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Abstract. Let Tn+1(R) be the algebra of all upper triangular n + 1 by n + 1
matrices over a 2-torsionfree commutative ring R with identity. In this paper, we
give a complete description of the Jordan automorphisms of Tn+1(R), proving that
every Jordan automorphism of Tn+1(R) can be written in a unique way as a product
of a graph automorphism, an inner automorphism and a diagonal automorphism for
n ≥ 1.
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1. Introduction. Let Mn+1(R) be the R-algebra of all square matrices of order
n + 1 over a commutative ring R with the identity 1. Jordan multiplication is defined
by x ◦ y = xy + yx for any x, y ∈ Mn+1(R). Obviously x ◦ y = y ◦ x. If an R-module
automorphism ϕ of Mn+1(R) satisfies ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y), then ϕ is called Jordan
automorphism of Mn+1(R). It is well known that an R-algebra automorphism, which is a
ring automorphism and also an R-module automorphism of Mn+1(R), must be a Jordan
automorphism. However, there are Jordan automorphisms which are neither R-algebra
automorphisms nor R-algebra anti-automorphisms [3]. Let A and B be subsets of
Mn+1(R). We denote Jordan multiplication of A and B by A ◦ B = {x ◦ y|x ∈ A, y ∈ B}.
Let us consider the sub-algebra of Mn+1(R) denoted by Tn+1(R), which consists of all
upper triangular matrices of Mn+1(R). Jordan isomorphisms of associative algebras
have been studied by many authors for several decades [1–4, 6, 7, 10, 11, 12]. The
algebra of all triangular matrices is an interesting topic for many researchers. Many
papers are concerned with the study of automorphisms and Lie automorphisms [5, 8, 9,
13]. On the basis of these papers, we consider the problem on decomposition of Jordan
automorphism of upper triangular matrix algebra into some standard automorphisms.

Throughout this paper, R denotes a 2-torsionfree commutative ring with the
identity 1. The main results are as follows:

THEOREM 1.1. For any Jordan automorphism ϕ of Tn+1(R)(n ≥ 1), there exist unique
graph, inner and diagonal automorphisms, respectively, ζε, θ and λd of Tn+1(R) such that

ϕ = ζεθλd .

THEOREM 1.2. Let G, I and D be the graph, inner and diagonal automorphism group,
respectively. When n ≥ 1, then

Aut(n0) = G � (I � D).
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2. Preliminaries. Let eij denote the matrix unit of Mn+1(R) and e the identity
matrix of Mn+1(R). The matrix set {ei,i+k|i = 1, . . . , n − k + 1, k = 0, 1, . . . , n} is a
basis of Tn+1(R). For any x ∈ Tn+1(R), it can be expressed x = ∑n

k=0

∑n−k+1
i=1 ai,i+kei,i+k

for some ai,i+k ∈ R. Let n1 be the sub-algebra of all strictly upper matrices of Tn+1(R).
The matrix set {ei,i+k|i = 1, . . . , n − k + 1, k = 1, . . . , n} is a basis of n1. Let n0 =
Tn+1(R) and Aut(nk), k=0,1 denote the Jordan automorphism group of nk, respectively.
If R is 2-torsionfree, then a Jordan automorphism of Mn+1(R) coincides with the semi-
automorphism of Mn+1(R) such that ϕ(x2) = [ϕ(x)]2 and ϕ(xyx) = ϕ(x)ϕ(y)ϕ(x) for
any x, y ∈ Mn+1(R).

LEMMA 2.1. Let ϕ be an R-module automorphism of n1. The following two statements
are equivalent:

(i) ϕ is in Aut(n1);
(ii) For any ei,i+k ∈ n1, ϕ(ei,i+k) = ϕ(ei,i+m) ◦ ϕ(ei+m,i+k) for 1≤ m < k and ϕ(eij) ◦

ϕ(emk) = 0 for j �= m and i �= k.

