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In statistically stationary homogeneous incompressible turbulence, the average energy
transfer rate balance which exists at diffusion/dissipation-dominated length scales does
not reflect what actually happens locally in space and time. We use a highly resolved
direct numerical simulation of forced periodic turbulence to shed some light on the actual
fluctuating dynamics which occur at these very small scales and which are rubbed off
by averaging. Even though the viscous diffusion in physical space averages to zero and
fluctuates less intensely than all other terms (except the energy input rate) in the local (in
space–time) two-point energy balance, it fundamentally cannot be neglected. The local
unsteadiness and the interspace turbulence transport terms cannot be ignored either in the
interscale energy dynamics in spite of the fact that they also average to zero.
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1. Introduction

The evolution of turbulent kinetic energy in both physical and scale spaces is central
to the understanding and prediction of turbulent flows. Significant progress was made
over the past twenty years in the formulation of equations which govern this dual
interscale and interspace turbulent kinetic energy evolution: Hill (1997, 2001, 2002)
derived fully general two-point energy equations with/without Reynolds averaging which
generalised the Kármán–Howarth equation to any turbulent flow (anisotropic and/or
non-homogeneous) and which was first used for the analysis of non-homogeneous
turbulence data by Marati, Casciola & Piva (2004); Thiesset, Danaila & Antonia (2014)
used a triple decomposition and derived two-point energy equations with terms which
depend explicitly on large-scale coherent structures; and Larssen & Vassilicos (2023)
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applied a solenoidal/irrotational decomposition and adopted the procedure of Hill (2002)
to derive solenoidal and irrotational two-point energy equations which they refer to as
solenoidal and irrotational Kármán–Howarth–Monin–Hill (KHMH) equations.

In the case of statistically homogeneous and stationary forced turbulence, the average
aspect of this evolution collapses into a simple balance between average interscale
turbulence transfer rate and average turbulence dissipation rate in an intermediate range
of scales bounded from below by the Taylor length and from above by an integral length
scale. (The average two-point viscous diffusion rate is not negligible at scales below
the Taylor length, see Appendix B of Valente & Vassilicos (2015) and pp. 86–87 in
Frisch (1995).) Yasuda & Vassilicos (2018) and Larssen & Vassilicos (2023) showed how
unrepresentative this average balance is of what actually happens locally in space and time
in this intermediate range of scales.

In the range of scales below the Taylor length, the average turbulent kinetic energy
balance does not involve only interscale turbulence transfer and turbulence dissipation,
but also viscous diffusion in scale space. Whilst the turbulent energy evolution and
balance in the intermediate range is of paramount importance for reduced-order models
and coarse graining, it is essential in the dissipative range for determining the smallest,
viscosity-affected or dominated, local length and time scales. In the present study we
investigate how representative the average turbulent kinetic energy balance is of what
actually happens at length scales below the Taylor length in statistically stationary forced
periodic turbulence. To this end, we use the recently developed solenoidal interscale and
interspace turbulent kinetic energy equation (Larssen & Vassilicos 2023) and a highly
resolved direct numerical simulation (DNS) of forced Navier–Stokes turbulence with
periodic boundary conditions in all three directions. For the average turbulent kinetic
energy balance to be representative of the local (in space and time) turbulent kinetic energy
balance, the fluctuations of each term in the local balance must be small compared with
the non-zero average terms.

The following section describes our well-resolved DNS, the solenoidal and irrotational
KHMH equations, and the spatiotemporal average forms of these equations for statistically
homogeneous and stationary turbulence. Section 3 characterises the small-scale dynamics
globally in terms of standard deviations, skewnesses, flatness factors and correlation
coefficients. In § 4 we focus on energy transfer statistics conditioned on low and high
two-point kinetic energy regions. We conclude in § 5.

2. The DNS, KHMH and average KHMH equations

We use the same DNS code used by Yasuda & Vassilicos (2018) and Larssen & Vassilicos
(2023) with the exact same negative damping forcing (McComb et al. 2015), and study
a well-resolved DNS of statistically stationary turbulence that is periodic in all three
directions with size 5123 and kinematic viscosity ν = 0.003. The spatial resolution
fluctuates between kmaxη = 5.30 and 5.79 with standard deviation 0.11 and average
kmax〈η〉t = 5.50 where kmax is the highest resolved wavenumber, η is the Kolmogorov
length scale and 〈· · · 〉t denotes a time-average. The time-average Courant number is
〈C〉t = 0.19, the time-average Taylor length-based Reynolds number is 〈Reλ〉t = 81 and
the ratio of the box-size 2π to the time-average integral length scale 〈L〉t equals 5.8.
The integral length scale is defined in terms of the three-dimensional energy spectrum
E(k, t) as L(t) = (3π/4)

∫∞
0 k−1E(k, t) dk/K(t), where K(t) is the kinetic energy per unit

mass. The ratio of the time-average Taylor length 〈λ〉t to 〈L〉t equals 2.6. Statistics are
sampled over 27 turnover times T ≡ 〈L〉t/

√
2/3〈K〉t with T/10 time intervals. The DNS
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resolution parameters are satisfactory for accurately assessing small-scale dynamics at low
to moderate Reynolds number (Donzis, Yeung & Sreenivasan 2008; Yeung, Sreenivasan
& Pope 2018).

The KHMH equation governs the evolution of the velocity difference squared |δu|2
across scales, space and time; δu = δu(x, r, t) ≡ u+ − u− denotes the velocity difference
between fluctuating velocities u+ ≡ u(x+, t) and u− ≡ u(x−, t) at locations x+ and x−,
respectively, with centroid x = (x+ + x−)/2 and separation vector r = x+ − x−, δ f =
δ f (x, r, t) is the body-force difference, δp(x, r, t) is the pressure difference and ρ is the
density. The recently derived solenoidal and irrotational KHMH equations for statistically
homogeneous/periodic turbulence (Larssen & Vassilicos 2023) read (see Appendix A for
summary of notation and some more information on each KHMH term)

At + TS̄ + ΠS̄ = Dx,ν + Dr,ν − ε + I, (2.1)

ΠĪ = TĪ = 1
2
Tp, (2.2)

where At ≡ ∂(|δu|2)/∂t is the unsteadiness, or time-derivative, term; Dr,ν = 2ν∂2

(|δu|2)/∂r2
k is the viscous diffusion in scale space; Dx,ν ≡ ν∂2(|δu|2/2)/∂x2

k is the
viscous diffusion in physical space; ε ≡ [2ν(∂u+

i /∂x+
k )2 + 2ν(∂u−

i /∂x−
k )2] is twice the

sum of the pseudodissipation at x+ and x−; I ≡ 2δukδfk is the energy input rate and
Tp = −2∂(δukδp/ρ)/∂xk is the pressure-velocity term. For convenience, we also define
the overall viscous diffusion and dissipation term D ≡ Dr,ν + Dx,ν − ε. The solenoidal
and irrotational interscale transfer terms read ΠS̄ = 2δu · aΠS̄

and ΠĪ = 2δu · aΠĪ
, where

aΠS̄
and aΠĪ

are the solenoidal and irrotational components in centroid space x of
the momentum interscale transfer rate aΠ = δu · ∇rδu. Similarly, the solenoidal and
irrotational transport terms read TS̄ = 2δu · aTS̄

and TĪ = 2δu · aTĪ
, where aTS̄

and aTĪ
are

the solenoidal and irrotational components in centroid space of the momentum interscale
transport rate aT = 1

2(u+ + u−) · ∇xδu. Larssen & Vassilicos (2023) have shown that
(2.1) follows from the integrated two-point vorticity equation and (2.2) follows from
the integrated two-point Poisson equation for pressure. (More details on the Helmholtz
decomposition applied to the equation for δu and the derivation of equations (2.1)–(2.2)
can be found in Larssen & Vassilicos (2023). The nonlinear irrotational KHMH terms
ΠĪ and TĪ are calculated here in terms of the pressure-velocity term (2.2). The solenoidal
nonlinear KHMH terms ΠS̄ and TS̄ are obtained by first calculating Π = 2δu · aΠ and
T = 2δu · aT and then using ΠS̄ = Π − ΠĪ and TS̄ = T − TĪ .)

