320 × 200 × 320 400 8.0 1.01 × 106 7.9 9.90 × 105 8.0
2 × 106 320 × 200 × 320 500 10.0 2.04 × 106 9.9 1.96 × 106 10.2
5 × 106 320 × 200 × 320 460 13.5 5.23 × 106 12.9 4.77 × 106 14.2
107 320 × 200 × 320 300 17.9 1.06 × 107 16.8 9.36 × 106 19.1
2 × 107 320 × 200 × 320 300 23.1 2.19 × 107 21.0 1.81 × 107 25.5
5 × 107 512 × 256 × 512 450 31.9 5.68 × 107 28.1 4.32 × 107 36.9
108 512 × 256 × 512 430 40.6 1.16 × 108 35.1 8.42 × 107 48.2
2 × 108 512 × 256 × 512 450 51.0 2.36 × 108 43.2 1.64 × 108 62.1
5 × 108 768 × 384 × 768 287 68.4 5.97 × 108 57.3 4.03 × 108 84.9
109 768 × 384 × 768 220 85.9 1.20 × 109 71.7 8.02 × 108 107.1
2 × 109 768 × 384 × 768 200 107.0 2.40 × 109 89.2 1.60 × 109 133.7
5 × 109 768 × 384 × 768 200 144.6 5.98 × 109 120.9 4.02 × 109 179.8
1010 1024 × 512 × 1024 155 179.5 1.20 × 1010 149.6 8.00 × 109 224.4

Table 1. Computational parameters and dimensionless heat transfers: RaR/S, Rayleigh number imposed to the
cavity; Nx × Ny × Nz, mesh size; τ , time period used for statistics in dimensionless time units; NuR/S, the
Nusselt number in the R/S cavity; (RaS, NuS), the Rayleigh and Nusselt numbers corresponding to the smooth
part of the cavity; (RaR, NuR), and the same for the rough part of the cavity (see (2.3)).
a Note that for Ra � 2 × 105 the flow is stationary.

capture the complex flow inside the valleys. The spatial resolution of the diffusive thermal
boundary layer of the smooth top plate meets the criteria proposed by Shishkina et al.
(2010).

The space and time convergence of statistics have been verified by computing the global
Nusselt number from different formulations as proposed by Stevens, Verzicco & Lohse
(2010). This methodology remains applicable for z ≥ Hp due to the adiabatic sidewalls.
The obtained values converge with a deviation smaller than 1 % around the mean value
(NuR/S).

The code SUNFLUIDH has been validated in the classic RB configuration beforehand.
For this purpose, simulations have been performed in a fully smooth cavity (called S/S)
of aspect ratio Γy = 0.5 filled with water for Rayleigh numbers up to Ra = 2 × 109, in
order to compare with Kaczorowski, Chong & Xia (2014) data. A very good agreement is
obtained for the compensated Nusselt number (NuRa−1/3), as shown in figure 2.

3. Roughness effect on the global heat transfer

3.1. Global heat transfer measured in the asymmetric cavity
The influence of roughness on the heat transfer is first brought to light by comparing the
responses of a fully smooth cavity (S/S) and of the asymmetric cavity (R/S). The effect
of the roughness on heat transfer due to the increase of the heat-exchange surface area
(Cs × NuS/S) is plotted as an indication. Three regimes of heat transfer clearly appear for
the R/S cavity in figure 2. (i) A reduction of the Nusselt number NuR/S compared with
NuS/S is observed at low Rayleigh numbers for one decade in the range Ra � 106. This
phenomenon has already been described experimentally (Tisserand et al. 2011) or using
two-dimensional simulations (Shishkina & Wagner 2011). (ii) For Ra � 108, an increase
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(RaR/S, NuR/S)

(RaS/S, NuS/S)

(RaS/S, Cs × NuS/S)

Kaczorowski et al. (2014)

105 106 107 108 109 1010

Figure 2. Compensated Nusselt number as a function of Rayleigh number for the fully smooth cavity (S/S)
and the asymmetric cavity (R/S). The blue line corresponds to the Nusselt number increased by the factor Cs
(corresponding to the relative increase of the heat-exchange surface in the (R/S) cavity). Red points refer to
DNS results from Kaczorowski et al. (2014).

of the Nusselt number NuR/S compared with the S/S cavity is obtained, that exceeds the
relative increase due to the additional surface due to the roughness blocks as reported in
previous works (Tisserand et al. 2011). (iii) In between, a transitional regime is present,
corresponding to an enhancement of the heat transfer.

The asymmetric cell thus experiences three different heat transfer regimes, two of
which correspond to an intensification of the heat transfers compared with a perfectly
smooth cell. We now study separately the two smooth top/rough bottom half-cavities of
the asymmetric cell (R/S) in the following section.