Proof. See [12, Lemma 2.1]. �
LEMMA 2.2. Let ϕ be a Jordan automorphism of n1. The following two statements

are equivalent:
(i) ϕ is in Aut(n0);

(ii) For any ei,i+k ∈ n1, [ϕ(eii)]2 = ϕ(eii), ϕ(ei,i+k) = ϕ(eii) ◦ ϕ(ei,i+k), ϕ(ei,i+k) =
ϕ(ei,i+k) ◦ ϕ(ei+k,i+k), ϕ(ejj) ◦ ϕ(eii) = 0(j �= i) and ϕ(ejj) ◦ ϕ(ei,i+k) = 0(j �= i,
i + k).

Proof. By Lemma 2.1 it is not difficult to prove Lemma 2.2. �
Lemma 2.2 implies that the set {ϕ(e11), ϕ(ei+1,i+1), ϕ(ei,i+1)|i = 1, . . . , n} generates

Tn+1(R). So we will investigate ϕ(e11), ϕ(ei+1,i+1), ϕ(ei,i+1), i = 1, . . . , n.

LEMMA 2.3. Let ϕ be in Aut(n0). For any x ∈ n0 and y, eij ∈ n1, then [ϕ(eij)]2 = 0,
ϕ(eij)xϕ(eij) = 0 and eiiyeii = 0.

Proof. For any eij ∈ n1, clearly (eij)2 = 0 so that [ϕ(eij)]2 = 0. It is easy to check that
for emk ∈ n0, eijemkeij = 0 so that eijxeij = 0 for any x ∈ n0. Therefore eijϕ

−1(x)eij = 0
then ϕ(eij)xϕ(eij) = 0. Similarly, for emk ∈ n1, eiiemkeii = 0 leads to eiiyeii = 0. �

LEMMA 2.4. Let ϕ be in Aut(n0). Then ϕ(n1) = n1.

Proof. We express ϕ(eii) and ϕ(ei,i+1), respectively, as

ϕ(eii) =
n+1∑
k=1

a(i)
kkekk mod n1, i = 1, 2, . . . , n + 1,

ϕ(ei,i+1) =
n+1∑
k=1

b(i)
kkekk mod n1, i = 1, . . . , n.

Then, we have

ϕ(eii) = [ϕ(eii)]2 =
n+1∑
k=1

(a(i)
kk)2ekk mod n1, i = 1, 2, . . . , n + 1.
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So (a(i)
kk)2 = a(i)

kk, i = 1, 2, . . . , n + 1, k = 1, 2, . . . , n + 1. Moreover,

ϕ(ei,i+1) = ϕ(eii) ◦ ϕ(ei,i+1) =
n+1∑
k=1

2a(i)
kkb(i)

kkekk mod n1, i = 1, . . . , n.

Then b(i)
kk = 2a(i)

kkb(i)
kk, i = 1, . . . , n, k = 1, 2, . . . , n + 1. Therefore

a(i)
kkb(i)

kk = a(i)
kk

(
2b(i)

kk − b(i)
kk

) = a(i)
kk

(
2b(i)

kk − 2a(i)
kkb(i)

kk

) = 2
[
a(i)

kk − (
a(i)

kk

)2]b(i)
kk = 0,

that is, b(i)
kk = 2a(i)

kkb(i)
kk = 0, i = 1, . . . , n, k = 1, 2, . . . , n + 1. That means ϕ(n1) ⊂ n1. So

ϕ−1(n1) ⊂ n1, that is, n1 = ϕϕ−1(n1) ⊂ ϕ(n1). �
Let n2 = n1 ◦ n1, nk = n1 ◦ nk−1, k = 2, . . . , n. It is clear to know nk =∑n

m=k
∑n−m+1

i=1 Rei,i+m, k = 2, . . . , n. Notice that nn+1 = 0. Without loss of generality,
an element in nk is often denoted by tk. It is obvious that tmtk, tm ◦ tk ∈ nm+k for
m + k ≤ n or tmtk = 0 and tm ◦ tk = 0 for m + k > n. For any ϕ ∈Aut(n0), we have
that ϕ(n1) = n1, ϕ(n2) = ϕ(n1) ◦ ϕ(n1) = n1 ◦ n1 = n2, . . ., ϕ(nk) = nk, k = 2, . . . , n.
Therefore ϕ(nk\nk+1) = nk\nk+1, k = 0, 1, . . . , n − 1. Let R* be the multiplicative
group of all the invertible elements of R. For any ϕ ∈Aut(n0), there exists b ∈ R*
such that ϕ(e1,n+1) = be1,n+1.