The spatiotemporal average of the solenoidal KHMH equation for statistically stationary
and homogeneous turbulence at scales small enough for a large-scale energy input rate I
to be negligible reads

〈ΠS̄〉 ≈ 〈Dr,ν〉 − 〈ε〉, (2.3)

where the angle brackets signify spatiotemporal averaging. As proven by Valente &
Vassilicos (2015) and confirmed by the DNS of Yasuda & Vassilicos (2018) and Larssen
& Vassilicos (2023), 〈Dr,ν〉 is negligible at scales r larger than the Taylor length. This
average balance therefore simplifies to 〈ΠS̄〉 ≈ −〈ε〉 at scales larger than the Taylor length
yet much smaller than the length scales where the large-scale forcing acts. It is this average
balance that Larssen & Vassilicos (2023) showed to be non-representative of what actually
happens in statistically stationary periodic turbulence. Here we concentrate on scales
below the Taylor length and study how representative (2.3) is of what actually happens
at these scales (locally in space and time). Viscous diffusion is therefore central to the
present study.
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Figure 1. Non-zero spatiotemporal averages of surface-averaged terms of the solenoidal KHMH equation
(2.1) as functions of rd/〈λ〉t. The vertical line marks the scale rd = 〈η〉t.

We calculate surface-averaged terms Qa(x, rd, t) = (πr2
d)

−1 ∫∫∫
|r|=rd

Q(x, r, t) dr for
every term Q in the solenoidal KHMH equation (2.1) (in Appendix B we detail
the surface-averaging scheme and show that the average and fluctuating residuals of
the surface-averaged equation (2.1) are negligible). In figure 1 we plot the non-zero
spatiotemporal averages of surface-averaged terms. At scales |r| = rd < 0.6〈λ〉t, our DNS
confirms (2.3) in the form

〈Πa
S̄ 〉 ≈ 〈Da

r,ν〉 − 〈εa〉, (2.4)

and also shows that both sides of the equation are negative and that they tend to zero
monotonically with decreasing rd. In fact, all terms in (2.1)–(2.2) tend to zero as rd tends to
zero except Dr,ν and ε. As clearly seen in figure 1, 〈εa〉 is independent of rd in statistically
homogeneous/periodic turbulence. Note that a straightforward Taylor expansion of δu
around r = 0 leads to limrd→0〈Da

r,ν〉 = 〈εa〉. Figure 1 confirms that 〈Da
r,ν〉 tends to 〈ε〉a as

rd tends to zero and also shows that 〈Da
r,ν〉 is a positive monotonically decreasing function

of rd.

3. Fluctuating KHMH equation

The natural next step is to consider spatiotemporal fluctuations of the various terms in
the KHMH equation around their average. By subtracting the spatiotemporal average
solenoidal KHMH equation from the solenoidal KHMH equation we obtain

Aa
t + T a

S̄ + Πa′
S̄ ≈ Da

x,ν + Da′
r,ν − εa′

, (3.1)

at scales rd small enough for a large-scale energy input rate I to be negligibly small. In this
equation we use the generic notation Qa′ = Qa − 〈Qa〉 and we have taken into account the
zero spatiotemporal averages of Aa

t , T a
S̄

and Da
x,ν .

The focus of interest in this paper is the extent in which the average balance (2.4) is
representative, i.e. the extent of validity of a local balance such as Πa

S̄
≈ Da

r,ν − εa at
the smallest, dissipative, length-scales, that is length scales below ≈ 0.5〈λ〉t where (2.4)
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holds well. The Reynolds number of our DNS (〈Reλ〉t = 81) may not be very high, but
we are concerned with dynamics at scales between rd = 〈η〉t and rd = 1

2 〈λ〉t which do not
change much or change very slowly with increasing Reynolds number.

A natural starting point for addressing our question is in terms of standard deviations
of the various terms in the fluctuating solenoidal KHMH equation (3.1). In figure 2(b,c)
we plot these terms versus rd/〈λ〉t. To set the scene within a wider context, figure 2(a)
shows how related standard deviations (surface averaged averages for direct comparison
with Larssen & Vassilicos (2023) as opposed to statistics of surface averaged KHMH
terms, see caption of figure 2) vary with rd/〈λ〉t over a range of scales rd that is wider
than our actual range of interest as it is from 〈η〉t to 〈L〉t = 2.6〈λ〉t. In figure 2(b) we
concentrate attention on the range 〈η〉t ≤ rd ≤ 0.5〈λ〉t (note the subtle difference between
the quantities plotted in the vertical axes of figure 2a,b). It is clear that the standard
deviations of all surface-averaged solenoidal KHMH terms except Da

r,ν and εa tend to
zero monotonically as rd decreases towards zero. The standard deviations of Da

r,ν and of
εa tend to the same non-zero value of approximately 1.2〈εa〉 as rd decreases towards zero.
Furthermore, the standard deviation of Da

r,ν − εa tends to zero in a way that is similar to
the way that the standard deviation of Πa

S̄
tends to zero as rd tends to zero.

For a proper initial estimate of the importance of fluctuations we need to compare these
standard deviations with an appropriate non-zero spatiotemporal average. In figure 2(c)
we plot them normalised by the absolute value of the spatiotemporal average of Πa

S̄
which

also tends to zero as rd tends to zero. The standard deviations of all the terms in the
solenoidal KHMH equation which tend to zero as rd tends to zero do so at a rate that is
comparable or even marginally slower than |〈Πa

S̄
〉|. In fact the standard deviation of Πa

S̄
is between 2.5 and 2.8 times larger than |〈Πa

S̄
〉| for all rd in the range 〈η〉t to 0.5〈λ〉t and

the standard deviation of Da
r,ν − εa is between 1.2 and 2.0 times larger than |〈Πa

S̄
〉| in that

range. These fluctuations are clearly very significant compared with the average balance
(2.4). Furthermore, whilst Πa

S̄
and Da

r,ν − εa are equal on average, the standard deviation
of Πa

S̄
is at least 40 % larger than the standard deviation of Da

r,ν − εa in this range of
scales.

