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Boosting intelligence analysts’ judgment accuracy: What works, what

fails?
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Abstract

A routine part of intelligence analysis is judging the probability of alternative hypotheses given available evidence. Intelli-

gence organizations advise analysts to use intelligence-tradecraft methods such as Analysis of Competing Hypotheses (ACH)

to improve judgment, but such methods have not been rigorously tested. We compared the evidence evaluation and judgment

accuracy of a group of intelligence analysts who were recently trained in ACH and then used it on a probability judgment task

to another group of analysts from the same cohort that were neither trained in ACH nor asked to use any specific method.

Although the ACH group assessed information usefulness better than the control group, the control group was a little more

accurate (and coherent) than the ACH group. Both groups, however, exhibited suboptimal judgment and were susceptible to

unpacking effects. Although ACH failed to improve accuracy, we found that recalibration and aggregation methods substan-

tially improved accuracy. Specifically, mean absolute error (MAE) in analysts’ probability judgments decreased by 61% after

first coherentizing their judgments (a process that ensures judgments respect the unitarity axiom) and then aggregating their

judgments. The findings cast doubt on the efficacy of ACH, and show the promise of statistical methods for boosting judgment

quality in intelligence and other organizations that routinely produce expert judgments.
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1 Introduction

Intelligence organizations routinely call upon their analysts

to make probability judgments and test hypotheses under

conditions of uncertainty. These expert judgments can in-

form important policy decisions concerning national and

international security. Traditionally, analysts have been ex-

pected to accumulate domain expertise and apply this along

with critical thinking skills to arrive at timely and accurate

assessments for decision-makers. In the US, developers of

analytic tradecraft (i.e., the methods developed within the in-

telligence community to support its analytic functions) such

as Richards Heuer Jr. and Jack Davis introduced so-called

“structured analytic techniques” (SATs) to support the ana-

lyst in the assessment process, but these methods were largely

optional tricks-of-the-trade. That state of affairs changed fol-

lowing two notable geopolitical events (i.e., the September
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11, 2001, terrorist attacks by Al Qaeda and the 2003 invasion

of Iraq) that were attributed in part to striking intelligence

failures. These events prompted reviews of the intelligence

community with ensuing organizational reforms that, among

other things, aimed at debiasing intelligence analysts’ judg-

ments (Belton & Dhami, in press). In the US, the Intelligence

Reform and Terrorism Prevention Act of 2004 mandated the

use of SATs in intelligence production and SATs became a

staple topic in most analytic training programs (Chang, Ber-

dini, Mandel & Tetlock, 2018; Coulthart, 2017; Marchio,

2014). Much the same set of organizational reforms was en-

acted in other Western countries such as the UK (e.g., Butler,

2004).

Although the number of SATs has skyrocketed over the last

decade (Dhami, Belton & Careless, 2016; Heuer & Pherson,

2014), as others have lamented in recent years (Chang et al.,

2018; Dhami, Mandel, Mellers & Tetlock, 2015; National

Research Council, 2011; Pool, 2010), there has been little

effort to test their effectiveness. Instead, most SATs have

been adopted on the basis of their perceived face validity

with the belief that, although imperfect, they must be better

than nothing. At the same time, the intelligence commu-

nity has rarely considered using post-analytic techniques to

improve judgment (Mandel & Tetlock, 2018). For instance,

Mandel and Barnes (2014) showed that intelligence analysts’

strategic forecasts were underconfident, but that much of this

bias could be eliminated by recalibrating their judgments to

make them more extreme (also see Baron, Mellers, Tetlock,

Stone & Ungar, 2014; Turner, Steyvers, Merkle, Budescu
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& Wallsten, 2014). Similarly, the accuracy of probabil-

ity judgments can be improved post-judgment by recalibra-

tion so judgments respect one or more coherence principles,

such as the axioms of probability calculus — a statistical

process called coherentization (Karvetski, Olson, Mandel &

Twardy, 2013). Karvetski et al. further observed that weight-

ing individuals’ contributions to aggregated judgments also

improved accuracy above the gains achieved using an un-

weighted arithmetic average. In the present research, we

examine the accuracy of intelligence analysts’ probability

judgments in an experimental task. We examine the effec-

tiveness of ACH as well as recalibration and aggregation

methods with the aim of addressing the prescriptive ques-

tion: what works — and what fails — to improve judgment

accuracy?