LEMMA 2.5. Let ϕ in Aut(n0). Then

ϕ(e11) = a(1)
11 e11 + a(1)

n+1,n+1en+1,n+1 + t1

where a(1)
11 + a(1)

n+1,n+1 = 1 and a(1)
11 is an idempotent of R.

Proof. We express ϕ(e11) as ϕ(e11) = ∑n+1
k=1 a(1)

kk ekk + t1. Let e1m ∈ n1. By Lemma 2.4
ϕ−1(e1m) ∈ n1. By Lemma 2.3 e11ϕ

−1(e1m)e11 = 0. Consequently,

ϕ(e11)e1mϕ(e11) = a(1)
11 a(1)

mme1m + tm = 0, m = 2, . . . , n + 1.

Let em,n+1 ∈ n1. Similarly,

ϕ(e11)em,n+1ϕ(e11) = a(1)
mma(1)

n+1,n+1em,n+1 + tn−m+2 = 0, m = 1, . . . , n.

So a(1)
11 a(1)

mm = 0 and a(1)
mma(1)

n+1,n+1 = 0, m = 2, . . . , n. From ϕ(e1,n+1) = be1,n+1, b ∈ R*,
we have

ϕ(e1,n+1) = ϕ(e11) ◦ ϕ(e1,n+1) = (
a(1)

11 + a(1)
n+1,n+1

)
be1,n+1,

then a(1)
11 + a(1)

n+1,n+1 = 1. So a(1)
mm = a(1)

mm(a(1)
11 + a(1)

n+1,n+1) = 0, m = 2, . . . , n. From the

process of proving Lemma 2.4 we know (a(1)
11 )2 = a(1)

11 . �
Now let us introduce standard Jordan automorphisms of Tn+1(R).
(i) Let ε be an idempotent of R. Then ε, 1 − ε are orthogonal idempotents,

that is, ε(1 − ε) = 0. Let e0 = ∑n+1
i=1 ei,n−i+2. We define a map ζε: x 	→ εx + (1 −

ε)(e0xe0)τ , where τ denotes the transpose of a matrix. If both ε and ε̄ are
idempotents of R, then 1 − (ε − ε̄)2 is also an idempotent of R and ζεζε̄ = ζ1−(ε−ε̄)2 .
This implies that ζ−1

ε = ζε and ζε is an R-module automorphism of Tn+1(R).
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Obviously, ζ1 is the identity automorphism of Tn+1(R) and ζε = εζ1 + (1 − ε)ζ0.
From ζε(x ◦ y) = ζε(x) ◦ ζε(y) for any x, y ∈ Tn+1(R), we know that ζε is a Jordan
automorphism of Tn+1(R). We call ζε a graph automorphism. If ε is non-trivial,
the graph automorphism ζε is neither an R-algebra automorphism nor an R-
algebra anti-automorphism of Tn+1(R), unless one of the ideals εTn+1(R) or
(1 − ε)Tn+1(R) of Tn+1(R) is commutative. The graph automorphism ζε on the
basis of Tn+1(R) acts as ζε(ekj) = εekj + (1 − ε)en−j+2,n−k+2(1 ≤ k ≤ [ n+1

2 ], k ≤ j ≤
n − k + 1), ζε(ek,n−k+2) = ek,n−k+2(1 ≤ k ≤ 1 + [ n

2 ]) and ζε(en−j+2,n−k+2) = (1 − ε)ekj +
εen−j+2,n−k+2(1 ≤ k ≤ [ n+1

2 ], k ≤ j ≤ n − k + 1), where [ n+1
2 ] is the integer part of n+1

2 .
The set of all graph automorphisms of Tn+1(R) is a subgroup of Aut(n0), which is
denoted by G.