Figure 2(c) also reveals that the largest fluctuations are by far those of Aa
t and T a

S̄
at

these viscous length scales but that they cancel by the sweeping effect (discussed in some
detail in Larssen & Vassilicos (2023)) so that the fluctuations of the Lagrangian transport
Aa

t + T a
S̄

are between those of Πa
S̄

and Da
r,ν − εa in intensity (we use the term ‘Lagrangian

transport’ in the sense that Aa
t + T a

S̄
can be interpreted as the rate of change of |δu|2 in the

frame moving with the mainly large-scale velocity (u+ + u−)/2). With the exception of
the energy input rate which is insignificant at the very small scales, the smallest standard
deviations are those of Da

x,ν , the viscous diffusion rate in physical space. Pre-empting
observations made later in this paper concerning the importance of Da

x,ν , we note that
the standard deviations of Πa

S̄
and Da ≡ Da

x,ν + Da
r,ν − εa tend to equal each other as

rd approaches 〈η〉t whereas the standard deviation of Da
r,ν − εa remains well below that

of Πa
S̄

.
The results of figure 2 are a first indication that the average balance (2.4) may not

be characteristic of reality at the small scales where it holds. Not only are the standard
deviations of Πa

S̄
and Da

r,ν − εa much larger than their average values at scales rd under
0.5〈λ〉t, they are also the result of extremely intermittent fluctuations as evidenced by
their flatness factors which are well over 40 at these scales (see figure 3b). In fact, all the
terms in the solenoidal KHMH equation are much more intermittent than εa and Da

r,ν at
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Figure 2. (a) Plot of
√

〈(Q′)2〉a normalised by 〈ε〉a which does not depend on rd . This quantity is plotted
versus rd/〈λ〉t for various terms Q in the solenoidal and irrotational KHMH equations, including Q = Ac ≡
TS̄ + ΠS̄ + TĪ + ΠĪ and Q = AcS ≡ TS̄ + ΠS̄ which are not discussed in the present paper but are included
to allow checking by comparison with the corresponding plot in Larssen & Vassilicos (2023) obtained for a
different DNS case. Note that the terms At + TS̄ and ΠS̄ overlap and that the terms ΠĪ and TĪ also overlap.
(b,c) Plots versus rd/〈λ〉t of normalised standard deviations of terms Qa in the surface-averaged solenoidal
KHMH equation (3.1); normalised by 〈ε〉a in (b) but normalised by |〈Πa

S̄
〉| (which decreases with decreasing

rd) in (c). (d) Pearson correlation coefficients (obtained by averaging over space and time) of various spherically
averaged terms in the solenoidal KHMH equation versus rd/〈λ〉t.

these scales, even Da
r,ν − εa. Furthermore, Πa

S̄
and Da

r,ν − εa have significantly different
skewnesses as shown in figure 3(a). With very intermittent fluctuations which are different
in terms of standard deviations and skewnesses, it is likely that Πa

S̄
and Da

r,ν − εa are not
typically equal. In fact, it is interesting to note the role of the viscous diffusion in physical
space once again, given that the skewness of Da is equal to the skewness of Πa

S̄
at scales

rd between 〈η〉t and 0.25〈λ〉t.
The fluctuations of Πa

S̄
and Da

r,ν − εa may be extremely intermittent and differ in
magnitude, but be nevertheless correlated. The Pearson correlation coefficient of Πa

S̄
and Da

r,ν − εa is approximately 0.45 at rd = 0.5〈λ〉t and increases to approximately 0.72
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Figure 3. Skewnesses (a) and flatness factors (b) of terms in the solenoidal KHMH equation across normalised
scales rd/〈λ〉t. A point not made in the main text is that the only terms with increasing skewness as rd decreases
towards 〈η〉t are Da

r,ν and εa.

at rd = 〈η〉t (see figure 2d). This is a significant correlation but the correlation curve
between Πa

S̄
and Da in figure 2(d) is approximately the same. It is important to note

that two signals can be highly correlated yet be different nearly everywhere/everytime.
Even so, the near-perfect correlation seen in figure 2(d) between Da

r,ν and εa at scales
close to 〈η〉t reflects very similar Da

r,ν and εa spatiotemporal fields at rd close to 〈η〉t
(the standard deviation of 1 − Da

r,ν/ε
a at rd = 〈η〉t is 0.025). This is not inconsistent with

the standard deviation and average of Da
r,ν − εa tending to 0 more or less together as rd

decreases towards zero and with the skewness and flatness factors of the two fields being
approximately the same at dissipative scales.

Given the high but far from perfect correlation between Πa
S̄

and Da
r,ν − εa at scales

close to 〈η〉t it may still not be a priori inconceivable that the average balance (2.4) might
be, to some degree, a fairly representative balance even though the two spatiotemporal
fluctuations of Πa

S̄
and Da

r,ν − εa differ significantly in fluctuation intensity and skewness.
In the following section we investigate the degree of correspondence between Πa

S̄
and

Da
r,ν − εa more closely by conditioning on low and high two-point kinetic energy (|δu|2)a

for various small scales rd in the dissipative range below 〈λ〉t/2 as these small-scale
two-point energies reflect the smooth or near-singular local nature of the velocity field.
Indeed, multifractal theories of turbulence (see Frisch (1995)) associate local dissipative
scales to varying levels of local near-singularities.

Given the results on Πa
S̄

and Da in figures 2 and 3 (same standard deviation and
skewness at scales close to 〈η〉t, similar flatness factors and correlations comparable to
those of Πa

S̄
and Da

r,ν − εa) we start by investigating the relation between Πa
S̄

and Da.

4. Small-scale dynamics in low and high energy regions

We define 〈Q|(|δu|2)a〉 to be the average value of Q conditionally on (|δu|2)a being
within a certain range of (|δu|2)a values and we consider 20 such ranges of increasing
values of (|δu|2)a: the 5 % smallest (|δu|2)a values, the 5 % to 10 % smallest (|δu|2)a

values, and so on until the 95 % to 100 % smallest (|δu|2)a values which are actually
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Figure 4. Plots of (a) 〈Da|(|δu|2)a〉, (b) 〈Da
r,ν − εa|(|δu|2)a〉 and (c) 〈Da

x,ν |(|δu|2)a〉 versus 〈Πa
S̄
|(|δu|2)a〉

(see the definition of these conditional averages in the first paragraph of § 4). All plotted quantities are
normalised by |〈Πa

S̄
〉| and are plotted for different values of rd . The legend at the top of (a) gives the values of

rd/〈λ〉t which correspond to different coloured symbols (note 〈η〉t ≈ 0.06〈λ〉t). The average quantities plotted
are conditional on 20 different ranges of (|δu|2)a values as described in the first paragraph of § 4 and ranges
with increasing values of (|δu|2)a for each rd are from right to left in (a–c) (see the arrow indicating increasing
local two-point energy (|δu|2)a in panel (a)).

the 5 % highest values of (|δu|2)a (given that the 100 % smallest (|δu|2)a values are
by definition the totality of all values of (|δu|2)a for a certain rd). In figure 4 we plot
(figure 4a) 〈Da|(|δu|2)a〉, (figure 4b) 〈Da

r,ν − εa|(|δu|2)a〉 and (figure 4c) 〈Da
x,ν |(|δu|2)a〉

versus 〈Πa
S̄
|(|δu|2)a〉 for increasing (|δu|2)a and for scales rd between 〈η〉t and 〈λ〉t.

We checked that the results in this figure and in figure 7 with similar conditioning are
insensitive to the number of (|δu|2)a ranges considered as we also tried 10 and 100 ranges
with very similar results.