3.2. Scaling analysis considering each half-cavity individually
We focus on the behaviours of the smooth and rough plates considering the temperature
drop of each horizontal boundary layer, as proposed by Tisserand et al. (2011). The results
(RaS, NuS) and (RaR, NuR) (see (2.3) and table 1) are plotted in figure 3. First, we note that
the heat transfer on the smooth plate (NuS) follows a single Nu–Ra scaling law. Conversely,
the heat transfer on the rough plate (NuR) clearly presents two changes in the scaling law.
As the regime change is only carried by the heat transfer on the rough wall, we retain the
scaling laws for the rough plate (NuR ∼ Raβ

R, given in the caption of figure 3c), to roughly
establish the limits of the intermediate regime (around RaR ∼ 3 × 106 and 1.2 × 108). The
range of Ra numbers thereby determined will be shaded in all of the figures in the rest of
the article. We note that the critical Rayleigh number (Rac = 9 × 106) is in between.

As a consequence, three heat transfer regimes can be identified on the rough plate, in
agreement with previous experimental studies (Xie & Xia 2017; Rusaouën et al. 2018;
Tummers & Steunebrink 2019). In regime I, no difference between the rough and the
smooth plates is distinguishable, meaning that the temperature drops viewed by both
thermal boundary layers (i.e. �θS and �θR) remain quite similar. In regime III, the rough
plate presents a scaling law exponent β almost similar to regime I and close to the classic
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Figure 3. (a) Comparison of the Rayleigh scaling of the Nusselt numbers for the asymmetric R/S cavity and
the smooth S/S cavity and for the rough R and the smooth S plates. (b,c) Compensated Nusselt numbers. The
solid lines correspond to the least-squares fits of the R plate results for the three regimes: regime I: NuR ∼
0.078Ra0.34

R , regime II: NuR ∼ 0.024Ra0.42
R and regime III: NuR ∼ 0.136Ra0.33

R . The shaded area marks the
Ra-range of regime II.

value 1/3, but the prefactor α is smaller for regime I than for regime III. In contrast,
regime II corresponds to an exponent of β ∼ 0.42, indicating an intensified heat transfer.

To summarize, roughness enhances the heat transfer either by increasing the exponent
β (regime II) or the prefactor α of the (Nu − Ra) scaling law in regime III for simulations
up to Ra = 1010. This suggests that regime II can be seen as a transitional regime, after
which the flow would revert to a classic organization. However, it is worth noting that, in
regime III, the overall heat transfer NuR/S is larger than the simple additional contribution
due to the increase in exchange surface area.

Results obtained in the S/S cavity have been added to figure 3(b) for comparison
with the smooth plate (S). Generally speaking, a similar behaviour (a unique scaling
law) is observed for NuS/S and NuS. This result is consistent with previous experimental
observations (Tisserand et al. 2011; Wei et al. 2014). But we note in regime I that the
heat transfer is slightly reduced by the addition of roughness in the asymmetric cavity
(R/S) when compared with the S/S cavity, as previously shown by Tisserand et al. (2011);
Shishkina & Wagner (2011). An opposite effect is observed in regime III, where NuS is
slightly larger than NuS/S. A potential interpretation is that, not only the thermal boundary
layers are altered by the roughness, but also the dynamics of the bulk flow, as suggested
by Wei et al. (2014).

3.3. Comparison with experimental data
We seek to assess the relevance of our DNS data with experiments performed in water.
The shape of the experimental containers are either cylindrical (Tisserand et al. 2011; Wei
et al. 2014; Rusaouën et al. 2018) or rectangular (Salort et al. 2014). The roughness is
made by a set of square box-shaped blocks, except the Wei et al. (2014) set-up, where
pyramid-shaped blocks are used.

In order to compare the present DNS results with data obtained at Rayleigh numbers
three decades higher, a compensated rough Nusselt number is built using a reference
value depending on Ra, i.e. the Nusselt number estimated from the GL model (NuGL)

using prefactors from Stevens et al. (2013) for a cylinder of aspect ratio Γ = 1. This
compensated Nusselt number is plotted as a function of the rough Rayleigh number in
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Figure 4. Comparison of the normalized heat transfer on the rough plate with experimental data. Here,
NuR is normalized by the GL model (NuGL) estimated from Stevens et al. (2013). DNS data are plotted
with red open circles (◦, red). Symbols correspond to experimental data: Hp = 2 mm in the small cavity
(�, brown; �, green; �, blue), or the tall R/S cylindrical cavity (◦, brown; ◦, green) from Tisserand et al.
(2011); Hp = 4 mm in the small cavity (�, orange; �, green) or the tall R/S cylindrical cavity (•, orange;
•, green; •, blue) from Rusaouën et al. (2018); Hp = 3 mm R/S (black ⊗), Hp = 8 mm S/R (⊕, black) and
Hp = 8 mm R/S (∗, black) in a cylindrical cavity with pyramid-shaped roughness blocks from Wei et al. (2014);
Hp = 2 mm in a R/S rectangular cavity (�, purple; �, olive; �, navy) from Salort et al. (2014).

figure 4(a). It is shown that all datasets experience similar trends with Ra, with a steeper
slope from NuR/NuGL � 1 over one or two Ra-decades.