(ii) For any y ∈ n1, let h = e + y. The map θh: x 	→ hxh−1 is called an inner
automorphism which is an R-algebra automorphism of Tn+1(R). If h = hij(a) = e +
aeij(i < j) with some a ∈ R, then θhij(a) is called the ‘simple’ form. Using [hij(a)]−1 =
hij(−a) we know that θhij(a)(eii) = eii − aeij , θhij(a)(ejj) = ejj + aeij for i < j and θhij(a)(ekk) =
ekk for k �= i, j and that θhmi(a)(ei,i+1) = ei,i+1 + aem,i+1 and θhi+1,j(a)(ei,i+1) = ei,i+1 − aeij

also θhmi(a)(ek,k+1) = ek,k+1 and θhi+1,j(a)(ek,k+1) = ek,k+1 for k �= i, m, j. It is easy to see
that θ−1

hij(a) = θhij(−a). The set of all the ‘simple’ inner automorphisms of Tn+1(R) generates
a subgroup of Aut(n0), which is denoted by I.

(iii) Let d = ∑n+1
i=1 dieii where di ∈ R*, i = 1, 2, . . . , n + 1. The map λd : x 	→ dxd−1

is called a diagonal automorphism which is an R-algebra automorphism of Tn+1(R). It is
obvious that λ−1

d = λd−1 . A diagonal automorphism on the basis of Tn+1(R) yields that
λd(eii) = eii and λd(ei,i+k) = ∏k

m=1 c−1
i+m−1,i+mei,i+k for d1 = 1, di = ∏i

m=2 ci−m+1,i−m+2 ∈
R*, i = 2, . . . , n + 1. The set of all diagonal automorphisms of Tn+1(R) is a subgroup
of Aut(n0), which is denoted by D.

3. Lemmas for main results. In order to achieve our goal, we also need other
lemmas.

LEMMA 3.1. Let ϕ be in Aut(n0). There exists a graph automorphism ζε such that
ζεϕ(e11) = e11 + t1.

Proof. By Lemma 2.5, ϕ(e11) = a(1)
11 e11 + a(1)

n+1,n+1en+1,n+1 + t1. Take ε = a(1)
11 , then

ζa(1)
11

(ϕ(e11)) = a(1)
11 ζa(1)

11
(e11) + a(1)

n+1,n+1ζa(1)
11

(en+1,n+1) + ζa(1)
11

(t1)

= a(1)
11

[
a(1)

11 e11+
(
1 − a(1)

11

)
en+1,n+1

]+(
1 − a(1)

11

)[
a(1)

11 en+1,n+1+
(
1 − a(1)

11

)
e11

]+t1

= (
a(1)

11

)2e11 + (
1 − a(1)

11

)2e11 + t1 = e11 + t1.

This completes the proof. �
LEMMA 3.2. Let ϕ be in Aut(n0). If ϕ(e11) = e11 + t1, then ϕ(eii) = eii + t1, i =

1, 2, . . . , n + 1 and ϕ(ei,i+1) = b(i)
i,i+1ei,i+1 + t2, i = 1, . . . , n where b(i)

i,i+1 ∈ R*.

Proof. If ejl ∈ n1, then ϕ−1(ejl) ∈ n1. By Lemma 2.3 we have eiiϕ
−1(ejl)eii = 0 then

ϕ(eii)ejlϕ(eii) = 0. Therefore,

ϕ(eii)eimϕ(eii) = a(i)
ii a(i)

mmeim + tm−i+1 = 0, i = 1, . . . , m − 1(m ≥ 2),

ϕ(eii)emiϕ(eii) = a(i)
ii a(i)

mmeki + ti−m+1 = 0, i = m + 1, . . . , n + 1(m ≤ n),
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so a(i)
ii a(i)

mm = 0, i �= m. When i �= j, ϕ(eii) ◦ ϕ(ejj) = ∑n+1
k=1 a(i)

kka(j)
kkekk + t1 = 0, so

a(i)
kka(j)

kk = 0, i �= j. Let us express ϕ(ei,i+1) as ϕ(ei,i+1) = ∑n
k=1 b(i)

k,k+1ek,k+1 + t2.