Firstly, figure 4 shows that 〈Da|(|δu|2)a〉, 〈Da
r,ν − εa|(|δu|2)a〉, 〈Da

x,ν |(|δu|2)a〉 and
〈Πa

S̄
|(|δu|2)a〉 are all close to zero for the range of smallest values of (|δu|2)a, i.e. the 5 %

smallest (|δu|2)a values. As the (|δu|2)a values increase, the equality 〈Πa
S̄
|(|δu|2)a〉 ≈

〈Da|(|δu|2)a〉 appears clearly (see figure 4a) for all rd in the range 〈η〉t ≤ rd ≤ 0.6〈λ〉t
whereas 〈Πa

S̄
|(|δu|2)a〉 ≈ 〈Da

r,ν − εa|(|δu|2)a〉 does not (see figure 4b). This behaviour
has its root cause in the viscous diffusion in physical space which is non-zero in regions
with high values of (|δu|2)a. Interestingly, 〈Da

x,ν |(|δu|2)a〉 is increasingly negative as
(|δu|2)a values increase (see figure 4c), which is also the case for all other three quantities
plotted in figure 4. In fact both 〈Da

x,ν |(|δu|2)a〉 and 〈Da
r,ν − εa|(|δu|2)a〉 vary linearly with
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Turbulent energy transfers at dissipative length scales

〈Πa
S̄
|(|δu|2)a〉 if the (|δu|2)a values are not too small, and these two linear dependencies

sum up to give 〈Πa
S̄
|(|δu|2)a〉 ≈ 〈Da|(|δu|2)a〉.

We conclude that (i) with increasing (|δu|2)a values, the average balance (2.4) is
increasingly not representative of the conditionally averaged energy transfer balance at
viscosity affected/dominated length scales and that (ii) the viscous diffusion in physical
space cannot be neglected in regions of significant local inhomogeneity where (|δu|2)a

is high. In such regions the viscous diffusion in physical space contributes to the loss of
kinetic energy, though, on average, less than Da

r,ν − εa which is also negative on average
but with higher magnitudes (see figure 4b,c).

The third conclusion is quantitative, namely that

〈Πa
S̄ |(|δu|2)a〉 ≈ 〈Da|(|δu|2)a〉 (4.1)

holds for all ranges of high enough (|δu|2)a values in the range of scales 〈η〉t ≤ rd ≤
0.6〈λ〉t whereas 〈Πa

S̄
|(|δu|2)a〉 = 〈Da

r,ν − εa|(|δu|2)a〉 does not. This raises the question
whether Πa

S̄
≈ Da happens more often than Πa

S̄
≈ Da

r,ν − εa at these very small scales.

4.1. Probability density functions
To answer this question we plot in figure 5 probability density functions (p.d.f.s) of Πa

S̄
−

Da and Πa
S̄

− (Da
r,ν − εa) conditional on (|δu|2)a. (This differs from Debue et al. (2021)

who study separate p.d.f.s of interscale transfer rate – without solenoidal/irrotational
decomposition – on the one hand and dissipation/viscous diffusion in scale space on the
other.) The red curves are p.d.f.s conditional on the 5 % smallest values of (|δu|2)a whereas
the blue and green curves are, respectively, p.d.f.s conditional on the 5 % and 0.5 % highest
values of (|δu|2)a for a given length scale rd. Figure 5(a,b) are for rd = 〈η〉t, figure 5(c,d)
are for rd = 0.24〈λ〉t and figure 5(e, f ) are for rd = 0.48〈λ〉t. The first observation to make
is that, if normalised by their maximum p.d.f. value, Pmax and the standard deviation of
Πa

S̄
for high (|δu|2)a events, the high (|δu|2)a p.d.f.s of Πa

S̄
− Da (blue and green curves

in figure 5a,c,e) are approximately symmetric with respect to positive and negative values
and become decreasingly heavy tailed with decreasing rd. Irrespective of the value of rd
in the range 〈η〉t ≤ rd ≤ 0.5〈λ〉t, the most likely value of Πa

S̄
− Da is zero at the 5 % and

0.5 % highest (|δu|2)a events. The most likely value of Πa
S̄

− Da is also zero at the 5 %
lowest (|δu|2)a events. However, the p.d.f. of Πa

S̄
− Da conditional on these 5 % lowest

(|δu|2)a events and normalised by Pmax and the standard deviation of Πa
S̄

for these events
(red curves in figure 5a,c,e) becomes increasingly heavy tailed with decreasing rd in the
range 〈η〉t ≤ rd ≤ 0.5〈λ〉t (but remains approximately symmetric with respect to positive
and negative values).

Unlike Πa
S̄

− Da, the most likely value of Πa
S̄

− (Da
r,ν − εa) is not zero, see

figure 5(b,d, f ). It is non-zero and positive if conditioned on the 5 % lowest (|δu|2)a events,
and non-zero and negative if conditioned on either the 5 % or the 0.5 % highest (|δu|2)a

events. However, similarly to Πa
S̄

− Da, the high (|δu|2)a p.d.f.s of Πa
S̄

− (Da
r,ν − εa) (blue

and green curves in figure 5b,d, f ) normalised by their maximum p.d.f. value Pmax and
the standard deviation of Πa

S̄
for high (|δu|2)a events, are decreasingly heavy tailed for

decreasing rd but are shifted towards negative values by comparison with the p.d.f.s of
Πa

S̄
− Da. The p.d.f. of Πa

S̄
− (Da

r,ν − εa) conditional on the 5 % lowest (|δu|2)a events
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(b)(a)
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Figure 5. Probability density functions of Πa
S̄

− Da (a,c,e) and Πa
S̄

− Da
r,ν + εa (b,d, f ) conditional on low

energy (LE) events (the events with the 5 % smallest (|δu|2)a values at scale rd), high energy (HE) events (the
events with the 5 % highest (|δu|2)a values at scale rd) and very high energy (VHE) events (the events with the
0.5 % highest (|δu|2)a values at scale rd): (a,b) rd = 〈η〉t; (c,d) rd = 0.24〈λ〉t; (e, f ) rd = 0.48〈λ〉t. Pmax and
σ(Πa

S̄
|(|δu|2)a) denote, respectively, the p.d.f. maximum value and standard deviation of Πa

S̄
conditional on

the particular range of (|δu|2)a values considered. The dashed lines show exponential or stretched exponential
fits of the p.d.f.s calculated with least squares.

and normalised by Pmax and the standard deviation of Πa
S̄

for these events (red curves
in figure 5b,d, f ) is different for different values of rd in the range 〈η〉t ≤ rd ≤ 0.5〈λ〉t.
It is very significantly asymmetric with a vast bias towards positive values and becomes
increasingly heavy tailed on its positive side as rd decreases within this range, but not on
both positive and negative sides as in the case of Πa

S̄
− Da. As the difference between Da
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Turbulent energy transfers at dissipative length scales

(|δu|)a −0.005 −0.05 −0.1 +0.1 +0.05 +0.005

〈η〉t (9.7, 9.2) (10.4, 12.7) (10.9, 13.5) (31.4, 25.3) (34.2, 25.4) (41.0, 24.3)
0.24〈λ〉t (9.1, 10.4) (10.1, 12.8) (10.5, 13.7) (27.5, 23.7) (30.1, 24.4) (37.9, 24.6)
0.48〈λ〉t (8.9, 11.9) (9.7, 13.5) (10.0, 14.1) (21.8, 19.5) (23.6, 20.1) (27.5, 20.9)

Table 1. Share of events (in %) with 2
3Da < Πa

S̄
< 4

3Da (left-hand entries in the parentheses) and share of

events with 2
3 (Da

r,ν − εa) < Πa
S̄

< 4
3 (Da

r,ν − εa) (right-hand entries in the parentheses) for various (|δu|)a

conditionings. Each row corresponds to one scale rd given in the leftmost column and the top row denotes
the (|δu|)a conditioning. For example −0.05 denotes the 5 % of the events with the lowest (|δu|)a and +0.1
denotes the 10 % of the events with the highest (|δu|)a.

