A TAUBERIAN THEOREM CONCERNING BOREL-TYPE AND CESȦRO METHODS OF SUMMABILITY

DAVID BORWEIN AND TOM MARKOVICH

1. Introduction. Suppose throughout that $r \geqq 0, \alpha>0, \alpha q+\beta>0$ where q is a non-negative integer. Let $\left\{s_{n}\right\}$ be a sequence of real numbers,

$$
c_{n}(x):=\frac{\alpha e^{-x} x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \quad \text { and } \quad b(x):=\sum_{n=q}^{\infty} c_{n}(x) s_{n} .
$$

The Borel-type summability method (B, α, β) is defined as follows:

$$
s_{n} \rightarrow l(B, \alpha, \beta) \text { if } b(x) \rightarrow l \text { as } x \rightarrow \infty .
$$

The method (B, α, β) is regular [5]; and $(B, 1,1)$ is the standard Borel exponential method B. For a real sequence $\left\{s_{n}\right\}$ we consider the slowly decreasing-type Tauberian condition

$$
\left(\mathrm{T}_{r}\right): \quad \lim _{\delta \rightarrow 0+} \liminf _{n \rightarrow \infty} \min _{n \leqq m \leqq n+\delta \sqrt{n}} \frac{s_{m}-s_{n}}{n^{r}} \geqq 0 .
$$

We shall also be concerned with the Cesàro summability method $C_{p}(p>-1)$, the Valiron method V_{α}, and the Meyer-König method S_{a} ($0<a<1$) defined as follows:

$$
\begin{aligned}
& s_{n} \rightarrow l\left(C_{p}\right) \text { if } \\
& \frac{1}{\binom{n+p}{p}} \sum_{k=0}^{n} s_{k}\binom{n-k+p-1}{n-k} \rightarrow l \quad \text { as } n \rightarrow \infty ; \\
& s_{n} \rightarrow l\left(V_{\alpha}\right) \text { if } \\
& \left(\frac{\alpha}{2 \pi n}\right)^{1 / 2} \sum_{k=0}^{\infty} s_{k} \exp \left\{-\frac{\alpha(n-k)^{2}}{2 n}\right\} \rightarrow l \text { as } n \rightarrow \infty ; \\
& s_{n} \rightarrow l\left(S_{a}\right) \text { if }
\end{aligned}
$$

[^0]$$
(1-a)^{n+1} \sum_{k=0}^{\infty} s_{k}\binom{n+k}{k} a^{k} \rightarrow l \quad \text { as } n \rightarrow \infty
$$

Our main result is
Theorem 1. If $s_{n} \rightarrow l(B, \alpha, \beta)$ and $\left(\mathrm{T}_{r}\right)$, then $s_{n} \rightarrow l\left(C_{2 r}\right)$.
Now suppose that

$$
s_{n}=\sum_{k=0}^{n} a_{k}
$$

and note that if

$$
\left(\mathrm{L}_{r}\right): a_{n}>-H n^{r-1 / 2} \text { for } n=1,2, \ldots
$$

then, for $n \leqq m \leqq n+\delta \sqrt{n}$,

$$
\begin{aligned}
\frac{s_{m}-s_{n}}{n^{r}} & =\frac{1}{n^{r}} \sum_{j=n+1}^{m} a_{j}>\frac{-H}{n^{r}} \sum_{j=n+1}^{m} j^{r-1 / 2} \\
& >\frac{-H(m-n)}{\sqrt{n+1}}\left(\frac{m}{n}\right)^{r} \geqq-H \delta\left(1+\frac{\delta}{\sqrt{n}}\right)^{r}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0+} \liminf _{n \rightarrow \infty} \min _{n \leqq m \leqq n+\delta \sqrt{n}} \frac{s_{m}-s_{n}}{n^{r}} \\
& \geqq \lim _{\delta \rightarrow 0+} \liminf _{n \rightarrow \infty}\left\{-H \delta\left(1+\frac{\delta}{\sqrt{n}}\right)^{r}\right\}=0 .
\end{aligned}
$$

Thus (L_{r}) implies (T_{r}).
The special case $\alpha=\beta=1, r=0$ of Theorem 1 with (T_{0}) replaced by $a_{n}=O\left(n^{-1 / 2}\right)$ is the original O-Tauberian theorem for Borel summability due to Hardy and Littlewood [10]. The Borel summability case $\alpha=\beta=1$ of Theorem 1 has been proved by Rajagopal [13], and the corresponding theorem for Meyer-König summability S_{a} by Sitaraman [14]. More recently Bingham [3] proved the theorem for summability methods of the random walk-type of which B and S_{a} are special cases. For the general (B, α, β) method, the case $r \geqq 0$ of Theorem 1 with (T_{r}) replaced by $a_{n}=o\left(n^{r-1 / 2}\right)$ is due to Borwein [6], and the case $r=0$ with ($\left.\mathrm{T}_{0}\right)$ replaced by $a_{n}=O\left(n^{-1 / 2}\right)$ is due to Borwein and Robinson [7]. The most general result to-date for the (B, α, β) method is due to Kwee [12] who proved the case of Theorem 1 with $\left(\mathrm{T}_{\mathrm{r}}\right)$ replaced by $a_{n}=O\left(n^{r-1 / 2}\right)$.

Theorem 1 remains true if the hypothesis $s_{n} \rightarrow l(B, \alpha, \beta)$ is replaced by $s_{n} \rightarrow l\left(B^{\prime}, \alpha, \beta\right)$, by which it is meant that, as $y \rightarrow \infty$,

$$
\int_{0}^{\infty} e^{-x} d x \sum_{n=q}^{\infty} a_{n} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \rightarrow l-s_{q-1} \quad\left(s_{-1}=0\right)
$$

This is a consequence of the following known result due to Borwein ([4],
Theorem 2) that $s_{n} \rightarrow l(B, \alpha, \beta+1)$ if and only if $s_{n} \rightarrow l\left(B^{\prime}, \alpha, \beta\right)$.
Borwein [5] also proved:
If

$$
J(z)=\sum_{n=q}^{\infty} \frac{z^{n}}{h(n)}
$$

is a holomorphic function of $z=x+i y$ in the half-plane $x>x_{0}$, such that
(i) when $x>x_{0}$ and $|z|$ is large

$$
h(z)=z^{\alpha z+\beta} e^{\gamma z}\left\{C+O\left(\frac{1}{|z|}\right)\right\}
$$

where $C>0, \alpha>0, \beta$ and γ are real, and
(ii) $h(x)$ is real and positive for $x \geqq q>x_{0}$, then $s_{n} \rightarrow l(J)$

$$
\left(\text { i.e., } \frac{1}{J(x)} \sum_{n=q}^{\infty} \frac{s_{n} x^{n}}{h(n)} \rightarrow l \text { as } x \rightarrow \infty\right)
$$

if and only if

$$
s_{n} \rightarrow l(B, \alpha, \beta+1 / 2) .
$$

In particular, taking

$$
J(z)=\sum_{n=q}^{\infty} \frac{z^{n}}{\{\Gamma(\alpha n+\beta)\}^{c}(n+p)^{s n+t}}
$$

where c, p, s, t are real and $\alpha c+s>0$, we have

$$
s_{n} \rightarrow l(J)
$$

if and only if

$$
s_{n} \rightarrow l(B, \alpha c+s, \beta c+t-c / 2+1 / 2) .
$$

Thus Theorem 1 is in fact a Tauberian theorem for a wide class of power series methods of summability [9].