Additionally, Rusaouën et al. (2018) proposed recently to make use of the critical
Rayleigh number (Rac) to bring out the effect of roughness on the heat transfer, whatever
the roughness shape. This is based on the idea that the transition to the enhanced heat
transfer regime (II) occurs when the thermal boundary layer thickness δθ becomes of the
same size as the roughness blocks. The authors obtained collapsed data, showing the same
trend from the reduced heat transfer regime (I) for RaR < Rac to an increased regime (III),
when applied to experiments performed in asymmetric RB cavities.

The present DNS results agree well with this physical representation. figure 4(b) retains
the reduced variables (NuR/NuGL; RaR/Rac). Normalization by the respective Rac for each
data set allows us to bring together most results, including our numerical data, which fit
a similar trend of Nu increase, especially with Lyon’s data. In particular, the agreement is
remarkable during regime II. This result was hoped for despite a gap of three Ra-decades
with the experimental configurations, as we use a comparable shape and distribution of
roughness blocks. In contrast, a clear decreasing Nu for RaR/Rac � 102 is reported by
Wei et al. (2014), when using pyramid-shaped roughness. This illustrates the potential
influence of the three-dimensional flow dynamics around roughness blocks on the global
heat transfer.

4. Contribution of the inner fluid to the heat transfer

The heat transfer regime depends strongly on the pair (Rayleigh number; height of
roughness blocks), as shown by the unifying aspect of Rac. In the R/S cavity, the vertical
heat flux (Nu) below the roughness height is smaller than its global value (Nu (z < Hp) <

NuR/S) due to the horizontal contribution originating from the vertical surfaces of the
roughness blocks. Conversely, Nu(z ≥ Hp) = NuR/S, because of the adiabaticity of the
vertical sides of the cavity. For the rough Nusselt number (NuR), a similar differentiation
between altitudes smaller or larger than the roughness height has to be done; NuR results
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Figure 5. (a) Sketch of the geometric division of the horizontal plane at z = Hp. (b) Separation of rough
heat flux at z = Hp (noted NuR|Hp ) into a contribution from the fluid interface (NuR|fluid

Hp
) and from the solid

surface (NuR|solid
Hp

). The solid lines correspond to the least-squares fits of the results on the fluid interface for

the three regimes: regime I: NuR|fluid
Hp

∼ 0.041Ra0.34
R ; regime II: NuR|fluid

Hp
∼ 0.005Ra0.49

R ; regime III: NuR|fluid
Hp

∼
0.072Ra0.34

R . The shaded area marks the Ra-range of the regime II.

from both the dynamics of the thermal boundary layer above the roughness blocks and the
dynamics of the inner fluid retained within roughness valleys. The heat flux measured at
z = Hp is an indicator of both dynamics.

In order to gain insights into the mechanisms of heat exchange at the roughness height,
we first focus on the rough heat flux NuR at z = Hp, noted hereafter NuR|Hp ; NuR|Hp is
contributed from two complementary surfaces (see figure 5a): (i) the top surface of the
solid blocks, referred to as NuR|solid

Hp
, and (ii) the fluid interface between the bulk of the

cavity and the inner fluid retained within the roughness valleys, referred to as NuR|fluid
Hp

.

The heat transfer across the fluid interface at z = Hp (NuR|fluid
Hp

) can be divided into two

contributions, depending on the heat transfer mode, a conductive part (Nucd
R |fluid

Hp
) and

convective part (Nucv
R |fluid

Hp
). This leads to the following expression:

NuR|Hp = NuR|solid
Hp

+ Nucd
R |fluid

Hp
+ Nucv

R |fluid
Hp

(4.1)

with

NuR|solid
Hp

= 1
�θR AS

∫
Asolid

−∂z〈θ̄〉Asolid ds; (4.2)

Nucd
R |fluid

Hp
= 1

�θR AS

∫
Afluid

−∂z〈θ̄〉Afluid ds; (4.3)

Nucv
R |fluid

Hp
= 1

�θR AS

∫
Afluid

√
RaR/S 〈w̄θ〉Afluid ds, (4.4)

where Asolid (Afluid) is the total area of the top surface of all blocks (of the fluid interface
at z = Hp respectively), i.e. AS = Asolid + Afluid. The notations 〈φ〉A and φ stand for the
space average over the horizontal surface area A and the time average of the variable φ,
respectively.
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Figure 6. (a) Comparison of the different contributions from the solid surface (Nucd
R |solid

Hp
) and the fluid

interface (Nucd
R |fluid

Hp
and Nucv

R |fluid
Hp

) to the rough heat flux NuR at z = Hp as a function of the rough Rayleigh
number (RaR) (see (4.1)). The vertical red line marks the critical Rayleigh number (Rac). (b) Bulk temperature
(θbulk) as a function of Ra. The shaded area marks the Ra-range of regime II.