and Da
r,ν − ε∗a equals Da

x,ν , it follows from figure 5 that the strong bias towards positive
Πa

S̄
− (Da

r,ν − ε∗a) events in low (|δu|2)a regions is balanced by large positive Da
x,ν events

in such regions. Hence, there are tendencies for physical space viscous diffusion Da
x,ν to

quickly transport (|δu|2)a from slightly higher (|δu|2)a regions to slightly lower (|δu|2)a

regions.
The three p.d.f.s of Πa

S̄
− Da in figure 5(a,c,e) are plotted in log–lin axes to make

it clear that their tails are exponential tails over a wide range of Πa
S̄

− Da values. The
coefficient of these exponentials increases with decreasing rd (decreasingly heavy tailed)
for the high (|δu|2)a p.d.f.s (blue and green curves) but decreases with decreasing rd
(increasingly heavy tailed) for the low (|δu|2)a p.d.f. (red curves). Exponential tails are
a sign of intermittency and mean that there is much more than a normal number of events
in space and time with large and very large deviations from Πa

S̄
≈ Da. Of course, the most

likely occurrence remains Πa
S̄

− Da = 0, but it is in fact not so likely. In table 1 we report
the probability of finding 2

3Da < Πa
S̄

< 4
3Da which is a very generous upper bound on

the probability of finding Πa
S̄

≈ Da: it increases as rd decreases from 0.5〈λ〉t to 〈η〉t and
it also increases as we condition on progressively higher (|δu|2)a. This probability ranges
from 8.9 % if we condition on the 0.5 % lowest (|δu|2)a and focus on rd = 0.48〈λ〉t, to
41 % if we condition on the 0.5 % highest (|δu|2)a and focus on rd = 〈η〉t. It is therefore
generally unlikely to find Πa

S̄
≈ Da in the turbulence except at the very highest (|δu|2)a

with rd = 〈η〉t. This conclusion is consistent with our observations in figures 2 and 3
that Πa

S̄
and Da tend to have same standard deviations and skewnesses as well as similar

flatness factors as rd gets close to 〈η〉t.
Similarly to Πa

S̄
− Da, the two p.d.f.s of Πa

S̄
− (Da

r,ν − εa) in figure 5(b,d, f ) which
are conditional on the 5 % and 0.5 % highest (|δu|2)a (blue and green curves) have
exponential tails which depend on rd in a similar way. Unlike Πa

S̄
− Da, however, the p.d.f.

of Πa
S̄

− (Da
r,ν − εa) conditional on the 5 % lowest (|δu|2)a (red curves in figure 5b,d, f )

has an exponential tail on its negative side but a stretched exponential tail on its positive
side. Whilst the exponential tail on the negative side does not get wider and varies rather
weakly with decreasing rd (similarly to the p.d.f.s that are conditional to the 5 % and 0.5 %
highest (|δu|2)a), the stretched exponential side widens quite appreciably as rd decreases
from 0.5〈λ〉t to 〈η〉t. In low (|δu|2)a regions, the intermittency in the fluctuations of
Πa

S̄
− (Da

r,ν − εa) is therefore much more present and intense with positive rather than
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negative values of Πa
S̄

− (Da
r,ν − εa): there are disproportionately many events in such

regions with particularly large positive deviations from Πa
S̄

− (Da
r,ν − εa) ≈ 0.

As already mentioned, however, even the most likely value of Πa
S̄

− (Da
r,ν − εa) is

in fact not zero; when conditioning on the 5 % lowest (|δu|2)a it is positive and when
conditioning on the 5 % or 0.5 % highest (|δu|2)a it is negative. As we report in table 1, it
is not even particularly likely to find Πa

S̄
≈ (Da

r,ν − εa). In fact, it is significantly less likely
than finding Πa

S̄
≈ Da. The probability of finding 2

3 (Da
r,ν − εa) < Πa

S̄
< 4

3 (Da
r,ν − εa)

ranges from 9.2 % to 25.4 % whereas the probability of finding 2
3Da < Πa

S̄
< 4

3Da ranges
from 8.9 % to 41.0 % (table 1). Unlike the latter which increases as we condition on
progressively higher (|δu|2)a, the probability of finding 2

3(Da
r,ν − εa) < Πa

S̄
< 4

3(Da
r,ν −

εa) levels off (see table 1). When we condition on increasing values of (|δu|2)a it becomes
increasingly difficult to neglect the viscous diffusion in physical space as already noted in
the paragraph before (4.1).

We have therefore reached the conclusion that (2.4) is in no way representative of
what actually happens at dissipative scales between 〈η〉t and 0.5〈λ〉t where (2.4) holds.
The local balance Πa

S̄
≈ (Da

r,ν − εa) is spatiotemporally rather rare. It is only slightly
less rare than the local balance Πa

S̄
≈ Da at the lower to moderate levels of (|δu|2)a

but significantly rarer than the local balance Πa
S̄

≈ Da at the higher levels of (|δu|2)a.
It becomes increasingly unlikely for the viscous diffusion in physical space Da

x,ν to be
negligible as (|δu|2)a increases. However, in reaching this conclusion we also found that
the probability of finding Πa

S̄
≈ Da is not overwhelming either, and that the p.d.f. of

Πa
S̄

− (Da
r,ν − εa) conditional on the 5 % lowest (|δu|2)a is overwhelmingly weighted

towards positive values of Πa
S̄

− (Da
r,ν − εa). We now address these two remaining issues

starting from the second one.

4.2. Correlations
In figure 6(a,b) we report two scatter plots of Da

r,ν − εa and Πa
S̄

at rd = 〈η〉t, one
(figure 6a) conditioned on the 5 % lowest values of (|δu|2)a for rd = 〈η〉t and the other
(figure 6b) conditioned on the 5 % highest values of (|δu|2)a for rd = 〈η〉t. The black
dotted line in both scatter plots is the line where Πa

S̄
= Da

r,ν − εa. Whilst it is very rare to
find positive values of Da

r,ν − εa in both scatter plots (the probability of finding Da
r,ν > 0 is

in fact only 1.2 % for rd = 〈η〉t), the two scatter plots are otherwise very different. For the
5 % smallest values of (|δu|2)a, the scatter plot is approximately symmetric with respect
to Πa

S̄
= 0, i.e. it looks approximately the same on the positive and negative sides of Πa

S̄
.

Given that Da
r,ν − εa is overwhelmingly negative, Πa

S̄
− (Da

r,ν − εa) is overwhelmingly
positive when Πa

S̄
is positive which accounts for approximately half of all cases given the

approximate symmetry of the scatter plot in figure 6(a). The other approximate half of
all cases corresponds to negative values of Πa

S̄
in which case the scatter plot in figure 6(a)

suggests that Da
r,ν − εa < Πa

S̄
< 0 happens more often than Πa

S̄
< Da

r,ν − εa < 0, thereby
also favouring positive values of Πa

S̄
− (Da

r,ν − εa) though not as much as when Πa
S̄

is positive. All in all, from the scatter plot in figure 6(a) one can see why the p.d.f.s
of Πa

S̄
− (Da

r,ν − εa) conditioned on the 5 % lowest values of (|δu|2)a (red curves in
figure 5b,d, f ) are so much skewed towards positive values.
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Figure 6. (a) Scatter plot of Da
r,ν − εa and Πa

S̄
at rd = 〈η〉t conditioned on the 5 % least energetic events

(referred to as LE in figure 5). (b) Scatter plot of Da
r,ν − εa and Πa

S̄
at rd = 〈η〉t conditioned on the 5 % most

energetic events (referred to as HE in figure 5). The black dotted lines show Πa
S̄

= Da
r,ν − εa and the data points

are coloured with the ratio |Πa
S̄
|/|Da

r,ν − εa|; Da
r,ν − εa and Πa

S̄
are normalised with the standard deviation of

Πa
S̄

conditioned on (a) LE events and (b) HE events.