Since the actual choice of q is immaterial, it is convenient to assume in all that follows that $\alpha q+\beta-r>0$.

2. Preliminary results.

Lemma 1 ([6], Lemma 2). Let $h_{n}=n-x / \alpha, 1 / 2<\xi<2 / 3$, and $0<\eta<2 \xi-1$. Then
(i)

$$
\sum_{\left|h_{n}\right|>x^{k}} c_{n}(x)=O\left(e^{-x^{\eta}}\right)
$$

(ii)

$$
c_{n}(x)=\frac{\alpha}{\sqrt{2 \pi x}} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\left\{1+O\left(x^{3 \xi-2}\right)\right\}
$$

when $\left|h_{n}\right| \leqq x^{\xi}$.
Lemma 2 ([5], Result (I); [4], Lemma 4). If $\alpha>\gamma>0$ and for any non-negative integer $M>-\delta / \gamma$,

$$
\sum_{n=M}^{\infty} a_{n} \frac{x^{n}}{\Gamma(\gamma n+\delta)}
$$

is convergent for all x, then $s_{n} \rightarrow l(B, \alpha, \beta)$ implies

$$
s_{n} \rightarrow l(B, \gamma, \delta) .
$$

The next result follows from Stirling's formula (see [1], p. 47).
Lemma 3.

$$
\frac{(\alpha n)^{r}}{\Gamma(\alpha n+\beta)} \sim \frac{1}{\Gamma(\alpha n+\beta-r)} \quad \text { as } n \rightarrow \infty .
$$

Lemma 4. Let $1 / 2<\xi<2 / 3$, then as $x \rightarrow \infty$

$$
\begin{equation*}
\sum_{q \leqq n<x / \alpha-x^{\xi}} n^{r} c_{n}(x)=o(1), \tag{i}
\end{equation*}
$$

(ii)

$$
\sum_{n>x / \alpha+x^{\xi}} n^{r} c_{n}(x)=o(1)
$$

Proof. For (i) we have, by Lemmas 3 and 1 (i), that, as $x \rightarrow \infty$,

$$
\begin{aligned}
\sum_{q \leqq n<x / \alpha-x^{k}} n^{r} c_{n}(x) & =O\left\{x^{r} e^{-x} \sum_{q \leqq n<x / \alpha-x^{\xi}} \frac{x^{\alpha n+\beta-r-1}}{\Gamma(\alpha n+\beta-r)}\right\} \\
& =O\left\{x^{r} e^{-x^{n}}\right\}=o(1) .
\end{aligned}
$$

The proof of (ii) is similar.
Lemma 5 ([13], Lemma 1). If $\left\{s_{n}\right\}$ satisfies $\left(\mathrm{T}_{\mathrm{r}}\right)$, then there exist positive constants K, K^{\prime} such that, for $m \geqq n \geqq 1$,

$$
\begin{aligned}
& s_{m}-s_{n}>-K m^{r}\left(m^{1 / 2}-n^{1 / 2}\right)-K^{\prime} n^{r} \\
& s_{m}-s_{n} \geqq-K\left(m^{r+1 / 2}-n^{r+1 / 2}\right)-K^{\prime} n^{r} .
\end{aligned}
$$

The next lemma is essentially due to Hyslop ([11], Lemma 1).

Lemma 6. Let $h_{n}=n-x / \alpha, p \geqq 0$, and $1 / 2<\xi<1$, then, as $x \rightarrow \infty$,
(i) $\sum_{n>x / \alpha+x^{\xi}} n^{r} h_{n}^{p} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o(1)$,
(ii) $\sum_{0 \leqq n<x / \alpha-x^{\xi}} n^{r}\left|h_{n}\right|^{p} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o(1)$,
(iii) $\quad \sum_{n=0}^{\infty} n^{r}\left|h_{n}\right|^{p} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=O\left\{x^{r+(p+1) / 2}\right\}$.

Lemma 7 (cf. [14], Lemma 5 and [3], Theorem 5). Let M and N be any positive integers such that

$$
M>x / \alpha+t \sqrt{x / \alpha}, q<N<x / \alpha-t \sqrt{x / \alpha}
$$

Then, as $t, \mathrm{x} \rightarrow \infty$,
(i) $\sum_{n=q}^{N} n^{r} c_{n}(x)=o\left(x^{r}\right)$,
(ii) $\sum_{n=M}^{\infty} n^{r} c_{n}(x)=o\left(x^{r}\right)$,
(iii) $\sum_{n=N}^{M} n^{r} c_{n}(x) \sim(x / \alpha)^{r}$,
(iv) $\sum_{n=M}^{\infty}\left(n^{r+1 / 2}-M^{r+1 / 2}\right) c_{n}(x)=o\left(x^{r}\right)$.
(The precise meaning of part (iii), for example, is that for every $\epsilon>0$ there is a X_{0} such that

$$
\left|x^{-r} \sum_{n=N}^{M} n^{r} c_{n}(x)-\alpha^{-r}\right|<\epsilon \quad \text { whenever } x>X_{0}, t>X_{0}
$$

$q<N<x / \alpha-t \sqrt{x / \alpha}$, and $M>x / \alpha+t \sqrt{x / \alpha}$. The meanings of the other parts are similar.)

Proof. Part (i). For $1 / 2<\xi<2 / 3$ we have

$$
\begin{aligned}
0 \leqq S & :=\sum_{n=q}^{N} c_{n}(x) \leqq \sum_{q \leqq n \leqq x / \alpha-t \sqrt{x / \alpha}} c_{n}(x) \\
& =\left(\sum_{q \leqq n \leqq x / \alpha-x^{\xi}}+\sum_{x / \alpha-x^{\xi}<n \leqq x / \alpha-t \sqrt{x / \alpha}}\right) c_{n}(x) \\
& =: S_{1}+S_{2} .
\end{aligned}
$$

By Lemma 4 (i), we have $S_{1}=o(1)$ as $x \rightarrow \infty$. Further, by Lemma 1 (ii), as $t, x \rightarrow \infty$

$$
\begin{aligned}
S_{2} & =O\left\{x^{-1 / 2} \sum_{x / \alpha-x^{\xi}<n \leqq x / \alpha-t \sqrt{x / \alpha}} \exp \left(-\frac{\alpha^{2}(x / \alpha-n)^{2}}{2 x}\right)\right\} \\
& =o(1)+O\left\{x^{-1 / 2} \int_{t \sqrt{x / \alpha}}^{x^{\xi}} \exp \left(-\frac{\alpha^{2} y^{2}}{2 x}\right) d y\right\} \\
& =o(1)+O\left\{\int_{t \sqrt{\alpha / 2}}^{\infty} \exp \left(-u^{2}\right) d u\right\} \\
& =o(1) .
\end{aligned}
$$

It follows that, as $t, x \rightarrow \infty, S=o(1)$, and hence

$$
0 \leqq \sum_{n=q}^{N} n^{r} c_{n}(x) \leqq(x / \alpha)^{r} \sum_{n=q}^{N} c_{n}(x)=o\left(x^{r}\right) .
$$