4.1. Contributions from solid and fluid zones to the rough heat flux
Figure 5(b) compares the evolution of the global rough Nusselt number NuR as a function
of Ra, with Nusselt numbers originating from the top solid surface of the blocks and
from the fluid interface. First, it is shown that the three regimes of heat transfer observed
in the (RaR − NuR) scaling law come mainly from a change of NuR|fluid

Hp
. The three

power-law fits for NuR|fluid
Hp

are given in the caption of figure 5. In agreement with previous
two-dimensional DNS or experiments with pyramid-shaped roughness (see for example
Roche et al. 2001; Qiu et al. 2005; Toppaladoddi, Succi & Wettlaufer 2017; Zhu et al.
2017), we obtain a scaling exponent for regime II close to 1/2 (β = 0.49). In contrast,
NuR|solid

Hp
is hardly modified by the successive regimes. It can be roughly associated with a

single scaling exponent (β ∼ 0.274, when the data fit is applied to the whole Ra-range).
As a consequence, the physical mechanisms responsible for the two transitions between

the successive heat transfer regimes appear to be mainly driven by the fluid dynamics
occurring within the valleys. This finding is consistent with manipulating the scaling laws
of heat transfer through roughness wavelength modification (Toppaladoddi et al. 2015; Xie
& Xia 2017; Zhu et al. 2019).

4.2. Contributions of conduction and convection to the rough heat flux
The heat transfer through the fluid interface depends both on the temperature field of its
conductive part (Nucd

R |fluid
Hp

) and on the temperature and velocity fields of its convective part

(Nucv
R |fluid

Hp
) (see (4.1)). Figure 6(a) illustrates this division. First, we observe that the three

successive heat transfer regimes do not appear clearly with Ra increasing in this figure.
The critical Rayleigh number (Rac) is a significant parameter for the heat transfer through
the fluid interface: when Ra < Rac, the conduction mode is dominant and the convection
mode through the fluid interface is negligible, while this is the opposite when Ra > Rac.
A negligible convective heat transfer through the fluid interface does not mean that the
fluid within valleys is at rest, but that the mass exchange between the valleys and the bulk
is negligible. Around Rac, the three contributions to NuR are of the same order.
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Besides, some specific features can be identified in regimes I and III, the intermediate
regime II appearing as transitional with the competition between the conductive and
convective modes at the fluid interface. In regime I, NuR|solid

Hp
and Nucd

R |fluid
Hp

share a
similar trend (in particular the exponent β of the scaling law in Ra), that is consistent
with a diffusive boundary layer covering the top of blocks. In regime III, the dominance
of Nucv

R |fluid
Hp

on NuR reveals an intensification of the mass exchange through the fluid
interface. Concurrently, we observe a saturation of the conductive part of the heat transfer
through the fluid interface, that forms a plateau around a constant value (Nucd

R |fluid
Hp

≈ 3.7).
This is also the case for the bulk temperature that saturates around θbulk ∼ 0.6 in regime
III in figure 6(b). Moreover, this figure demonstrates the up–down symmetry breaking of
the temperature field in regimes II and III.

The dominance of convection and the saturation of θbulk and Nucd
R |fluid

Hp
towards constant

values suggest that the fluid is well mixed in regime III within the cavity bulk but also
within the valleys. As a result, the bottom boundary layer can be assumed to follow the
topology of the plate at this regime. Considering uniform diffusive boundary layers of the
same thickness covering the top and bottom walls, a simple thermal balance between the
top and bottom walls gives an estimate of the bulk temperature as

θ∗
bulk = AR θR + AS θS

AR + AS
. (4.5)

The asterisk (∗) marks the theoretical estimate of the variable. The above formula gives a
good estimate of the bulk temperature (θ∗

bulk � 0.59), when compared with the asymptotic
value of figure 6(b). The bulk temperature in regime III is thus only determined by the
roughness geometry.

We now explain that this is also the case for Nucd
R |fluid

Hp
. At z = Hp, we cannot consider

that the temperature is equal to θbulk due to the inhomogeneity imposed by the alternating
of the blocks and the fluid interfaces. A fluid layer at an intermediate temperature (θ∗

i )
results from mixing processes occurring above the roughness height. We refer hereafter to
this layer as the fluctuating rough fluid layer.