The situation is fundamentally different when we condition on the 5 % highest values
of (|δu|2)a as the scatter plot of Da

r,ν − εa and Πa
S̄

is no longer symmetric with respect
to Πa

S̄
= 0, see figure 6(b): in fact it is very much skewed towards negative values of

Πa
S̄

. It is therefore impossible to argue that Πa
S̄

− (Da
r,ν − εa) is more often positive than

negative in this case, and the p.d.f.s of Πa
S̄

− (Da
r,ν − εa) conditioned on the 5 % highest

values of (|δu|2)a are indeed symmetric around their maximum at zero (see blue curve
in figure 5b,d, f ). Appendix C shows that the conditional scatter plots in figure 6(a,b) are
similar across dissipative scales from rd ≈ 〈η〉t to rd ≈ 0.5〈λ〉t with the scatter plots being
symmetric with respect to Πa

S̄
= 0 when we condition on low (|δu|2)a values and skewed

towards negative values of Πa
S̄

when we condition on high (|δu|2)a values.
We now address the last remaining question: given that Πa

S̄
− (Da

r,ν − εa) is not
typically zero even if on average it is, and given that Πa

S̄
− Da is also not so often zero

except at the very smallest scales and the regions of highest (|δu|2)a, is there a typical
energy transfer balance at small dissipative length scales? To shed some light on this
question we return to the general solenoidal energy balance (3.1) and plot in figure 7(a)
standard deviations of various terms in this equation conditioned on various ranges of
(|δu|2)a values. We consider the same 20 ranges of (|δu|2)a values that we considered for
figure 4 (see this section’s first paragraph), and in the horizontal axes of the two plots in
figure 7 we mark each one of these ranges by its average (|δu|2)a value normalised by
(〈|δu|2〉a. We do this for rd = 〈η〉t in figure 7 and in Appendix C we complete the picture
with similar results for some other values of rd in the dissipative range between 〈η〉t and
0.5〈λ〉t.

Figure 7(a) shows that the standard deviations of Πa
S̄

and Da are quite close to each other
for all (|δu|2)a levels but that the standard deviation of Πa

S̄
is nevertheless consistently

higher than that of Da. The only other term in Aa
t + T a

S̄
+ Πa

S̄
= Da is Aa

t + T a
S̄

, and the
fluctuations of Aa

t + T a
S̄

are never negligible, in fact they are significantly more intense
than those of Πa

S̄
and Da at all (|δu|2)a levels except the highest (|δu|2)a considered here.
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Figure 7. (a) Conditional standard deviations of various surface-averaged KHMH terms Qa for rd = 〈η〉t and
(b) conditional Pearson correlation coefficients of pairs of surface-averaged KHMH terms Qa

1 and Qa
2 for

rd = 〈η〉t. These standard deviations and correlation coefficients are calculated from spatiotemporal statistics
conditioned on various ranges of (|δu|2)a at rd = 〈η〉t. The conditioning is identical to that in figure 4: we
consider 20 ranges of (|δu|2)a values and the horizontal axes display the average (|δu|2)a values within each
(|δu|2)a range normalised by the spatiotemporally averaged small-scale energy 〈|δu|2〉a. Increasing values of
(|δu|2)a are therefore from left to right on the horizontal axes.

Except perhaps at specific spatiotemporal instances, it is in general not possible to neglect
what is effectively the Lagrangian transport term Aa

t + T a
S̄

(see Larssen & Vassilicos
2023) at these dissipative length scales.

Figure 7(a) also shows that the standard deviations of Πa
S̄

and Da
r,ν − εa differ

significantly at all (|δu|2)a levels except intermediate ones. Furthermore, the standard
deviations of Da

r,ν − εa and Da
x,ν are very close to each other, the standard deviation

of Da
r,ν − εa being in fact slightly larger than the standard deviation of Da

x,ν for all
(|δu|2)a levels. Both standard deviations decrease with increasing (|δu|2)a whilst the
standard deviation of their sum Da remains approximately constant by comparison. This
suggests an anticorrelation between Da

r,ν − εa and Da
x,ν where/when (|δu|2)a is low

and a synergy/correlation between these two terms where/when (|δu|2)a is high. The
conditional correlation coefficient between −Da

x,ν and Da
r,ν − εa in figure 7(b) confirms

this suggestion. It monotonically decreases with increasing (|δu|2)a from 0.9 at the lowest
(|δu|2)a level to nearly −0.4 at the highest.

Conditional correlations of various other pairs of terms appearing in (3.1) are also
plotted in figure 7(b). At the low to moderate (|δu|2)a levels there is a correlation of
approximately 0.7 between Aa

t + T a
S̄

and −Πa
S̄

and also between Aa
t + T a

S̄
and Da.

However, there is effectively no correlation at these (|δu|2)a levels between Πa
S̄

and any
of the diffusion/dissipation terms Da, Da

x,ν and Da
r,ν − εa. The significant correlations

which exist between Aa
t + T a

S̄
and −Πa

S̄
on the one hand and between Aa

t + T a
S̄

and Da

on the other must therefore arise from different spatiotemporal instances given the absence
of correlation between Πa

S̄
and Da. The picture suggested by Aa

t + T a
S̄

+ Πa
S̄

= Da

and by these presences and absences of correlations conditioned on low to moderate
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Turbulent energy transfers at dissipative length scales

(|δu|2)a levels is as follows: as turbulence energy at scale rd = 〈η〉t is transported along
a Lagrangian path, part of it may at one time be transferred to another scale and part of
it may at another time be dissipated and diffused by viscosity, but very rarely will both
significantly happen at the same time. There is indeed little spatiotemporal coincidence
between interscale transfer rate and diffusion/dissipation at these (|δu|2)a levels.
To complete the picture, viscous diffusion in space acts against viscous diffusion/
dissipation Da

r,ν − εa at low to moderate (|δu|2)a levels: whilst Da
r,ν − εa most typically

removes energy, Da
x,ν counteracts by adding energy at that scale from neighbouring

physical space. As shown in Appendix C this picture is essentially true for all scales rd
between 〈η〉t and 0.5〈λ〉t. With increasing rd the standard deviations of viscous effects Da

decrease relative to those of ΠS̄ and Aa
t + T a

S̄
. This leads to weaker correlations between

Da and Πa
S̄

and stronger correlations between Aa
t + T a

S̄
and −Πa

S̄
.