1.1 The Analysis of Competing Hypotheses

Technique

The Analysis of Competing Hypotheses (ACH; Heuer, 1999;

Heuer & Pherson, 2014) is one of the most widely known

SATs, and one of only nine that is listed in the US Govern-

ment’s (2009) Tradecraft Primer (also see UK Ministry of

Defence, 2013). The US Government describes ACH as a

diagnostic technique whose main function is to externalize

analytic hypotheses and evidence. It further claims that ACH

helps analysts overcome common cognitive biases, such as

primacy effects, confirmation bias, and other forms of pre-

mature cognitive closure that can undermine the accuracy of

forecasts or other probabilistic assessments. The US Gov-

ernment also asserts that ACH “has proved to be a highly

effective technique when there is a large amount of data to

absorb and evaluate” (2009, p. 14), yet it does not cite any

evidence to support that claim. The UK handbook conveys

comparable exuberance for ACH, noting, “The approach is

designed to help analysts consider all the evidence in the

light of all the hypotheses as objectively as possible” (UK

Ministry of Defence, 2013, p. 14, italics added).

ACH includes several steps, but the core of the trade-

craft method involves generating a matrix in which mutually

exclusive and (preferably) collectively exhaustive (MECE)

hypotheses are listed in columns and pieces of relevant ev-

idence are listed in rows. The analyst then assesses the

consistency of each piece of evidence with each hypothesis

starting on the first row and moving across the columns. For

each cell, the analyst rates evidence-hypothesis consistency

on a 5-point ordinal scale (i.e., −2 = highly inconsistent, −1

= inconsistent, 0 =neutral or not applicable, 1 = consistent,

2 = highly consistent. However, only the negative scores

(−1 and −2) are tallied for each hypothesis. For instance,

if there were five pieces of information (i.e., five rows) and

Hypothesis A had ratings {2, 2, 2, 2, −2} and Hypothesis B

had ratings {0, 0, 1, 0, −1}, Hypothesis B with an inconsis-

tency score of −1 would be rated as more likely to be true

than Hypothesis A with a score of −2. In other words, ACH

requires that analysts disregard evidential support for hy-

potheses in the information integration process. This feature

of the method may have been motivated by a misapplication

of Popper’s (1959) ideas about the merits of falsification as

a strategy for scientific discovery. Popper’s claim that hy-

potheses could only be falsified but never proven pertained to

universal hypotheses such as “all swans are white” because

a single non-white swan is sufficient to disprove the claim.

Most hypotheses of interest in intelligence, however, are not

universal but rather deal with events in a particular context

(e.g., Iran is developing a nuclear weapon), and few could be

falsified outright by a single disconfirming piece of evidence

(Mandel, in press).

ACH also includes a subsequent evidential editing phase:

once the matrix is populated with consistency ratings, the an-

alyst is encouraged to remove evidence that does not appear

to differentiate between the alternative hypotheses. However,

there is virtually no guidance on how such assessments of in-

formation usefulness should be conducted. For instance, the

US Government merely instructs, “The ‘diagnostic value’

of the evidence will emerge as analysts determine whether

a piece of evidence is found to be consistent with only one

hypothesis, or could support more than one or indeed all

hypotheses. In the latter case, the evidence can be judged as

unimportant to determining which hypothesis is more likely

correct” (2009, p. 15). The UK handbook is more precise,

stating “For each hypothesis ask the following question: ‘If

this hypothesis were true, how likely would the evidence

be?’” (UK Ministry of Defence, 2013, p. 15; see also Heuer,

1999). Yet, it vaguely advises analysts to “pay most attention

to the most diagnostic evidence — i.e., that which is highly

consistent with some hypotheses and inconsistent with oth-

ers” (p. 17). If evidence is subsequently disregarded, then

analysts are expected to recalculate the sum of the negative

(inconsistency) ratings. These scores are then meant to re-

flect the rank ordering of hypotheses by subjective probabil-

ity, with the hypothesis receiving the smallest inconsistency

score being judged as most likely to be true in the set of

hypotheses being tested.