Additionally, the inner fluid retained inside the valleys can be seen to act as small,
well-mixed RB cells with a bulk temperature equal to the mixing temperature of the
fluctuating rough layer (θ∗

i ). This enables us to define a film temperature of the inner
boundary layer of the valleys, which goes along the bottom wall, as θ∗

f = (θ∗
i + θR)/2. As

a consequence, we can model the conductive heat flux through the fluid interface between
the fluctuating rough fluid layer at θ∗

i and the inner boundary layer at θ∗
f , as

Nu∗cd
R |fluid

Hp
= Afluid

AS�θ∗
R

(
θ∗

f − θ∗
i

)
Hp

with θ∗
i = Afluid

AS
θ∗

bulk + Asolid

AS
θR, (4.6)

where �θ∗
R refers to the estimate of the temperature difference related to the rough

half-cavity (�θ∗
R = 2 (θR − θ∗

bulk)). Applying (4.6) to the particular physical configuration
of this study, a value of Nu∗cd

R |fluid
Hp

around 4.5 is found for regime III. This is in good
agreement with the DNS result. It suggests that, in regime III, the global thermal
organization of the cavity is fixed by the geometry, with thermal and velocity boundary
layers following the geometry of the roughness and a thicker fluctuating rough fluid layer
overlying the roughness, the rest of the cavity being well mixed, including the inner fluid.
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Figure 7. Space- and time-averaged vertical temperature profiles in the solid, fluid and smooth zones for three
particular Ra: (a) Ra = 2 × 106 (regime I); (b) Ra = 5 × 107 (regime II); (c) Ra = 109 (regime III). The profile
for the smooth zone (in green) has been reflected in (1 − z; 1 − θ) allowing the comparison with rough zone
profiles. A profile offset by the distance Hp is plotted for the solid zone with a dashed black line. The red line
marks the roughness height Hp.

5. Effect of roughness on the flow structure

5.1. Boundary layers along the plate centre
In this section, we focus on a restrictive volume of the cavity far from the vertical sidewalls,
in order to describe the mean boundary layers developing along the top solid surface of
the blocks, or within the valleys and above. To do this, we retain the spatial division
methodology of the previous section (in terms of solid or fluid zones), but only considering
eight of the 24 blocks located in the centre of the bottom plate, or their direct fluid
neighbourhood. Before focusing on the evolution of the boundary layer (BL) thicknesses
with the heat transfer regimes, we present the space- and time-averaged vertical profiles
of the temperature and horizontal velocity fields close to the top and bottom plates. The
horizontal velocity is defined as U = √

u2 + v2. For clarity reason, we consider three
particular Ra belonging to the three regimes, as shown in figures 7 and 8.

As expected, we observe that the thermal BL located along the block top surface and
the smooth plate becomes thinner with Ra. But surprisingly, in regimes II and III, the
temperature profiles above the blocks and close to the smooth plate appear to be similar
in the near wall region, although the bulk temperature value is not equal to the mean
temperature of the plates ((θS + θR)/2). The temperature profile in the fluid zone is more
complicated. In regime I, a slow decrease of the temperature is observed in the valleys. In
regime II, the decrease is more pronounced, but with a change of slope as z passes through
Hp. This slope change illustrates the onset of the convective heat transfers between the
bulk of the cavity and the inner fluid of the valleys. In regime III, the temperature shows a
quasi-plateau in the centre of the valleys (see figure 7c), confirming the presence of a kind
of secondary well-mixed cells within the valleys. Similar interpretations can be drawn for
the viscous BL. In particular, within the valleys, the horizontal velocity increases with
the heat transfer regime, up to a plateau in regime III that we can liken to a mean wind
(figure 8c).

As seen above, the temperature distribution and the fluid flow within the valleys do not
present a classic BL shape. As a consequence, we consider the displacement thickness
definition, to take into account inhomogeneity of the temperature and velocity fields,
especially within the valleys. The definitions of the thermal and viscous BL thicknesses
(δθ and δU) are as follows,

δθ =
∫ 0.5

0

( 〈θ̄〉A(z) − θbulk

θR − θbulk

)
dz, (5.1)
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Figure 8. Space- and time-averaged vertical profiles of the horizontal velocity magnitude (U = √
u2 + v2)

in solid, fluid and smooth zones for three particular Ra: (a) Ra = 2 × 106 (regime I); (b) Ra = 5 × 107

(regime II); (c) Ra = 109 (regime III). A profile offset by the distance Hp is plotted for the solid zone with
a dashed black line. The red line marks the roughness height Hp.