The picture (described now for rd = 〈η〉t but confirmed in Appendix C for other
rd < 0.5〈λ〉t) changes dramatically as we reach the 5 % highest (|δu|2)a levels, i.e. levels
between approximately 30 to 60 times (〈|δu|2〉a. Firstly, at such high local kinetic energy
levels, Da

r,ν − εa and Da
x,ν acquire some significant tendency to act together (correlation

coefficient of approximately 0.4) to remove kinetic energy from scale rd = 〈η〉t. This is a
remarkable reversal in the role played by viscous diffusion in physical space. Secondly, the
correlations of Aa

t + T a
S̄

with −Πa
S̄

and with Da drop but remain significant (correlation
coefficients of approximately 0.4) whilst Πa

S̄
acquires substantial correlation with the

diffusion/dissipation terms: its correlation coefficients with Da and with Da
r,ν − εa rise

to approximately 0.7, and its correlation coefficient with Da
x,ν rises too but not so much (it

reaches approximately 0.4). At these particularly high (|δu|2)a levels and very small scales
〈η〉t, the strongest correlation is therefore the one between Πa

S̄
and Da but it is not so strong

that we may neglect the Lagrangian transport term Aa
t + T a

S̄
, i.e. the remaining term in the

full balance Aa
t + T a

S̄
+ Πa

S̄
= Da, which is also significantly correlated with both −Πa

S̄
and Da. We chose to focus on the correlation between Πa

S̄
and Da rather than between Πa

S̄
and Da

r,ν − εa even though they have the same correlation coefficients because we have
seen that, unlike Πa

S̄
and Da

r,ν − εa, Πa
S̄

and Da have an increasing statistical tendency
to get close to each other with increasing (|δu|2)a levels and decreasing length scale (see
figure 4, table 1 and figure 11). However, this does not happen without some correlation
with Lagrangian transport.

Appendix C and figure 11 show that as we consider larger scales, the viscous terms
become gradually less important locally and the dynamics tend to the approximate local (in
space–time) balance reported in Larssen & Vassilicos (2023), Aa

t + T a
S̄

≈ −Πa′
S̄

(see also
the unconditional correlation coefficients in figure 2d). At rd = 0.48〈η〉t, across various
(|δu|2)a-levels, Aa

t + T a
S̄

and Πa
S̄

have correlations approximately equalling 0.90 and the
standard deviations of Πa

S̄
are typically twice as large as those of Da.

5. Summary of conclusions

In statistically stationary homogeneous/periodic turbulence the average relation 〈Πa
S̄
〉 ≈

〈Da
r,ν〉 − 〈εa〉 holds in the dissipation/diffusion-dominated range rd < 0.5〈λ〉t, yet it does

not represent reality locally in space and time. Events where Πa
S̄

≈ Da
r,ν − εa can of course

be found but they are few and far between. What actually happens at these small length
scales cannot be described without Aa

t + T a
S̄

even though the fluctuation amplitudes of
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this Lagrangian transport term (which vanishes on average) decrease towards zero with
decreasing rd in the dissipation/diffusion-dominated range rd < 0.5〈λ〉t.

In most of the flow for most of the time the levels of (|δu|2)a at these length scales
are low to moderate and one finds significant correlations between Aa

t + T a
S̄

and Πa
S̄

on
the one hand and between Aa

t + T a
S̄

and Da on the other. There are interscale transfer
events happening along some parts of Lagrangian path and diffusion/dissipation events
happening along some other parts of the Lagrangian path, but rarely do they happen
together. Also, viscous diffusion in space is typically positive and counteracts the energy
reducing action of Da

r,ν − εa which is typically negative.
As we focus on the highest levels of (|δu|2)a at these length scales the picture changes

quite drastically but Aa
t + T a

S̄
maintains a presence even if weakened. The highest

correlation is now between Πa
S̄

and Da. Even though this correlation is similar to that
of Πa

S̄
and Da

r,ν − εa, we have seen that there is much more of a tendency for Πa
S̄

and Da

to get close to each other than Πa
S̄

and Da
r,ν − εa. This does not happen perfectly though

given that Aa
t + T a

S̄
retains some correlation with both −Πa

S̄
and Da, which means that

all terms in Aa
t + T a

S̄
+ Πa

S̄
= Da can momentarily follow each other simultaneously at

these very high (|δu|2)a levels.
It is important to stress the role of viscous diffusion in physical space which cannot be

typically neglected from the balance of Πa
S̄

at the very high (|δu|2)a regions where there
is of course high local inhomogeneity. Furthermore, in these regions the viscous diffusion
in physical space does not resist any longer but in fact acquires a tendency to cooperate
with Da

r,ν − εa and enhance energy reduction.
An ingredient that is sometimes used for the derivation of local viscous length scales

is the assumption of a local balance between a local turnover time and a local viscous
diffusion time (Paladin & Vulpiani 1987; Frisch & Vergassola 1991; Dubrulle 2019). This
typically amounts to a local balance between interscale transfer rate and viscous diffusion
in scale space/dissipation, i.e. Πa

S̄
≈ Da

r,ν − εa. The present study might offer a more
complete view of the types of local and instantaneous balances which might be used to
obtain local viscous length scales.
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Appendix A. The KHMH equation and associated Helmholtz decomposition

The KHMH equation is derived directly from the incompressible Navier–Stokes equations
at locations x+ and x− and it governs the evolution of the velocity difference squared,
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Turbulent energy transfers at dissipative length scales

|δu|2 (Hill 2002). It is written in terms of the centroid x = (x+ + x−)/2 and separation
r = x+ − x− vectors and differences of scalar and vector fields. The symbol δ preceding
a scalar or vector field φ denotes δφ = φ+ − φ− where φ+ = φ(x + r/2, t) and φ− =
φ(x − r/2, t). With this notation the KHMH equation reads

∂|δu|2
∂t

+
u+

j + u−
j

2
∂|δu|2
∂xj

+ δuj
∂|δu|2

∂rj
= − 2

ρ

∂(δpδui)

∂xi

+ 2ν
∂2|δu|2
∂rj∂rj

+ ν

2
∂2|δu|2
∂xj∂xj

+ 2ν

⎡
⎣(∂u+

i

∂x+
j

)2

+
(

∂u−
i

∂x−
j

)2
⎤
⎦+ 2δuiδfi. (A1)

We associate the KHMH terms with the following physical processes (Yasuda & Vassilicos
2018):

At(x, r, t) ≡ ∂/∂t(|δu|2) is the local unsteadiness, or time-derivative, term; (A2)

T (x, r, t) ≡ ∂/∂xk((u+
k + u−

k )|δu|2/2) is the turbulent transport term; (A3)

Π(x, r, t) ≡ ∂/∂rk(δuk|δu|2) is the interscale energy transfer term; (A4)

Tp(x, r, t) ≡ −(2/ρ)∂/∂xk(δukδp) is the pressure-velocity term; (A5)

Dr,ν(x, r, t) ≡ 2ν∂2/∂r2
k(|δu|2) is the viscous diffusion in r-space; (A6)

Dx,ν(x, r, t) ≡ ν∂2/∂x2
k(|δu|2/2) is the viscous diffusion in x-space; (A7)

I(x, r, t) ≡ 2δukδfk is the energy input rate; (A8)

ε∗(x, r, t) ≡ 2ν[(∂u+
j /∂x+

k ))2 + (∂u−
j /∂x−

k ))2] (A9)

is two times the sum of the pseudodissipation at x+ and x−.

Larssen & Vassilicos (2023) split the KHMH equation (A1) into two new KHMH
equations (see (2.1)–(2.2)): one equation arising from the centroid solenoidal δu dynamics
and one equation arising from the centroid irrotational δu dynamics. This Helmholtz
decomposition gives rise to four new KHMH terms: the irrotational and solenoidal
interspace transport terms TĪ and TS̄ and the irrotational and solenoidal interscale transfer
terms ΠĪ and ΠS̄.