ACH is not a normative method for probabilistic belief re-

vision or hypothesis testing, but it has become an institution-

alized heuristic that intelligence organizations have deemed

to be effective without compelling reasons or evidence (for

additional critiques, see Chang et al., 2018; Jones, 2018;

Karvetski, Olson, Gantz & Cross, 2013; Pope & Jøsang,

2005; Mandel, in press; Mandel & Tetlock, 2018). As al-

ready noted, ACH disregards useful information about ev-

idential support for hypotheses and it requires analysts to

self-assess information utility without providing a clear def-

inition of utility, let alone a computational method for esti-

mating such utility. Perhaps even more fundamental is the

omission of a clear definition of consistency, which could

signify a range of meanings, such as the probability of the
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evidence given the hypothesis, the probability of the hy-

pothesis given the evidence, the plausibility or the necessity

of one given the other, or simply a subjective sense of the

representativeness of one to the other — namely, the rep-

resentativeness heuristic (Kahneman & Tversky, 1972). In

addition, ACH does nothing to ensure that analysts consider

prior probabilities or objective base rates when revising their

beliefs about hypotheses in light of new evidence. In sum,

there are many reasons to be skeptical about the effectiveness

of ACH.

Unfortunately, there is little scientific research on ACH,

and what exists must be interpreted cautiously for several

reasons, such as small sample sizes (e.g., Convertino, Bill-

man, Pirolli, Massar & Shrager, 2008; Lehner, Adelman,

Cheikes & Brown, 2008; Kretz, Simpson & Graham, 2012),

lack of control groups (Convertino et al., 2008) or appro-

priate control groups (Kretz et al., 2012). Moreover, virtu-

ally all published studies have omitted critical, quantitative

measures of judgment accuracy, focusing instead on distal

considerations such as whether ACH reduces (the highly

equivocal notion of) “confirmation bias” (Nickerson, 1998).

Yet, despite the many serious limitations of research on ACH

(and SATs, more generally), the intelligence studies litera-

ture has shown little concern regarding the lack of adequate

research to support the widespread use of SATs, including

ACH. Rather, a recent review article concluded that ACH

was “found to be effective and had a highly credible evi-

dence base. . . ” (Coulthart, 2017, p. 377). This conclusion

is unwarranted not only because of the methodological weak-

nesses noted earlier, but also because the extant findings are

at best equivocal. For instance, whereas Lehner et al. (2008)

find that ACH reduced confirmation bias in non-analysts, it

had no effect on analysts.

1.2 The present research

A central aim of our research was to examine how the ac-

curacy and logical coherence of intelligence analysts’ judg-

ments about the probability of alternative (MECE) hypothe-

ses depended on whether or not analysts were trained in and

used ACH on the experimental task. In addition to this SAT,

we also explored the value of statistical post-judgment meth-

ods for improving expert judgment, such as recalibrating

experts’ probabilities in ways that remedy certain coherence

violations (i.e., non-unitarity and/or non-additivity), and by

aggregating experts’ judgments using varying group sizes

and weighting methods.