Therefore ϕ(e12) = ϕ(e11) ◦ ϕ(e12) = b(1)
12 e12 + t2. From ϕ−1ϕ(e11) = ϕ−1(e11) + t1, we

have ϕ−1(e11) = e11 + t1. Then ϕ−1(e12) = b̂(1)
12 e12 + t2. Furthermore, e12 = ϕ−1ϕ(e12) =

b(1)
12 b̂(1)

12 e12 + t2, then b(1)
12 b̂(1)

12 = 1, that is, b(1)
12 ∈ R*. Also we have ϕ(e12) = ϕ(e12) ◦

ϕ(e22) = (a(2)
11 + a(2)

22 )b(1)
12 e12 + t2. Then a(2)

11 + a(2)
22 = 1. From a(1)

11 a(2)
11 = 0, we know a(2)

11 =
0, that is, a(2)

22 = 1. Using induction we assume that ϕ(em−1,m−1) = em−1,m−1 + t1,
ϕ(em−1,m) = b(m−1)

m−1,mem−1,m + t2, b(m−1)
m−1,m ∈ R* and a(m)

mm = 1 hold. Then a(m)
kk = 0, k �= m,

that is, ϕ(emm) = emm + t2. From

ϕ(em,m+1) = ϕ(emm) ◦ ϕ(em,m+1) = b(m)
m,m+1em,m+1 + b(m)

m−1,mem−1,m + t2,

we have b(m)
k,k+1 = 0, k �= m − 1, m. From

ϕ(em−1,m−1) ◦ ϕ(em,m+1) = b(m)
m−1,mem−1,m + t2 = 0,

we have b(m)
m−1,m = 0, that is, ϕ(em,m+1) = b(m)

m,m+1em,m+1 + t2. In the same way, we know

b(m)
m,m+1 ∈ R*. Furthermore,

ϕ(em,m+1) = ϕ(em,m+1) ◦ ϕ(em+1,m+1) = (
a(m+1)

mm + a(m+1)
m+1,m+1

)
b(m)

m,m+1em,m+1 + t2.

Then a(m+1)
mm + a(m+1)

m+1,m+1 = 1. So a(m+1)
m+1,m+1 = 1. When m = n, the proof is completed. �

LEMMA 3.3. Let ϕ be in Aut(n0). If ϕ(eii) = eii + t1, i = 1, 2, . . . , n + 1, then

ϕ(e11) = e11 + a(1)
12 e12 + t2,

ϕ(eii) = eii + a(i)
i,i+1ei,i+1 − a(i−1)

i−1,i ei−1,i + t2, i = 2, . . . , n(n ≥ 2),

ϕ(en+1,n+1) = en+1,n+1 − a(n)
n,n+1en,n+1 + t2.

Proof. We write ϕ(eii) as

ϕ(eii) = eii +
n∑

k=1

a(i)
k,k+1ek,k+1 + t2, i = 1, 2, . . . , n + 1.

From ϕ(eii) = [ϕ(eii)]2 we have

ϕ(e11) = e11 + a(1)
12 e12 + t2,

ϕ(eii) = eii + a(i)
i,i+1ei,i+1 + a(i)

i−1,iei−1,i + t2, i = 2, . . . , n,

ϕ(en+1,n+1) = en+1,n+1 + a(n+1)
n,n+1en,n+1 + t2.

Then

ϕ(eii) ◦ ϕ(ei+1,i+1) = (a(i)
i,i+1 + a(i+1)

i,i+1 )ei,i+1 + t2 = 0, i = 1, . . . , n.

So a(i)
i,i+1 = −a(i+1)

i,i+1 , i = 1, . . . , n. �
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LEMMA 3.4. Let ϕ be in Aut(n0). If ϕ(eii) = eii + t1, i = 1, 2, . . . , n + 1, we take that

θ =
n∏

i=1

θhi,i+1(a(i)
i,i+1).

Then

θϕ(eii) = eii + t2, i = 1, 2, . . . , n + 1.