Part (ii). For $1 / 2<\xi<2 / 3$, we have

$$
\begin{aligned}
& S: \\
&=x^{-r} \sum_{n=M}^{\infty} n^{r} c_{n}(x) \\
&=x^{-r}\left\{\sum_{M \leqq n \leqq x / \alpha+x^{k}}+\sum_{n>x / \alpha+x^{\xi}} n^{r} c_{n}(x)\right. \\
&=: S_{1}+S_{2} .
\end{aligned}
$$

By Lemma 4 (ii), we have $S_{2}=o(1)$ as $x \rightarrow \infty$. Furthermore, it follows from Lemmas 3 and 1 (ii) that

$$
\begin{aligned}
S_{1} & =O\left\{x^{-r} \sum_{x / \alpha+t \sqrt{x / \alpha<n \leqq x / \alpha+x^{\xi}}} n^{r} c_{n}(x)\right\} \\
& =O\left\{e^{-x} \sum_{x / \alpha+t \sqrt{x / \alpha<n \leqq x / \alpha+x^{\xi}}} \frac{x^{\alpha n+\beta-r-1}}{\Gamma(\alpha n+\beta-r)}\right\} \\
& =O\left\{x^{-1 / 2} \sum_{x / \alpha+t \sqrt{x / \alpha<n \leqq x / \alpha+x^{\xi}}} \exp \left(-\frac{\alpha^{2}(n-x / \alpha)^{2}}{2 x}\right)\right\} .
\end{aligned}
$$

Now exactly as in the proof of part (i) we find that, as $t, x \rightarrow \infty$, $S_{1}=o(1)$. The conclusion is now immediate.

Part (iii). The case $r=0$ follows from parts (i) and (ii) with $r=0$ and the known result that

$$
\sum_{n=q}^{\infty} c_{n}(x) \rightarrow 1 \quad \text { as } x \rightarrow \infty
$$

(see [5], p. 130).

To prove the result for $r>0$, observe that it is equivalent to proving the following assertion:

$$
\sum_{n=N_{i}}^{M_{i}} n^{r} c_{n}(x) \sim\left(x_{i} / \alpha\right)^{r} \quad \text { as } i \rightarrow \infty
$$

whenever $\left\{M_{i}\right\},\left\{N_{i}\right\},\left\{t_{i}\right\},\left\{x_{i}\right\}$ are sequences such that $t_{i} \rightarrow \infty, x_{i} \rightarrow \infty$, and

$$
M_{i}>x_{i} / \alpha+t_{i} \sqrt{x_{i} / \alpha}, \quad q<N_{i}<x_{i} / \alpha-t_{i} \sqrt{x_{i} / \alpha} .
$$

Suppose therefore that $\left\{M_{i}\right\},\left\{N_{i}\right\},\left\{t_{i}\right\},\left\{x_{i}\right\}$ are sequences satisfying the above conditions, and let

$$
w_{i}=\min \left\{\left(x_{i}\right)^{1 / 4}, t_{i}\right\}
$$

so that

$$
0 \leqq w_{i} \leqq t_{i}, \quad w_{i} \rightarrow \infty, \quad \text { and } \quad w_{i} / \sqrt{x_{i}} \rightarrow 0
$$

Now choose sequences of positive integers $\left\{M_{i}^{\prime}\right\},\left\{N_{i}^{\prime}\right\}$ such that

$$
\begin{aligned}
& M_{i}^{\prime}-1 \leqq x_{i} / \alpha+w_{i} \sqrt{x_{i} / \alpha}<M_{i}^{\prime} \leqq M_{i} \\
& N_{i} \leqq N_{i}^{\prime}<x_{i} / \alpha-w_{i} \sqrt{x_{i} / \alpha} \leqq N_{i}^{\prime}+1 .
\end{aligned}
$$

Then

$$
\begin{equation*}
\sum_{n=N_{i}}^{M_{i}} n^{r} c_{n}\left(x_{i}\right)=\left(\sum_{n=N_{i}}^{N_{i}^{\prime}-1}+\sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}}+\sum_{n=M_{i}^{\prime}+1}^{M_{i}}\right) n^{r} c_{n}\left(x_{i}\right) \tag{2.1}
\end{equation*}
$$

(The first series on the right side of (2.1) is defined to be zero if $N_{i}^{\prime}=N_{i}$ as is the last series if $M_{i}^{\prime}=M_{i}$.)

Since

$$
\left(N_{i}^{\prime}\right)^{r} \sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}} c_{n}\left(x_{i}\right) \leqq \sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}} n^{r} c_{n}\left(x_{i}\right) \leqq\left(M_{i}^{\prime}\right)^{r} \sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}} c_{n}\left(x_{i}\right)
$$

and

$$
\left(N_{i}^{\prime}\right)^{r} \sim\left(x_{i} / \alpha\right)^{r},\left(M_{i}^{\prime}\right)^{r} \sim\left(x_{i} / \alpha\right)^{r} \quad \text { as } i \rightarrow \infty,
$$

if follows that

$$
\begin{aligned}
\sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}} n^{r} c_{n}\left(x_{i}\right) & \sim\left(x_{i} / \alpha\right)^{r} \sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}} c_{n}\left(x_{i}\right) \\
& =\left(x_{i} / \alpha\right)^{r}\left(\sum_{n=q}^{\infty}-\sum_{n=q}^{N_{i}^{\prime-1}}-\sum_{n=M_{i}^{\prime}+1}^{\infty}\right) c_{n}\left(x_{i}\right) \quad \text { as } i \rightarrow \infty .
\end{aligned}
$$

Since

$$
\sum_{n=q}^{\infty} c_{n}\left(x_{i}\right) \rightarrow 1 \quad \text { as } i \rightarrow \infty
$$

we have, by parts (i) and (ii) with $r=0$, that

$$
\begin{equation*}
\sum_{n=N_{i}^{\prime}}^{M_{i}^{\prime}} n^{r} c_{n}\left(x_{i}\right) \sim\left(x_{i} / \alpha\right)^{r} \quad \text { as } i \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Further, from (2.1), (2.2), and parts (i) and (ii), we obtain

$$
\sum_{n=N_{i}}^{M_{i}} n^{r} c_{n}\left(x_{i}\right) \sim\left(x_{i} / \alpha\right)^{r} \quad \text { as } i \rightarrow \infty
$$

as required.
Part (iv). An application of the mean value theorem shows that in order to prove the desired result it suffices to show that

$$
S:=x^{-r} \sum_{n=M}^{\infty}(\sqrt{n}-\sqrt{M}) n^{r} c_{n}(x)=o(1) \quad \text { as } t, x \rightarrow \infty .
$$