We tested the effectiveness of ACH by randomly assigning

intelligence analysts from the same population to experimen-

tal conditions that either used ACH or did not. One group

of analysts was recently trained to use ACH as part of their

organization’s training and they were required to use ACH

on the experimental task. The other group of analysts was

drawn from the same analytic cohort (i.e., same organiza-

tion and taking the same training course) but they were not

instructed to use ACH (or any SAT for that matter) and were

not exposed to ACH training until after the experiment was

completed. The task, which involved a hypothetical scenario,

required analysts to assess the probabilities of four MECE

hypotheses that corresponded to four tribes in a region of

interest. Participants were asked to assess the probabilities

that a detained individual (i.e., the target) from the local

population belongs to each of the four tribes. Participants

were given the tribe base-rates and diagnostic conditional

probabilities for 12 evidential cues (e.g., “speaks Zimban”),

along with the cue values (6 present and 6 absent) for the

target. Furthermore, two tribes (Bango and Dengo, hereafter

B and D) were grouped as friendly (F), whereas the other

two (Acanda and Conda, hereafter A and C) were grouped

as hostile (H).

If ACH proponents’ claims about the technique’s effec-

tiveness are warranted, we should find greater probabilistic

judgment accuracy in the ACH condition than in the con-

trol condition. As noted earlier, to the best of our knowl-

edge, there is no clear evidence to support the claim that

ACH improves probabilistic judgment accuracy. Indeed,

one non-peer-reviewed study that compared various degrees

of ACH support (e.g., ACH on its own or with additional

training) across experimental groups found that accuracy

was best among those participants in the no-ACH control

group (Wheaton, 2014). However, insufficient information

was provided to interpret these results with any confidence.

In addition, if proponents’ claims about the effectiveness

of ACH in promoting soundness of judgment are true, we

might expect to find that analysts recently trained in and

aided by ACH produce probability judgments that are more

coherent than those unaided by ACH. We tested this propo-

sition by examining the degree to which probability judg-

ments in both groups respect the axioms of unitarity and

additivity. To do so, we drew on predictions of support

theory, a non-extensional descriptive account of subjective

probability which posits that one’s probability judgments

are a function of his or her assessments of evidential support

for a focal hypothesis and its alternative (Rottenstreich &

Tversky, 1997; Tversky & Koehler, 1994). Support theory

predicts an unpacking effect, in which the sum of the prob-

abilities assigned to a MECE partition with more than two

subsets of an event, x, exceeds P(x). Unpacking effects have

been shown in several studies (Ayton, 1997; Fox, Rogers

& Tversky, 1996; Rottenstreich & Tversky, 1997; Tversky

& Koehler, 1994). For instance, in two experiments with

undergraduate participants, Mandel (2005) found that the

mean unpacking factor — namely, the ratio of the sum of

unpacked probability estimates to the packed estimate — was

2.4 comparing forecasts of terrorism (i.e., the packed fore-

cast) to forecasts of terrorism unpacked into acts committed

by Al Qaeda or by operatives unaffiliated with Al Qaeda.

No research has yet examined whether intelligence analysts’
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probability judgments are susceptible to the unpacking ef-

fect. In the present research, the unpacking effect would be

observed if P(A)+P(C) > P(H) and/or P(B)+P(D) > P(F).

According to the additivity axiom, these inequalities should

be equalities, given that A∩C = � and A∪C≡H; likewise B

∩ D = � and B ∪D≡F.

Extending our investigation into the coherence of analysts’

probability judgments, we further tested whether analysts’

judgments respect the unitarity axiom, which states that the

probabilities assigned to a MECE set of hypotheses should

sum to unity. Support theory predicts that partitions of a

sample space into more than two subsets will yield an un-

packing effect. Thus, in the present research, support theory

predicts P(A)+P(B)+P(C)+P(D) > 1.0, in violation of the

unitarity axiom, which requires that these probabilities sum

to unity. The unitarity axiom also requires that the binary

complements P(H) and P(F) sum to 1.0, although support

theory predicts agreement with the axiom in the case of bi-

nary complements. Some studies find agreement with sup-

port theory’s prediction for binary complements (e.g., Dhami

& Mandel, 2013; Rottenstreich & Tversky, 1997; Wallsten,

Budescu & Zwick, 1993), whereas others find that the sum of

the probabilities people assign to binary complements is less

than unity (e.g., Baratgin & Noveck, 2000; Macchi, Osher-

son & Krantz, 1999; Mandel, 2008; Sloman, Rottenstreich,

Wisniewski, Hadjichristidis & Fox, 2004). Consistent with

the latter studies, Mandel (2015b) found that intelligence an-

alysts who were given a series of binary classification tasks

to complete provided total probabilities for binary comple-

ments that fell significantly short of unity, although analysts’