Proof. From θhi,i+1(a(i)
i,i+1)(eii) = eii − a(i)

i,i+1ei,i+1 and θhi,i+1(a(i)
i,i+1)(ei+1,i+1) = ei+1,i+1 +

a(i)
i,i+1ei,i+1 and then by Lemma 3.3 it is not difficult to complete the proof. �

LEMMA 3.5. Let ϕ be in Aut(n0). If ϕ(eii) = eii + tm−1, i = 1, 2, . . . , n + 1, then

ϕ(eii) = eii + a(i)
i,i+m−1ei,i+m−1 + tm, 1 ≤ i ≤ min{m − 1, n − m + 2},

ϕ(eii) = eii + a(i)
i,i+m−1ei,i+m−1 − a(i−m+1)

i−m+1,i ei−m+1,i + tm,

m ≤ i ≤ n − m + 2
(

m ≤
[

n + 1
2

])
,

ϕ(eii) = eii + tm,

n − m + 3 ≤ i ≤ m
(

m ≥
[

n + 1
2

]
+ 1 or when n is odd, m >

[
n + 1

2

]
+ 1

)
,

ϕ(eii) = eii − a(i−m+1)
i−m+1,i ei−m+1,i + tm, max{n − m + 3, m} ≤ i ≤ n + 1.

Proof. It is the case in Lemma 3.3 if m = 2. Using the method of proving Lemma 3.3
we may verify the consequence. �

LEMMA 3.6. Let ϕ be in Aut(n0). If ϕ(eii) = eii + tm−1, i = 1, 2, . . . , n + 1, we take
that

θ =
n−m+2∏

i=1

θhi,i+m−1(a(i)
i,i+m−1).

Then

θϕ(eii) = eii + tm, i = 1, 2, . . . , n + 1.

When m = n + 1, θϕ(eii) = eii, i = 1, 2, . . . , n + 1.

Proof. The process for verifying the result is similar to that of Lemma 3.4. �
LEMMA 3.7. When n ≥ 1, let ϕ be in Aut(n0). If ϕ(eii) = eii, there exists a diagonal

automorphism λd such that λdϕ(ei,i+1) = ei,i+1 + t2, i = 1, . . . , n.

Proof. By Lemma 3.2 we know that ϕ(ei,i+1) = b(i)
i,i+1ei,i+1 + t2, i = 1, . . . , n,

where b(i)
i,i+1 ∈ R*. Let λd satisfy ei,i+1 	→ (b(i)

i,i+1)−1ei,i+1, where d1 = 1, di =∏i
m=2 b(i−m+1)

i−m+1,i−m+2, i = 2, . . . , n + 1. Applying λdϕ to ei,i+1 we get the asserted
property. �
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LEMMA 3.8. When n ≥ 1, let ϕ be in Aut(n0). If ϕ(eii) = eii, i = 1, 2, . . . , n + 1 and
ϕ(ei,i+1) = ei,i+1 + t2, i = 1, . . . , n, then ϕ(ei,i+1) = ei,i+1, i = 1, . . . , n.

Proof. We express ϕ(ei,i+1) as

ϕ(ei,i+1) = ei,i+1 +
n∑

k=2

n−k+1∑
m=1

b(i)
m,m+kem,m+k, i = 1, . . . , n.

Therefore,

ϕ(e12) = ϕ(e11) ◦ ϕ(e12) = e12 +
n∑

k=2

b(1)
1,1+ke1,1+k(n ≥ 2),

ϕ(e23) = ϕ(e22) ◦ ϕ(e23) = e23(n = 2),

ϕ(e23) = ϕ(e22) ◦ ϕ(e23) = e23 +
n−1∑
k=2

b(2)
2,2+ke2,2+k(n ≥ 3),

ϕ(ei,i+1) = ϕ(eii) ◦ ϕ(ei,i+1) = ei,i+1 +
n−i+1∑

k=2

b(i)
i,i+kei,i+k +

n−1∑
k=2

b(i)
i−k,ie

(i)
i−k,i

× (3 ≤ i ≤ n − 1, n ≥ 4),

ϕ(en,n+1) = ϕ(enn) ◦ ϕ(en,n+1) = en,n+1 +
n−1∑
k=2

b(n)
n−k,ne(n)

n−k,n(n ≥ 3).