We calculate these terms in this study in terms of the irrotational KHMH equation and
the pressure-velocity term (see § 2), but they can also be calculated explicitly in Fourier
space in a periodic domain at a higher computational cost (Larssen & Vassilicos 2023).
The solenoidal and irrotational interscale transfer terms read ΠS̄ = 2δu · aΠS̄

and ΠĪ =
2δu · aΠĪ

and the solenoidal and irrotational transport terms read TS̄ = 2δu · aTS̄
and TĪ =

2δu · aTĪ
, where aΠ = δu · ∇rδu, aT = 1

2 (u+ + u−) · ∇xδu. Here qS̄(x, r, t) denotes the
solenoidal part of a vector field q(x, r, t) and qĪ(x, r, t) denotes the solenoidal part of
q(x, r, t). When calculated explicitly in a periodic domain, one calculates the solenoidal
and irrotational parts of aΠ and aT with the standard Helmholtz decomposition in Fourier
space before calculating the KHMH analogue terms by contracting with 2δu.

Appendix B. The KHMH numerical integration and residual

In this appendix we detail our KHMH numerical spherical averaging operation and
the KHMH residual. Let Q denote an arbitrary KHMH term. The spherical averaging
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(b)

rd

φ

θ

(a)

Figure 8. (a) Sketch of the spherical coordinate system and the filled square denotes original. (b) Sketch of
the integration and grid points with spherical equidistant integration for r = 1 and r = 2. The filled circles are
grid points and the open circles are the integration points.

0 0.25 0.50 0.75 1.00
0

0.02

0.04

0.06

0.08

0.10 σ(Ra)/σ(Πa
S–)

rd/〈λ〉t

|〈R〉a|/|〈ΠS
–〉a|

Figure 9. Surface-averaged solenoidal KHMH equation residual Ra spatiotemporal averages and standard
deviations across small scales. The vertical line denotes rd = 〈η〉t.

operation can be written as

Qa = 1
πr2

d

∫∫∫
|r|=rd

Q dr, (B1)

= 1
4π

∫ π

0
sin φ dφ

∫ 2π

0
Q dθ, (B2)

where θ and φ denote the polar and azimuthal angles (see figure 8a). We approximate (B2)
numerically by repeated one-dimensional quadratures

Qa ≈ 1
4π

∫ π

0
sin φ dφ

Nθ (φ)∑
j=1

wjQ(φ, θj)�θ, (B3)

≈ 1
4π

Nφ(r)∑
i=1

Nθ (r,φ)∑
j=1

wiwj sin φiQ(φi, θj)�θ�φ, (B4)

where wi and wj are integration weights, Nφ and Nθ are the number of grid points in
azimuthal and polar directions, �θ and �φ are the spherically equidistant integration
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Figure 10. (a,c,e) Scatter plots of Da
r,ν − εa and Πa

S̄
at (a) rd = 〈η〉t, (c) rd = 〈0.24λ〉t and (e) rd = 〈0.48λ〉t

conditioned on the 5 % least energetic events (referred to as LE in figure 5). (b,d, f ) Scatter plots of Da
r,ν − εa

and Πa
S̄

at (b) rd = 〈η〉t, (d) rd = 〈0.24λ〉t and ( f ) rd = 〈0.48λ〉t conditioned on the 5 % most energetic events
(referred to as HE in figure 5). The black dotted lines show Πa

S̄
= Da

r,ν − εa and the data points are coloured
with the ratio |Πa

S̄
|/|Da

r,ν − εa|. Here Da
r,ν − εa and Πa

S̄
are normalised with the standard deviation of Πa

S̄
conditioned on (a,c,e) LE events and (b,d, f ) HE events.

spacings and r denotes the integration radius in integer grid points. For a given r we
have Nφ = 4r + 1 and Nθ = 8rφ = 8r sin φ available grid points where rφ denotes the
radius of the circle at the given φ value (see figure 8b). The grid spacings are given as
�φ = (π/(Nφ(r) − 1)) and �θ = (2π/(Nθ (r, φ) − 1)). We use Simpson’s rule to set the
weights wi and wj.

The equidistant approach limits the distance between grid points and integration points
(see figure 8b) such that we limit the effect of interpolation errors in the computation of the
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Figure 11. (a,c,e) Conditional standard deviations of various surface-averaged KHMH terms Qa for (a) rd =
〈η〉t, (b) rd = 0.24〈λ〉t and (c) rd = 0.48〈λ〉t, and (b,d, f ) conditional Pearson correlation coefficients of pairs of
surface-averaged KHMH terms Qa

1 and Qa
2 for (b) rd = 〈η〉t, (d) rd = 0.24〈λ〉t and ( f ) rd = 0.48〈λ〉t. These

standard deviations and correlation coefficients are calculated from spatiotemporal statistics conditioned on
various ranges of (|δu|2)a at the rd value of each corresponding plot. The conditioning is identical to that in
figure 4: we consider 20 ranges of (|δu|2)a values and the horizontal axes display the average (|δu|2)a values
within each (|δu|2)a range normalised by the spatiotemporally averaged small-scale energy 〈|δu|2〉a. Increasing
values of (|δu|2)a are therefore from left to right on the horizontal axes.
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Turbulent energy transfers at dissipative length scales

KHMH terms Q(φi, θj) in (B4). This is important at small scales where the grid spacing
and the scales of interest are of similar order of magnitude. This contrasts with a Lebedev
quadrature approach where interpolation errors from a discrete grid are not considered
(Lebedev 1975). As we do not calculate the entire Q field in x-space, we cannot use the
recent integration method of Iyer et al. (2017), which spectrally interpolates the field of
interest to Lebedev integration points.

The smallest integration sphere we employ is the sphere with r = 1 and rd ≈ 〈η〉t.
This results in coarse spherical averages Qa (i.e. 26 integration points). The spherically
averaged Q might not be converged in terms of the spherical integration and one should
be careful when comparing absolute statistics such as 〈Qa〉 at small scales between studies
using coarse surface integrations. We get a lower estimate of the integration error at r = 1
by integrating a constant over the sphere with a relative error of 3 × 10−3. In terms of
relative magnitudes, the coarseness of the spherical averaging does not invalidate relative
statements between KHMH terms Qa

1 and Qa
2 such as Qa

1 � Qa
2. We see from (B4) that the

local difference between KHMH terms Qa
1 and Qa

2 can only be considerable if Q1 � Q2
in an average sense over the considered separations r.

We can use the solenoidal KHMH equation to assess the accuracy of the computed
KHMH terms. We denote the local residual of the solenoidal KHMH equation by R and
its spherical average Ra. We plot in figure 9 the Ra spatiotemporal averages and standard
deviations across scales. This shows that even at small scales the KHMH terms are
calculated satisfactorily. The averages and standard deviations of the residual are always an
order of magnitude smaller than the average and standard deviation solenoidal interscale
transfer term, which is characteristic of the small-scale cascade dynamics.

Appendix C. Conditional KHMH statistics across scales

The plots in figures 6 and 7 are given for rd = 〈η〉t. Here we complement these figures
with the same plots in figures 10 and 11 for other values of rd between 〈η〉t and 0.5〈λ〉t in
support of the claim that the conclusions derived from figures 6 and 7 in the paper’s main
text are valid for the range of dissipative/diffusive length scales between 〈η〉t and 0.5〈λ〉t.
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