δU =
∫ z0

0

(
1 − 〈Ū〉A(z)

U0

)
dz with (5.2)

U0 = max(〈Ū〉A(z) : 0 ≤ z ≤ 0.5) and z0 = z(〈Ū〉A = U0). (5.3)

The BL thicknesses can be measured over the smooth plate, but also separately above
the block top surfaces and the fluid interfaces, following the methodology proposed at the
beginning of the present section. Their Ra-dependences are plotted in figure 9. First, we
note that a single law (given in the caption of figure 9) is sufficient to describe the δθ

and δU decreases with Ra over the three heat transfer regimes, once the spatial division
(solid/fluid) is applied. The similarity between the smooth and solid BL, previously
described for three particular Ra in figures 7 and 8, is confirmed. In the fluid zone, the
decrease of both BL thicknesses (δθ and δU) is much slower, although it always remains
larger than the BL thicknesses above the solid and smooth zones. However, it is noteworthy
that regime II begins with the crossing of δ

fluid
θ with Hp. This is in good agreement with

previous experimental investigations made with different roughness shapes such as Du
& Tong (2000) using pyramids, Tisserand et al. (2011); Salort et al. (2014) and Xie &
Xia (2017) using square based parallelepipeds and with the numerical study of Stringano
et al. (2006) using grooved plates. Additionally, we observe that regime II ends when δ

fluid
U

becomes smaller than Hp, which was also observed experimentally (Xie & Xia 2017).
A second measure of the BL thicknesses (noted δrms) considers the distance from the

wall to the peak of the temperature or horizontal velocity r.m.s.-fluctuations. The figure 10
illustrates their evolution with Ra. Once again, we divide the rough cavity part into two
parts, the solid zone above the roughness blocks and the fluid zone above the valleys. As
already observed, the smooth and solid δrms

θ and δrms
U follow a similar trend, with a single

scaling law describing the BL thickness decrease whatever the regime. We note that the
thermal BL along the smooth wall remains always slightly thicker than the solid one above
the roughness blocks. The fluid BL behaves in a different way. After becoming thinner with
Ra in regimes I and II, δrms

θ and δrms
U tend towards a plateau in regime III, that corresponds

approximately to the roughness height. This plateau can be interpreted as the signature of
a fluctuating rough fluid layer mentioned in § 4.2. Moreover, for this regime and the fluid
region, a second local maximum can be determined in the vertical profiles of temperature
and velocity field r.m.s.-fluctuations, that defines a turbulent BL within valleys of a similar
thickness to δrms

θ and δrms
U for the solid region and the smooth plate. It confirms the onset

of a turbulent RB convection-like flow within valleys in regime III.
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Figure 9. Displacement boundary layer thicknesses as a function of Ra and for each space-averaging zone
(smooth, solid and fluid). (a) Thermal thickness δθ , (b) kinetic thickness δU . The shaded area illustrates the
Ra-range of regime II. The red line marks the roughness height (Hp). The black and blue solid lines correspond
to the least-squares fits of the results for the solid and fluid zones δsolid

θ ∼ 0.90Ra−0.25, δ
fluid
θ ∼ 0.42Ra−0.17,

δsolid
U ∼ 0.50Ra−0.21, δ

fluid
U ∼ 0.28Ra−0.12.
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Figure 10. The root-mean-square (r.m.s.) based boundary layer thicknesses as a function of Ra and for each
space-averaging zone (smooth, solid and fluid). See (5.1) and (5.2) for definitions. (a) Thermal boundary layer
thickness δrms

θ measured as the peak of θrms; (b) kinetic BL thickness measured as the peak of Urms. The shaded
area illustrates the Ra-range of regime II. The red line marks the roughness height (Hp).

5.2. Global flow structure
The effect of roughness on the flow structure is first investigated by considering
temperature fluctuations around the roughness (see figure 11). We observe that a turbulent
layer develops around the roughness in all cases. However, while in regime I this layer
remains mainly above the roughness, it fills almost entirely the valleys in regime II. In
regime III, a less fluctuating small flow takes place within the valleys, with a BL along
the bottom plate and a turbulent layer around z ∼ Hp, illustrating interactions between the
valley flow and the large-scale circulation (LSC). These two layers are responsible of the
two peaks observed in the r.m.s.-fluctuations used to define the BL thicknesses displayed
in figure 10. Additionally, it is noticeable that the temperature fluctuations are particularly
intense in regime II, when compared with regimes I and III.

Figure 12 illustrates how the change in the heat transfer regime modifies plume
organization. A qualitative overview of the isocontours of instantaneous temperature
shows a number of large hot plumes within the cavity bulk in regime II (figure 12b),
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Figure 11. Temperature fluctuation r.m.s. field (θrms) on vertical planes in the vicinity of the rough plate for
three particular Ra: (a,d) Ra = 2 × 106 (regime I); (b,e) Ra = 5 × 107 (regime II); (c, f ) Ra = 109 (regime III).
(a–c) Above a row of roughness blocks (y = 0.3125); (d–f ) between two rows of roughness blocks (y = 0.25).
The x-axes of (b,e) have been flipped to maintain a similar direction of large-scale circulation for all Rayleigh
numbers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b)(a)

(c) (d )

Figure 12. Instantaneous temperature field for (a) Ra = 2 × 106 (regime I), (b) Ra = 5 × 107 (regime II),
(c) Ra = 109 (regime III) and (d) Ra = 1010 (regime III). Isosurface values correspond to
θ = (0.2, 0.45, 0.65, 0.8).

while plumes appear more altered by the LSC in regime III (figure 12c,d). Moreover,
asymmetry of the flow seems to appear for regimes II and III.