So for i = 1, 2, . . . , n

ϕ(ei,i+1) = ϕ(ei,i+1) ◦ ϕ(ei+1,i+1) = ϕ(ei,i+1) ◦ ei+1,i+1 = ei,i+1.

In the case n = 1, ϕ(e12) = e12. �

4. Proofs of main results. Proof of Theorem 1.1. By Lemma 3.1, Lemma 3.4 and
Lemmas 3.6–3.8 there are λ−1

d , θ−1 and ζε such that

λ−1
d θ−1ζεϕ(eii) = eii, i = 1, 2, . . . , n + 1.

λ−1
d θ−1ζεϕ(ei,i+1) = ei,i+1, i = 1, . . . , n.

Since e11, ei+1,i+1, ei,i+1, i = 1, . . . , n, generate Tn+1(R), then ϕ = ζεθλd . The uniqueness
of the decomposition follows from Theorem 1.2. �

Proof of Theorem 1.2. By Theorem 1.1 we have Aut(n0) = GID. For any x ∈ n0 we
have θhλd(x) = h(dxd−1)h−1 = λdθd−1hd(x), thus θhλd = λdθd−1hd . SoI � ID. Obviously,
I ∩ D = 1, then ID = I � D. Also we have ζ0θh(x) = [e0(hxh−1)e0]τ = θζ0(h−1)ζ0(x),
that is, ζ0θh = θζ0(h−1)ζ0. From

θεh+(1−ε)ζ0(h−1)(x) = [εh + (1 − ε)ζ0(h−1)]x[εh + (1 − ε)ζ0(h−1)]−1

= [εh + (1 − ε)ζ0(h−1)]x[εh−1 + (1 − ε)(ζ0(h−1))−1]

= ε2hxh−1 + (1 − ε)2ζ0(h−1)x(ζ0(h−1))−1

= εθh(x) + (1 − ε)θζ0(h−1)(x)

= [εθh + (1 − ε)ζ0θhζ0](x),
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we have θεh+(1−ε)ζ0(h−1) = εθh + (1 − ε)ζ0θhζ0. Furthermore,

ζεθhζε = [εζ1 + (1 − ε)ζ0]θh[εζ1 + (1 − ε)ζ0]

= ε2θh + (1 − ε)2ζ0θhζ0

= θεh+(1−ε)ζ0(h−1).

Similarly, ζελdζε = λεd+(1−ε)ζ0(d−1). Thus ID � GID. Clearly, G ∩ ID = 1, then GID =
G � (I � D), that is, Aut(n0) = G � (I � D). �
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4. M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.
5. Y. A. Cao, Automorphisms of certain Lie algebras of upper triangular matrices over a

commutative ring, J. Algebra 189 (1997), 506–513.
6. Y. A. Cao, Automorphisms of the Lie algebras of strictly upper triangular matrices over

certain commutative rings, Linear Algebra Appl. 329 (2001), 175–187.
7. L. N. Herstein, Jordan automorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–351.
8. S. Jøndrup, Automorphisms of upper triangluar matrix rings, Arch Math. 49 (1987),

497–502.
9. F. Kuzucuoglu and V. M. Levchuk, The automorphisms groups of certain radical matrix

rings, J. Algebra 243 (2001), 473–485.
10. X. M. Tang, C. G. Cao and X. Zhang, Modular automorphisms preserving idempotence

and Jordan isomorphisms of triangular matrices over commutative rings, Linear Algebra Appl.
338 (2001), 145–152.

11. X. T. Wang, Decomposition of Jordan automorphisms of strictly upper triangular
matrix algebra over commutative rings, Commut. Algebra 35 (2007), 1133–1140.

12. X. T. Wang and H. You, Decomposition of Jordan automorphisms of strictly triangular
matrix algebra over local rings, Linear Algebra Appl. 392 (2004), 183–193.

13. X. T. Wang and H. You, Decomposition of Lie automorphisms of upper triangular
matrix algebra over commutative rings, Linear Algebra Appl. 419 (2006), 466–474.

https://doi.org/10.1017/S0017089510000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000406