To prove this observe that since $M>x / \alpha$ we have

$$
\sqrt{\alpha / x}(n-M) / 2 \geqq \sqrt{n}-\sqrt{M}
$$

and hence

$$
\begin{aligned}
& 0 \leqq S \leqq \sqrt{\alpha / 2} x^{-r-1 / 2} \sum_{n=M}^{\infty}(n-M) n^{r} c_{n}(x) \\
&=\sqrt{\alpha / 2} x^{-r-1 / 2}\left\{\sum_{M \leqq n \leqq x / \alpha+x^{\xi}}\right. \\
&\left.\quad+\sum_{n>x / \alpha+x^{\xi}(\geqq M)}\right\}(n-M) n^{r} c_{n}(x)
\end{aligned}
$$

$$
=: S_{1}+S_{2}
$$

where $1 / 2<\xi<2 / 3$.
Since

$$
M>x / \alpha+t \sqrt{x / \alpha} \quad \text { and } \quad n-M<n-x / \alpha,
$$

it follows from Lemmas 3 and 1 (ii) that

$$
\begin{aligned}
S_{1}=O\left\{x^{-1 / 2} e^{-x} \sum_{x / \alpha+t \sqrt{x / \alpha} \leqq n \leqq x / \alpha+x^{\xi}}\right. & \\
& \left.(n-x / \alpha) n^{r} \frac{x^{\alpha n+\beta-r-1}}{\Gamma(\alpha n+\beta)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =O\left\{x^{-1 / 2} e^{-x} \sum_{x / \alpha+t \sqrt{x / \alpha} \leqq n \leqq x / \alpha+x^{\xi}}\right. \\
& \left.(n-x / \alpha) \frac{x^{\alpha n+\beta-r-1}}{\Gamma(\alpha n+\beta-r)}\right\} \\
& =O\left\{x^{-1} \sum_{x / \alpha+t \sqrt{x / \alpha} \leqq n \leqq x / \alpha+x^{\xi}}\right. \\
& \left.(n-x / \alpha) \exp \left(-\frac{\alpha^{2}(n-x / \alpha)^{2}}{2 x}\right)\right\} \\
& =o(1)+O\left\{x^{-1} \int_{t \sqrt{x / \alpha}}^{\infty} y \exp \left(-\frac{\alpha^{2} y^{2}}{2 x}\right) d y\right\} \\
& =o(1)+O\left\{\int_{t \sqrt{\alpha / 2}}^{\infty} u \exp \left(-u^{2}\right) d u\right\}=o(1) \text { as } t, x \rightarrow \infty .
\end{aligned}
$$

Next, by Lemmas 3 and 1 (i), we have that, as $x \rightarrow \infty$,

$$
\begin{aligned}
S_{2} & =O\left\{x^{1 / 2} e^{-x} \sum_{n>x / \alpha+x^{\xi}} n^{r+1} \frac{x^{\alpha n+\beta-r-2}}{\Gamma(\alpha n+\beta)}\right\} \\
& =O\left\{x^{1 / 2} e^{-x} \sum_{n>x / \alpha+x^{\xi}} \frac{x^{\alpha n+\beta-r-2}}{\Gamma(\alpha n+\beta-r-1)}\right\} \\
& =O\left\{x^{1 / 2} e^{-x^{\eta}}\right\}=o(1)
\end{aligned}
$$

If follows that $S=o(1)$ as $t, x \rightarrow \infty$.
Theorem 2. Suppose that $\left\{s_{n}\right\}$ is a sequence such that $\left(\mathrm{T}_{r}\right)$ holds and

$$
b(x)=O\left(x^{r}\right) \text { as } x \rightarrow \infty
$$

Then $s_{n}=O\left(n^{r}\right)$.
Proof. Following Sitaraman ([14], proof of Theorem 1) define

$$
\sigma_{n}:=n^{-r} s_{n}, \sigma_{1}(n):=\max _{v \leqq n} \sigma_{v}, \text { and } \sigma_{2}(n):=\max _{v \leqq n}\left(-\sigma_{v}\right) .
$$

We assume that $\left\{\sigma_{n}\right\}$ is unbounded and show that this leads to a contradiction.

There are two logical possibilities:
Case (A). $\sigma_{1}(n) \geqq \sigma_{2}(n)$ for infinitely many values of n.
Case (B). $\sigma_{1}(n)<\sigma_{2}(n)$ for all n sufficiently large.
First, suppose that Case (A) holds. Then in view of our assumption we conclude that $\sigma_{1}(n) \rightarrow \infty$. Now write

$$
\begin{equation*}
b(x)=\left(\sum_{n=q}^{N-1}+\sum_{n=N}^{M-1}+\sum_{n=M}^{\infty}\right) c_{n}(x) s_{n} \tag{2.3}
\end{equation*}
$$

$$
=: T_{1}(x)+T_{2}(x)+T_{3}(x)
$$

where first N and then M are chosen as follows. Corresponding to any positive $H>\sigma_{1}(q)$ there exist integers $N=N(H)>q$ such that

$$
\begin{equation*}
\sigma_{N}=\sigma_{1}(N)>2 H, \quad \sigma_{1}(N) \geqq \sigma_{2}(N) . \tag{2.4}
\end{equation*}
$$

Take the least value of N and then the least $M=M(H)>N$ such that
(2.5) $\quad \sigma_{M} \leqq \frac{1}{2} \sigma_{N}$.

There are such M 's when H is large, for otherwise $\sigma_{n} \rightarrow \infty$, and then Lemma 3 and the total regularity of the ($B, \alpha, \beta-r$) method ($[9]$, Theorem 9) would imply that

$$
x^{-r} b(x) \rightarrow \infty \quad \text { as } x \rightarrow \infty,
$$

contradicting the hypothesis $b(x)=O\left(x^{r}\right)$.
In view of Lemma 5, and the choice of M and N in (2.4) and (2.5), we have that

$$
K\left(M^{1 / 2}-N^{1 / 2}\right)>\sigma_{1}(N)\left\{\left(\frac{N}{M}\right)^{r}-\frac{1}{2}\right\}-K^{\prime}
$$

where K and K^{\prime} are positive constants (cf. [14], proof of Theorem 1). Now we have either

$$
\left(\frac{N}{M}\right)^{r}>\frac{3}{4} \quad \text { or }\left(\frac{M}{N}\right)^{r} \geqq \frac{4}{3} .
$$

In the first case,

$$
K\left(M^{1 / 2}-N^{1 / 2}\right)>\frac{1}{4} \sigma_{1}(N)-K^{\prime}
$$

while in the second case

$$
M^{1 / 2}-N^{1 / 2} \geqq N^{1 / 2}\left\{\left(\frac{4}{3}\right)^{1 /(2 r)}-1\right\} .
$$

Hence

$$
\begin{equation*}
t:=t(H)=\frac{1}{2}\left(M^{1 / 2}-N^{1 / 2}\right) \rightarrow \infty \quad \text { as } N \rightarrow \infty(\text { or } H \rightarrow \infty) \tag{2.6}
\end{equation*}
$$

Next, let

$$
\begin{equation*}
x:=x(H)=\frac{\alpha}{4}\left(M^{1 / 2}+N^{1 / 2}\right)^{2} \tag{2.7}
\end{equation*}
$$

so that $x \rightarrow \infty$ as $H \rightarrow \infty$, since $M>N \rightarrow \infty$ as $H \rightarrow \infty$. It follows from (2.6) and (2.7) that

$$
\left\{\begin{array}{l}
M>x / \alpha+t \sqrt{x / \alpha} \tag{2.8}\\
q<N<x / \alpha-t \sqrt{x / \alpha}
\end{array}\right.
$$

where $t, x \rightarrow \infty$ as $H \rightarrow \infty$.
In the analysis which follows, suppose that N, M and x are chosen as in (2.4), (2.5) and (2.7) and consequently satisfy (2.8). Therefore $t, x \rightarrow \infty$ as $H \rightarrow \infty$ and the properties (i), (ii), (iii) and (iv) of Lemma 7 hold. With reference to (2.3), we see, that as $H \rightarrow \infty$

$$
\begin{align*}
T_{1}(x) & \geqq-\sigma_{2}(N) \sum_{n=q}^{N-1} n^{r} c_{n}(x) \tag{2.9}\\
& \geqq-\sigma_{1}(N) \sum_{n=q}^{N} n^{r} c_{n}(x)=-\sigma_{1}(N) o(1)
\end{align*}
$$

by Lemma 7 (i). Further, since M is the least integer greater than N which satisfies (2.5), we have

$$
\begin{equation*}
\sigma_{n}>\frac{1}{2} \sigma_{N}=\frac{1}{2} \sigma_{1}(N) \quad \text { for } N \leqq n \leqq M-1 . \tag{2.10}
\end{equation*}
$$