A more global point of view can be obtained by considering the spatial average of the
r.m.s. temperature over the volume of half a cavity (V = VR or VS), as a function of Ra.
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Figure 13. (a) Integral of r.m.s. temperature fields over the fluid volume in half a cavity (VR volume of
the rough half-cavity; VS volume of the smooth half-cavity). The vertical red line represents the critical
Rayleigh number Rac. (b) Friction coefficient normalized by dissipation vs Reynolds number. The dashed
lines display Re−0.5

U power laws. Inset: the Reynolds number ReU as a function of the Rayleigh number Ra
for the two half-cavities. Data for the rough part can be fitted by a power law: ReR = 0.054Ra0.48

R (regime I),
ReR = 0.009Ra0.58

R (regime II) and ReR = 0.029Ra0.53
R (regime III). The shaded area illustrates the Ra-range

of regime II.

As plotted in figure 13(a), the asymmetry of temperature r.m.s.-fluctuations only occurs in
regime II, where larger values are present on the rough part of the cavity rather than on
the smooth part. But for each half-cavity, the maximum value of fluctuations is reached
around Rac. Unlike regime II, the intensity of θrms is similar on both parts of the cavity
in regimes I and III. These observations are in agreement with the statement of Du &
Tong (1998), that interactions between roughness and LSC enhances the detachment of
the thermal BL leading to extra thermal plumes, but only in regime II in our case.

Mechanical interactions of the LSC with roughness can be quantified considering the
Reynolds number (ReU) based on the maximum of the horizontal velocity (

〈
Ū

〉
). In a

similar manner as Nu and Ra, ReU can be estimated separately for the rough or smooth
parts of the cavity. Figure 13(b) (inset) presents its evolution as a function of Ra. The
scaling laws are given in the caption for the rough part of the cavity. It can be noted that no
clear difference between the two half-cavities is noticeable, except for regime III, where
the LSC appears to be stronger in the rough part than in the smooth part. This suggests
that the increase in the α prefactor of the scaling law (NuR − RaR) observed in regime III,
could result from a faster LSC, since the temperature fluctuations remain similar in the two
half-cavities. Moreover, the scaling exponents of ReU (βR = 0.58) and NuR (βR = 0.42)
with RaR obtained for regime II are consistent with the regime IIIu proposed by the GL
theory (Grossmann & Lohse 2000, 2001). This means that the bulk contribution to the
thermal dissipation rate is dominant (here, the heat is injected directly by the roughness
within the bulk), while the BL contribution remains dominant for the energy dissipation
rate.

From the above dimensionless numbers, a friction coefficient can be built as
NuRa/(Re3

UPr2) (Chavanne et al. 2001) for each side of the cavity separately. This is
equivalent to the ratio εu/εu,bulk, where εu is the global energy dissipation rate, and εu,bulk
its bulk contribution. Given the exact relation εu = (ν3/H4)(Nu − 1)RaPr−2 (Siggia
1994) and the Re dependences of the bulk and the BL contributions (εu,bulk ∼ Re3 and
εu,BL ∼ Re5/2), the friction coefficient is expected to vary with 1/

√
Re when the total

energy dissipation is dominated by the laminar velocity BLs (Chavanne et al. 1997).
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In figure 13(b), the friction coefficient vs ReU is displayed. As observed for ReU , both sides
of the cavity evolve in a similar way. Unsurprisingly, it is seen that the friction coefficient
fits quite well with the Re−1/2 power law, as already observed by Chavanne et al. (2001)
for Re lower than 104. In our study, the velocity BLs are therefore laminar whatever the
regime. Interestingly, the friction coefficient is higher during regime II compared with
regimes I and III. This can be interpreted as stronger interactions between the flow coming
from the roughness region and the LSC, when the block top is sandwiched between the
thermal and kinetic BL (δθ ≤ Hp ≤ δU).

6. Conclusion

In this paper, we present DNS results of turbulent RB convection in an asymmetric
rough water-filled cavity for five decades in Rayleigh number (Ra ∈ [105 − 1010]). The
study case has been dimensioned in order to obtain a moderate value of the critical
roughness-height-based Rayleigh number (Rac = 9 × 106). The resulting rough plate
consists of a sufficient number of box-shaped blocks to consider that the influence of
the flow along the vertical walls is negligible in the central part of the cavity. The main
objective of this study is to determine whether particular physical mechanisms in the block
surroundings can explain the enhanced heat transfer in regimes II and III. For this purpose,
it is proposed to use a single physical set-up to capture the two successive heat transfer
regime transitions.