performance was improved through training in Bayesian rea-

soning using natural sampling trees. In the present research,

we tested whether ACH would have a beneficial effect on the

degree to which analysts’ posterior probability judgments

respected the unitarity axiom.

Our investigation into the coherence of analysts’ probabil-

ity judgments was also motivated by the aim of testing the

value of statistical, post-judgment methods for improving

judgment accuracy. As noted earlier, recent research shows

that coherentizing probability judgments so that they respect

axioms of probability calculus such as additivity and unitar-

ity can significantly improve judgment accuracy (Karvetski,

Olson, Mandel et al., 2013). Moreover, individual differ-

ences in the coherence of individuals’ judgments can be

exploited as a basis for performance weighting contributions

to aggregated estimates, making the “crowds wiser” than

they would tend to be if each member’s contribution had

equal weight (Osherson & Vardi, 2006; Predd, Osherson,

Kulkarni & Poor, 2008; Tsai & Kirlik, 2012; Wang, Kulka-

rni, Poor & Osherson, 2011). Karvetski, Olson, Mandel et

al. (2013) found that the accuracy of probability judgments

about the truth of answers to general knowledge questions

was improved through coherentizing the judgments, and a

further substantial improvement was achieved by coherence

weighting the coherentized judgments. In the present re-

search, we examined how effective coherentization and co-

herence weighting are for improving the accuracy of in-

telligence analysts’ probability judgments. We compared

coherentized judgments to raw probability judgments gen-

erated with or without the use of ACH. We also compared

coherence-weighted aggregate estimates to an equal-weight

linear opinion pool (LINOP), which is the arithmetic aver-

age across judges (Clemen & Winkler, 1999). Our interest in

this issue was two-fold: First, we aimed to assess the external

validity of earlier findings in this nascent area of research on

coherentization and coherence-weighted aggregation. Sec-

ond, we aimed to test whether these post-judgment methods

hold promise for organizations, such as intelligence agencies,

that generate expert judgment as a product or service.

A further aim of this research anticipated both a possi-

ble benefit and a possible drawback of ACH. We hypothe-

sized that ACH will not foster greater accuracy in probability

judgment because, as we noted earlier, there are processes

in the technique, such as disregarding evidential support in

information integration, that are normatively indefensible.

However, ACH does require analysts to evaluate each piece

of information in relation to each hypothesis on the same

criterion (consistency). We hypothesized that this might

improve analysts’ abilities to extract the usefulness of the

evidence. Accordingly, we asked analysts to rate the infor-

mation usefulness of each of the evidential cues presented

and we examined how well these ratings correlated, on av-

erage, with the probability gain of the cue, a measure of the

extent to which knowledge of the cue value is likely to im-

prove classification accuracy (Baron, 1981, cited in Baron,

1985; Nelson, 2005).

A related aim of ours was to examine whether analysts

who display stronger correlations with sampling norms also

show better probability judgment accuracy, and whether this

“meta-relationship” might differ between ACH and control

groups. For instance, ACH proponents might be willing to

wager that analysts who use ACH are more likely to reliably

encode the information value and to use that information to

their advantage by making more accurate judgments.

2 Method

2.1 Participants

Fifty UK intelligence analysts participated in the experiment

during regular working hours and did not receive additional

compensation for their participation. All participants were

pre-registered for intelligence training and were asked by the

trainers to participate in the experiment. Mean age was 27.79

years (SD = 5.03) and mean length of experience working

as an analyst was 14.08 months (SD = 29.50). Out of 44

participants who indicated their sex, 25 (57%) were male.
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Table 1: Informational features of experimental task. Values represent cue likelihoods.