Thus, as $H \rightarrow \infty$,
(2.11) $T_{2}(x)>\frac{1}{2} \sigma_{1}(N) \sum_{n=N}^{M-1} n^{r} c_{n}(x) \sim \frac{1}{2} \sigma_{1}(N)(x / \alpha)^{r}$,
by Lemma 7 (iii).
Next, by Lemma 5, there are positive constants K and K^{\prime} such that

$$
s_{n}-s_{M-1} \geqq-K\left(n^{r+1 / 2}-(M-1)^{r+1 / 2}\right)-K^{\prime}(M-1)^{r}
$$

for $n \geqq M$. Thus

$$
\begin{align*}
s_{n} & >s_{M-1}-K\left(n^{r+1 / 2}-(M-1)^{r+1 / 2}\right)-O\left(M^{r-1 / 2}\right)-K^{\prime} M^{r} \tag{2.12}\\
& >-K\left(n^{r+1 / 2}-M^{r+1 / 2}\right)-O\left(M^{r}\right)
\end{align*}
$$

for $n \geqq M$, since, by (2.10) and (2.4),

$$
s_{M-1}=\sigma_{M-1}(M-1)^{r}>\frac{1}{2} \sigma_{N}(M-1)^{r}>H(M-1)^{r}>0 .
$$

By (2.12) and Lemma 7 (ii) and (iv), we have

$$
\begin{equation*}
T_{3}(x) \geqq-K \sum_{n=M}^{\infty}\left(n^{r+1 / 2}-M^{r+1 / 2}\right) c_{n}(x)-O(1) \sum_{n=M}^{\infty} n^{r} c_{n}(x) \tag{2.13}
\end{equation*}
$$

$$
\geqq-o\left(x^{r}\right) \quad \text { as } H \rightarrow \infty .
$$

Substituting (2.9), (2.11) and (2.13) in (2.3), we get

$$
x^{-r} b(x) \geqq \sigma_{1}(N)\left(\frac{1}{2} \alpha^{-r}-o(1)\right)-o(1) \rightarrow \infty \quad \text { as } H \rightarrow \infty,
$$

since $\sigma_{1}(N) \rightarrow \infty$ as $N \rightarrow \infty$ (or $H \rightarrow \infty$). This implies that $x^{-r} b(x)$ is unbounded above, contradicting the hypothesis $b(x)=O\left(x^{r}\right)$.

Next, suppose that Case (B) holds (i.e., there exists an M_{0} such that $\sigma_{2}(n)>\sigma_{1}(n)$ for $\left.n \geqq M_{0}\right)$. Then in view of our underlying assumption we have $\sigma_{2}(n) \rightarrow \infty$. Now write

$$
\begin{align*}
b(x) & =\left(\sum_{n=q}^{N}+\sum_{n=N+1}^{M}+\sum_{n=M+1}^{\infty}\right) c_{n}(x) s_{n} \tag{2.14}\\
& =: T_{1}(x)+T_{2}(x)+T_{3}(x)
\end{align*}
$$

where first M and then N are chosen as follows. Corresponding to any positive $H>\sigma_{2}\left(M_{0}\right)$ choose the least $M=M(H)$ such that

$$
\begin{equation*}
\sigma_{2}(n)>\sigma_{1}(n) \quad \text { for } n \geqq M, \sigma_{M}=-\sigma_{2}(M)<-2 H . \tag{2.15}
\end{equation*}
$$

Then choose the largest $N=N(H) \in(q, M)$ for which

$$
\begin{equation*}
\sigma_{N} \geqq \frac{1}{2} \sigma_{M}=-\frac{1}{2} \sigma_{2}(M) . \tag{2.16}
\end{equation*}
$$

There are such N 's when H is large, for otherwise $\sigma_{n} \rightarrow-\infty$ and then Lemma 3 and the total regularity of the ($B, \alpha, \beta-r$) method would imply that

$$
x^{-r} b(x) \rightarrow-\infty \quad \text { as } x \rightarrow \infty,
$$

contradicting the hypothesis $b(x)=O\left(x^{r}\right)$.
The choice of M and N in (2.14) and (2.15), and Lemma 5 imply that there are positive constants K, K^{\prime} for which

$$
\begin{aligned}
K\left(M^{1 / 2}-N^{1 / 2}\right) & \geqq \sigma_{2}(M)\left\{1-\frac{1}{2}\left(\frac{N}{M}\right)^{r}\right\}-K^{\prime}\left(\frac{N}{M}\right)^{r} \\
& \geqq \frac{1}{2} \sigma_{2}(M)-K^{\prime} \rightarrow \infty
\end{aligned}
$$

as $H \rightarrow \infty$ (cf. [14], proof of Theorem 1). Hence defining $t=t(H)$ and $x=x(H)$ as in (2.6) and (2.7) we see that $t, x \rightarrow \infty$ as $H \rightarrow \infty$, and that (2.8) holds. Consequently, as $H \rightarrow \infty$, the properties (i), (ii), (iii) and (iv) of Lemma 7 hold. The rest of the proof of Case (B) is exactly as given in ([14], case (ii) of Theorem 1) with the roles of N and M interchanged. This rules out the possibility of Case (B) holding.

Lemma 8. (cf. [8], Hilfssatz 5). Suppose $h_{n}=n-x / \alpha, 0<H<1$, $(1-H) x / \alpha \leqq n \leqq(1+H) x / \alpha$, and k is any integer $\geqq 2$. Then, as $x \rightarrow \infty$

$$
c_{n}(x)=\frac{\alpha}{\sqrt{2 \pi x}} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}+g_{k}+R_{k}\right)
$$

where

$$
R_{k}=O\left\{\frac{\left|h_{n}\right|^{k+1}+1}{x^{k}}\right\}, \quad g_{k}=\sum_{i=1}^{k} \sum_{j=0}^{i+1} b_{i, j} \frac{h_{n}^{j}}{x^{i}},
$$

and the $b_{i, j}$'s are constants with $b_{1,2}=b_{k, k+1}=0$.
(Note: In particular, the result is true for all n such that $\left|h_{n}\right| \leqq x^{\xi}$, $1 / 2<\xi<2 / 3$.)