First, a global description of the heat transfer in the asymmetric cavity R/S is discussed.
As expected, we have identified three successive regimes of heat transfer: (i) a thermally
resistant regime I where the global Nusselt number (NuR/S) is reduced compared with the
heat transfer in a perfectly smooth cavity (NuS/S), (ii) a transitional regime II where the
heat transfer is particularly intense and (iii) a regime III in which the increase of NuR/S
is larger than the relative increase of surface due to roughness. By considering the typical
temperature drops of each horizontal BL, individual Rayleigh and Nusselt numbers have
been constructed for each plate. It is seen that only one scaling exponent describes the
heat transfer on the smooth plate, whereas two scaling exponents stand for the rough plate
(NuR ∼ Raβ

R): in regimes I and III, βR ∼ 1/3 is found and it increases to βR = 0.42 in
regime II. Based on the parameters of the rough plate (RaR, NuR), the relevance of the
DNS results has been assessed regarding experimental data from the literature, despite a
gap of three Ra-decades with the experiments.

In order to highlight the role of the inner fluid retained within roughness valleys, the
horizontal plane at the roughness height is divided into two parts, which enables us to
define two distinct heat transfer contributions: a first one coming from the solid top surface
of the roughness blocks, and a second one passing through the fluid interface between the
cavity bulk and the inner fluid. Whatever the heat transfer regime, a unique scaling law
holds for the heat transfer on the solid top surface. In contrast, the fluid interface at z = Hp

appears to fully drive heat transfer in the rough half-cavity. Concerning NuR|fluid
Hp

, the β

exponent of the (Nu − Ra) scaling law is approximately βF ∼ 1/3 in regimes I and III and
it increases to βF ∼ 0.5 in regime II, which agrees well with experimental results obtained
with pyramid-shaped roughness elements.

By using the decomposition of the rough Nusselt number at the fluid interface (NuR|fluid
Hp

)
into conductive and convective parts, it has been shown that conduction is the dominant
mode of heat transfer from the valleys to the bulk in regime I. Convection contribution
becomes sufficiently large in regime II to compete against conduction. In regime III,
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convection becomes the dominant mode, while heat transfer by conduction saturates at
a specific value. This value, as well as the bulk temperature, is shown to depend only on
geometric parameters. It suggests that the flow in regime III is organized in the form of
BLs flowing along the geometry of the top and bottom plates and of a separate fluctuating
rough fluid layer overlaying roughness. The fluid volume can be considered to be well
mixed, including the small fluid volumes within the roughness valleys.

Since the heat transfer is initiated inside the BLs, the Ra-evolution of their thicknesses
has been analysed by adopting the previous spatial division (viz. smooth plate/the solid
zone above the top surface of blocks/the fluid zone located inside the valleys and above).
Considering the displacement BL thicknesses, only the BLs within valleys mark out the
limits of regime II. As proposed by Xie & Xia (2017) for Pr larger than 1, it is observed
that this regime starts when the thermal BL is thinner than the roughness height and ends
when the kinetic BL is thinner than the roughness height. Concurrently, the BL above
blocks behaves like a smooth BL, becoming thinner than the roughness height early in
regime I.

A measure of the fluctuating rough fluid layer thickness has been obtained by tracking
the peaks of the temperature r.m.s.-fluctuations. This measure points out the presence of
this fluid layer only in regime III.

Finally, a global point of view is adopted. It is shown that the top and bottom
half-cavities display the same level of thermal fluctuations, except in regime II where
more intense fluctuations are present in the rough part. This is in agreement with the
Du & Tong (1998) interpretation of extra plumes emissions by roughness, but only
for regime II. Using a Reynolds number based on the maximum of the time-averaged
horizontal velocity, the friction coefficient is calculated. It follows a Re−1/2 power law,
suggesting a laminar velocity BL whatever the regime, but with a higher prefactor for
regime II. The LSC and the flow coming from the roughness region therefore interact
more strongly. Moreover, the RaR dependence in regime II of both ReR and NuR present
scaling exponents (βR = 0.58 and 0.42, respectively) consistent with the regime IIIu
proposed by the GL theory (Grossmann & Lohse 2000, 2001), meaning that the bulk
contribution to the thermal dissipation rate is dominant, while the BL contribution remains
dominant for the energy dissipation rate. In regime III, the Reynolds number of the rough
half-cavity becomes higher than in the smooth one. The increase in the heat transfer scaling
prefactor (αR) observed at this regime could result from a faster and more efficient LSC in
transporting heat, as the temperature fluctuations remain similar in both half-cavities.

However, these conclusions pertain to a particular Prandtl number and a range of
moderate Rayleigh numbers due to the value of the set critical Rayleigh number. Further
investigations should be performed to clarify the interplays between roughness, LSC and
a higher turbulence level.
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