Proof. Since

$$
\alpha n=\alpha h_{n}+x \quad \text { and } \quad 0<1-H \leqq \frac{\alpha h_{n}}{x}+1 \leqq 1+H
$$

if follows from a form of Stirling's formula ([1], p. 48, equation 12) that, as $x \rightarrow \infty$,
(2.17) $\log \Gamma(\alpha n+\beta)$

$$
\begin{aligned}
& =\left(\alpha h_{n}+x+\beta-1 / 2\right) \log x-\alpha h_{n}-x+(1 / 2) \log 2 \pi \\
& +\left(\alpha h_{n}+x+\beta-1 / 2\right) \log \left(\frac{\alpha h_{n}}{x}+1\right) \\
& +\sum_{r=1}^{k} \frac{(-1)^{r+1} B_{r+1}(\beta)}{r(r+1) x^{r}}\left(\frac{\alpha h_{n}}{x}+1\right)^{-r}+o\left(\frac{1}{x^{k+1}}\right),
\end{aligned}
$$

where $k \geqq 1$ and each $B_{r+1}(\beta)$ is a Bernoulli polynomial. Since

$$
\left|\frac{\alpha h_{n}}{x}\right| \leqq H<1
$$

we have

$$
\begin{equation*}
\left(\frac{\alpha h_{n}}{x}+1\right)^{-r}=\sum_{j=0}^{k-r}\binom{-r}{j}\left(\frac{\alpha h_{n}}{x}\right)^{j}+o\left\{\left(\frac{\left|h_{n}\right|}{x}\right)^{k-r+1}\right\}, \tag{2.18}
\end{equation*}
$$

and
(2.19) $\log \left(\frac{\alpha h_{n}}{x}+1\right)=\sum_{j=1}^{k} \frac{(-1)^{j-1}}{j}\left(\frac{\alpha h_{n}}{x}\right)^{j}+O\left\{\left(\frac{\left|h_{n}\right|}{x}\right)^{k+1}\right\}$.

It follows from (2.18) that
(2.20) $\sum_{r=1}^{k} \frac{(-1)^{r+1} B_{r+1}(\beta)}{r(r+1) x^{r}}\left(\frac{\alpha h_{n}}{x}+1\right)^{-r}$

$$
\begin{aligned}
& =\sum_{r=1}^{k} \sum_{j=0}^{k-r} d_{r, j} \frac{h_{n}^{j}}{x^{r+j}}+\sum_{r=1}^{k} \frac{1}{x^{r}} O\left\{\left(\frac{\left|h_{n}\right|}{x}\right)^{k-r+1}\right\} \\
& =\sum_{i=1}^{k} \sum_{j=0}^{i-1} d_{i-j, j} \frac{h_{n}^{j}}{x^{i}}+O\left\{\frac{\left|h_{n}\right|^{k+1}+1}{x^{k+1}}\right\},
\end{aligned}
$$

where the $d_{r, j}$'s are constants.
If we denote the double sum on the right side of (2.20) by t_{k} and then substitute (2.19) and (2.20) in (2.16) we obtain, after some simplification,

$$
\begin{align*}
& \log c_{n}(x) \tag{2.21}\\
& =\log \alpha-x+\left(\alpha h_{n}+x+\beta-1\right) \log x-\log \Gamma(\alpha n+\beta) \\
& =\log \frac{\alpha}{\sqrt{2 \pi x}}+\alpha h_{n} \\
& +\left(\alpha h_{n}+x+\beta-1 / 2\right) \sum_{j=1}^{k} \frac{(-1)^{j}}{j}\left(\frac{\alpha h_{n}}{x}\right)^{j}-t_{k} \\
& +O\left\{\frac{\left|h_{n}\right|^{k+1}+1}{x^{k}}\right\} \text { as } x \rightarrow \infty .
\end{align*}
$$

We now combine the O-term with the term

$$
\frac{(-1)^{k}\left(\alpha h_{n}\right)^{k+1}}{k x^{k}}
$$

on the right side of (2.20) into R_{k} to get, after a further simplification,

$$
\log c_{n}(x)=\log \frac{\alpha}{\sqrt{2 \pi x}}-\frac{\alpha^{2} h_{n}^{2}}{2 x}+g_{k}+R_{k}
$$

where

$$
\begin{aligned}
& R_{k}=O\left\{\frac{\left|h_{n}\right|^{k+1}+1}{x^{k}}\right\} \text { and } \\
& g_{k}=\sum_{i=1}^{k} \sum_{j=0}^{i+1} b_{i, j} \frac{h_{n}^{j}}{x^{i}}
\end{aligned}
$$

with $b_{1,2}=b_{k, k+1}=0$.

3. An equivalence theorem.

Lemma 9 ([11], Lemma 3 or [8], Hilfssatz 3). Suppose that $s_{n}=O\left(n^{r}\right)$, and that

$$
\sum_{n=0}^{\infty} s_{n} \exp \left\{-\frac{\alpha(n-x)^{2}}{2 x}\right\}=o\left(x^{1 / 2+b}\right)
$$

as $x \rightarrow \infty$ where $b \geqq 0$. Then, for each integer $j \geqq 0$ and each $\epsilon>0$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} s_{n}(n-x)^{j} \exp \left\{-\frac{\alpha(n-x)^{2}}{2 x}\right\}=o\left(x^{(j+1) / 2+b+\epsilon}\right) \\
& \text { as } x \rightarrow \infty
\end{aligned}
$$

Lemma 10 ([11], Theorem 2 or [8], Hilfssatz 4 with $q=0$). Suppose that $s_{n}=O\left(n^{r}\right), h_{n}=n-x / \alpha$, and that

$$
\sum_{k=0}^{\infty} s_{k} \exp \left\{-\frac{\alpha(n-k)^{2}}{2 n}\right\}=o\left(n^{1 / 2}\right) \quad \text { as } n \rightarrow \infty
$$

Then

$$
\sum_{n=0}^{\infty} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o\left(x^{1 / 2}\right) \quad \text { as } x \rightarrow \infty
$$

Theorem 3. (cf. [11], Theorems 3 and 6). Suppose that $s_{n}=O\left(n^{r}\right)$. Then $s_{n} \rightarrow l(B, \alpha, \beta)$ if and only if $s_{n} \rightarrow l\left(V_{\alpha}\right)$.

Proof. Let

$$
\begin{aligned}
& 1 / 2<\xi<2 / 3, \quad h_{n}=n-x / \alpha, \\
& \bar{b}(x):=\sum_{\left|h_{n}\right| \leqq x^{\xi}} c_{n}(x) s_{n} \text { and } \\
& \bar{t}(x):=\frac{\alpha}{\sqrt{2 \pi x}} \sum_{\left|h_{n}\right| \leqq x^{\xi}} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) s_{n} .
\end{aligned}
$$

We first prove that $s_{n} \rightarrow l\left(V_{\alpha}\right)$ implies $s_{n} \rightarrow l(B, \alpha, \beta)$. Because of the regularity of both methods it suffices to prove this result for $l=0$. Suppose therefore that $s_{n} \rightarrow 0\left(V_{\alpha}\right)$. In order to show that $s_{n} \rightarrow 0(B, \alpha, \beta)$ it is enough, by Lemma 4, to prove that $\bar{b}(x)=o(1)$ as $x \rightarrow \infty$. By Lemma 8 , for x sufficiently large and an integer $k>2 r+1$, we have

$$
\begin{align*}
& \bar{b}(x)-\bar{t}(x) \tag{3.1}\\
& =\sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n}\left\{c_{n}(x)-\exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\alpha}{\sqrt{2 \pi x}} \sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \sum_{\mu=1}^{\infty} \frac{\left(g_{k}+R_{k}\right)^{\mu}}{\mu!} \\
& =\frac{\alpha}{\sqrt{2 \pi x}}\left(A_{1}(x)+A_{2}(x)+A_{3}(x)\right),
\end{aligned}
$$

where

$$
\begin{equation*}
A_{1}(x):=\sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \sum_{\mu=1}^{2 s} \frac{g_{k}^{\mu}}{\mu!}, \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
A_{2}(x):=\sum_{\mid h_{n} \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \sum_{\mu=1}^{2 s} \frac{\left(g_{k}+R_{k}\right)^{\mu}-g_{k}^{\mu}}{\mu!}, \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
A_{3}(x):=\sum_{\mid h_{n} \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \sum_{\mu=2 s+1}^{\infty} \frac{\left(g_{k}+R_{k}\right)^{\mu}}{\mu!} \tag{3.4}
\end{equation*}
$$

and the integer $s>r-1 / 2$.
We proceed to show that each of the above is $o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$.
To see that $A_{1}(x)=o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$ consider, for $1 \leqq \mu \leqq 2 s$,

$$
v(x):=\sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \frac{g_{k}^{\mu}}{\mu!} .
$$

The expansion of g_{k} given in Lemma 8 shows that g_{k}^{μ} is a finite combination of terms of the form $x^{-i} h_{n}^{j}$, where (i) $0 \leqq j \leqq \mu$ for $i=\mu$ and (ii) $0 \leqq j \leqq i+\mu$ for $i \geqq \mu+1$. Hence, if we can show that

$$
\begin{aligned}
& v_{i, j}: \\
&=\sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \frac{h_{n}^{j}}{x^{i}} \\
&=o\left(x^{1 / 2}\right) \text { as } x \rightarrow \infty
\end{aligned}
$$

for the i 's and j 's in (i) and (ii) it will follow that

$$
v(x)=o\left(x^{1 / 2}\right)
$$

and hence that

$$
A_{1}(x)=o\left(x^{1 / 2}\right) \quad \text { as } x \rightarrow \infty .
$$

Now our hypotheses together with Lemma 10, and Lemma 9 with $b=0$, $\epsilon=1 / 4$, imply that, for each integer $j \geqq 0$,

$$
\sum_{n=0}^{\infty} s_{n} h_{n}^{j} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o\left(x^{(j+1) / 2+1 / 4}\right) \quad \text { as } x \rightarrow \infty .
$$

An application of Lemma 6 shows that, for each integer $j \geqq 0$,

$$
v_{i, j}=o\left(x^{-i+j / 2+3 / 4}\right) \quad \text { as } x \rightarrow \infty .
$$

From this it is clear that, in both cases (i) and (ii), $v_{i, j}=o\left(x^{1 / 2}\right)$ and hence that

$$
A_{1}(x)=o\left(x^{1 / 2}\right) \quad \text { as } x \rightarrow \infty
$$

To prove that $A_{2}(x)=o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$, it suffices to show that, for $1 \leqq \mu \leqq 2 s$,

$$
\begin{aligned}
u(x): & =\sum_{\mid h_{n} \leqq x^{\xi}} n^{r} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\left|\left(g_{k}+R_{k}\right)^{\mu}-g_{k}^{\mu}\right| \\
& =o\left(x^{1 / 2}\right) \text { as } x \rightarrow \infty .
\end{aligned}
$$

Since $k \geqq 2,1 / 2<\xi<2 / 3$, and $\left|h_{n}\right| \leqq x^{\xi}$ we have, by Lemma 8, that, as $x \rightarrow \infty$,

$$
R_{k}=O\left\{\frac{\left|h_{n}\right|^{k+1}+1}{x^{k}}\right\}=O(1) \quad \text { and } \quad g_{k}=O(1)
$$

Hence,

$$
\begin{aligned}
\left|\left(g_{k}+R_{k}\right)^{\mu}-g_{k}^{\mu}\right| & \leqq \sum_{j=1}^{\mu}\binom{\mu}{j}\left|R_{k}\right|^{j}\left|g_{k}\right|^{\mu-j} \\
& =O\left(\left|R_{k}\right|\right)=O\left\{\frac{\left|h_{n}\right|^{k+1}+1}{x^{k}}\right\}
\end{aligned}
$$

and so,

$$
\begin{aligned}
& u(x)=O\left\{x^{-k} \sum_{\left|h_{n}\right| \leqq x^{\xi}} n^{r}\left(1+\left|h_{n}\right|^{k+1}\right) \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\right\} \\
& \text { as } x \rightarrow \infty
\end{aligned}
$$

By Lemma 6 , since $k>2 r+1$,

$$
\begin{aligned}
u(x) & =O\left(x^{r-k+1 / 2}\right)+O\left(x^{r-k / 2+1}\right) \\
& =o\left(x^{1 / 2}\right) \quad \text { as } x \rightarrow \infty
\end{aligned}
$$

Finally, to show that $A_{3}(x)=o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$, we observe that, since $1 / 2<\xi<2 / 3$, and $\left|h_{n}\right| \leqq x^{\xi}$, we have, by Lemma 8,

$$
\begin{equation*}
g_{k}+R_{k}=g_{2}+R_{2}=O\left\{\frac{\left|h_{n}\right|+1}{x}+\frac{\left|h_{n}\right|^{3}}{x^{2}}\right\} . \tag{3.5}
\end{equation*}
$$

In particular, $g_{k}+R_{k}=o(1)$ as $x \rightarrow \infty$ and hence

$$
\sum_{\mu=2 s+1}^{\infty} \frac{\left|g_{k}+R_{k}\right|^{\mu}}{\mu!}=O\left(\left|g_{k}+R_{k}\right|^{2 s+1}\right) \text { as } x \rightarrow \infty .
$$

Thus, from this and (3.5), we obtain

$$
\begin{aligned}
A_{3}(x) & =O\left\{\sum_{\left|h_{n}\right| \leqq x^{\xi}} n^{r} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \sum_{\mu=2 s+1}^{\infty} \frac{\left|g_{k}+R_{k}\right|^{\mu}}{\mu!}\right\} \\
& =O\left\{\sum_{\left|h_{n}\right| \leqq x^{\xi}} n^{r} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\left|g_{k}+R_{k}\right|^{2 s+1}\right\} \\
& =O\left\{\sum_{\left|h_{n}\right| \leqq x^{\xi}} n^{r} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\left(\frac{1+\left|h_{n}\right|^{2 s+1}}{x^{2 s+1}}+\frac{\left|h_{n}\right|^{6 s+3}}{x^{4 s+2}}\right)\right\} .
\end{aligned}
$$

Hence, by Lemma 6, since $s>r-1 / 2$,

$$
\begin{aligned}
A_{3}(x) & =O\left(x^{-2 s+r-1 / 2}\right)+O\left(x^{-s+r}\right)+O\left(x^{-s+r}\right) \\
& =o\left(x^{1 / 2}\right) \text { as } x \rightarrow \infty
\end{aligned}
$$

Consequently, it follows from (3.1) that

$$
\bar{b}(x)-\bar{t}(x)=o(1) \quad \text { as } x \rightarrow \infty .
$$

Next, by our hypotheses, Lemma 10 , and Lemma 6 with $p=0$, we have that $\bar{t}(x)=o(1)$ as $x \rightarrow \infty$. Therefore $\bar{b}(x)=o(1)$ as $x \rightarrow \infty$. This completes the proof of the first part of the theorem.

We now prove that $s_{n} \rightarrow l(B, \alpha, \beta)$ implies $s_{n} \rightarrow l\left(V_{\alpha}\right)$. Again it is enough to prove the result for $l=0$ and we do this by following ($[8]$, Satz II). Suppose that $s_{n} \rightarrow 0(B, \alpha, \beta)$. Then by Lemmas 4 and 8 we have

$$
\begin{aligned}
& \frac{\alpha}{\sqrt{2 \pi x}} \sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}+g_{k}+R_{k}\right) \\
& =o(1) \text { as } x \rightarrow \infty,
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \bar{t}(x)+\frac{\alpha}{\sqrt{2 \pi x}}\left(A_{1}(x)+A_{2}(x)+A_{3}(x)\right) \\
& =o(1) \text { as } x \rightarrow \infty,
\end{aligned}
$$

where A_{1}, A_{2}, A_{3} are defined by (3.2), (3.3), (3.4) respectively with $k>2 r+1$ and the integer $s>r-1 / 2$.

Observe that in the proof of the first part of the theorem we only required the hypothesis $s_{n}=O\left(n^{r}\right)$ to establish that A_{2} and A_{3} were $o(\sqrt{x})$. Since the hypothesis is still operative we now have

$$
\begin{equation*}
\bar{t}(x)+\frac{\alpha}{\sqrt{2 \pi x}} A_{1}(x)=o(1) \quad \text { as } x \rightarrow \infty . \tag{3.6}
\end{equation*}
$$

Further, by Lemma 6 (iii) with $p=0$, we have $\bar{t}(x)=O\left(x^{r}\right)$. Let

$$
\gamma:=\inf \left\{\delta: \bar{t}(x)=O\left(x^{\delta}\right)\right\} .
$$

Then either $\gamma<0$ or $0 \leqq \gamma \leqq r$. We wish to show that $\bar{t}(x)=o(1)$ as $x \rightarrow \infty$ in either case. This is evidently so when $\gamma<0$. Suppose therefore that $0 \leqq \gamma \leqq r$. Consider $A_{1}(x)$, and for $1 \leqq \mu \leqq 2 s$, let

$$
p(x):=\sum_{\mid h_{n} \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \frac{g_{k}^{\mu}}{\mu!},
$$

where g_{k}^{μ} is a finite combination of terms of the form $x^{-i} h_{n}^{j}$ with (i) $0 \leqq j \leqq \mu$ for $i=\mu$ and (ii) $0 \leqq j \leqq i+\mu$ for $i \geqq \mu+1$. For the i 's and j 's in (i) and (ii) let

$$
p_{i, j}:=\sum_{\left|h_{n}\right| \leqq x^{\xi}} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right) \frac{h_{n}^{j}}{x^{i}} .
$$

Since $\bar{t}(x)=o\left(x^{\gamma+1 / 8}\right)$ as $x \rightarrow \infty$ it follows, by Lemma 6 (i) and (ii) with $p=0$, that

$$
\sum_{n=0}^{\infty} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o\left(x^{1 / 2+\gamma+1 / 8}\right) \quad \text { as } x \rightarrow \infty
$$

Next, it follows from Lemma 9 with $b=\gamma+1 / 8$ and $\epsilon=1 / 8$ that, for each integer $j \geqq 0$,

$$
\sum_{n=0}^{\infty} s_{n} h_{n}^{j} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o\left(x^{j / 2+\gamma+3 / 4}\right) \quad \text { as } x \rightarrow \infty
$$

Lemma 6 implies that, for each integer $j \geqq 0$,

$$
\sum_{\mid h_{n} \leqq x^{\xi}} s_{n} h_{n}^{j} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o\left(x^{j / 2+\gamma+3 / 4}\right) \quad \text { as } x \rightarrow \infty .
$$

Thus,

$$
\begin{aligned}
p_{i, j} & =o\left(x^{-i+j / 2+\gamma+3 / 4}\right) \\
& =o\left(x^{\gamma+1 / 4}\right) \quad \text { as } x \rightarrow \infty,
\end{aligned}
$$

in both cases (i) and (ii). It follows that

$$
A_{1}(x)=o\left(x^{\gamma+1 / 4}\right) \quad \text { as } x \rightarrow \infty
$$

and hence, by (3.6), that

$$
\bar{t}(x)=o\left(x^{\gamma-1 / 4}\right)+o(1) \quad \text { as } x \rightarrow \infty .
$$

Now if $\gamma>1 / 4$, then

$$
\bar{t}(x)=o\left(x^{\gamma-1 / 4}\right),
$$

and this contradicts the definition of γ. Hence $\gamma \leqq 1 / 4$ and so

$$
\bar{t}(x)=o(1) \quad \text { as } x \rightarrow \infty .
$$

If follows, by Lemma 6 (i) and (ii) with $p=0$, that

$$
\frac{\alpha}{\sqrt{2 \pi x}} \sum_{n=0}^{\infty} s_{n} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)=o(1) \quad \text { as } x \rightarrow \infty
$$

so that $s_{n} \rightarrow l\left(V_{\alpha}\right)$.
4. Proof of theorem 1. The hypothesis $s_{n} \rightarrow l(B, \alpha, \beta)$ implies that $b(x)=O\left(x^{r}\right)$ as $x \rightarrow \infty$ and hence, by Theorem 2, that $s_{n}=O\left(n^{r}\right)$. Theorem 3 now shows that $s_{n} \rightarrow l\left(V_{\alpha}\right)$ while Lemma 2 shows that there is no loss in generality in making the restriction $0<\alpha<1$. It follows by a result due to Faulhaber [8] or Bingham [2] that $s_{n} \rightarrow l\left(S_{1-\alpha}\right)$ and hence, by a result due to Sitaraman ([14], Theorem 2), that $s_{n} \rightarrow l\left(C_{2 r}\right)$.

References

1. Bateman Manuscript Project, Higher transcendental functions, vol. 1 (McGraw-Hill, 1953).
2. N. H. Bingham, On Valiron and circle convergence, Math Z. 186 (1984), 273-286.
3. _Tauberian theorems for summability methods of random-walk type, Journal London Math. Soc., (2) 30 (1984), 281-287.
4. D. Borwein, Relations between Borel-type methods of summability, Journal London Math. Soc. 35 (1960), 65-70.
5. On methods of summability based on integral functions $I I$, Proc. Cambridge Phil. Soc. 56 (1960), 125-131.
6. A Tauberian theorem for Borel-type methods of summability, Canadian Journal of Math. 21 (1969), 740-747.
7. D. Borwein and I. J. W. Robinson, A Tauberian theorem for Borel-type methods of summability, Journal Reine Angew. Math. 273 (1975), 153-164.
8. G. Faulhaber, Aquivalenzsatze für die Kreisverfahren der Limitierungstheorie, Math. Z. 66 (1956), 34-52.
9. G. H. Hardy, Divergent series, (Oxford, 1949).
10. G. H. Hardy and J. E. Littlewood, Theorems concerning the summability of series by Borel's exponential method, Rendiconti del Circolo Matematico di Palermo 41 (1916), 36-53.
11. J. M. Hyslop, The generalisation of a theorem on Borel summability, Proc. London Math. Soc. (2) 41 (1936), 243-256.
12. B. Kwee, An improvement on a theorem of Hardy and Littlewood, Journal London Math. Soc. (2) 28 (1983), 93-102.
13. C. T. Rajagopal, On a theorem connecting Borel and Cesàro summabilities, Journal Indian Math. Soc. 24 (1960), 433-442.
14. Y. Sitaraman, On Tauberian theorems for the S_{α}-method of summability, Math. Z. 95 (1967), 34-49.

The University of Western Ontario,
London, Ontario

[^0]: Received November 6, 1986.