Tribe (base rate)

Evidential cues Acanda (.05) Bango (.20) Conda (.30) Dengo (.45) Feature Present in Target

Under 40 years .10 .10 .90 .90 Yes

Use social media .75 .50 .25 .50 Yes

Speak Zebin .50 .75 .50 .25 Yes

Employed .25 .25 .10 .10 Yes

Practice religion .90 .90 .10 .10 No

From large family .25 .50 .75 .50 No

Educated to age 16 .50 .25 .50 .75 No

Have high-SES .75 .75 .90 .90 No

Speak Zimban .75 .25 .75 .25 Yes

Have political affiliation .75 .25 .75 .25 No

Wear traditional clothing .75 .50 .60 .40 Yes

Fair coloured skin .25 .50 .40 .60 No

2.2 Design and procedure

Participants were randomly assigned in balanced numbers

to one of two conditions of the tradecraft factor: the ACH

(i.e., tradecraft) condition or the no-ACH (i.e., no tradecraft)

control condition. In the ACH condition, participants com-

pleted their scheduled ACH training, which was based on

Heuer and Pherson (2014) and related material from Pher-

son Associates, LLC. Participants in the control condition

received ACH training after the experiment. Participants

completed a paper and pencil questionnaire and were subse-

quently debriefed in small group sessions within the organi-

zation in which they worked. However, participants worked

individually on the task. Participants in the ACH condi-

tion were instructed to approach the judgment task using the

eight steps of the ACH method, whereas participants in the

control condition were free to use whatever approach they

favored. The experiment received ethical approved from the

institutional review board of Middlesex University.

2.3 Materials

Participants read about a fictitious case in which they were

required to assess the tribe membership of a randomly se-

lected person from a region called Zuma.1 They read that

there were four tribes (A-D) that constituted 5%, 20%, 30%,

and 45% of Zuma, respectively. Each tribe was then de-

scribed in terms of 12 probabilistic cue attributes. For in-

stance, for the Acanda tribe (i.e., Tribe A) the description

read:

1Full instructions for ACH and control conditions are available as sup-

plements.

Acanda: 10% of the tribe is under 40 years of

age, 75% use social media, 50% speak Zebin (one

of two languages spoken in Zuma), 25% are em-

ployed, 90% practice a religion, 25% come from a

large family (i.e., more than 4 children), 50% have

been educated up to the age of 16, 75% have a

reasonably high socio-economic status relative to

the general population, 75% speak Zimban (one

of two languages spoken in Zuma), 75% have a

political affiliation, 75% wear traditional clothing,

and 25% have fair coloured skin.

Next, the target’s cue attributes were described as follows:

The target is under 40 years of age, uses social me-

dia, speaks Zebin, is employed, does not practice

a religion, does not come from a large family, does

not have education up to age 16, does not have

a reasonably high socio-economic status, speaks

Zimban, is not politically affiliated, wears tradi-

tional clothing, and does not have fair coloured

skin.

Thus, the target had positive values for half of the cues and

negative values for the other half. Furthermore, analysts

were told to assume that the target’s answers were truth-

ful (due to the administration of a truth serum) in order to

ameliorate any possible effects of participants perceiving the

information as unreliable or deceptive. Table 1 summarizes

the informational features of the task.

In the ACH condition, participants were asked to com-

plete the eight steps of the ACH method (see supplementary

materials for full instructions), which included: (a) identify-

ing all possible hypotheses, (b) listing significant evidence
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that is relevant for evaluating the hypotheses, (c) creating

a matrix with all the hypotheses as columns and all items

of relevant information as rows and then rating the consis-

tency of each piece of evidence with each hypothesis, (d)

revising the matrix after omitting non-diagnostic evidence,

(e) calculating the inconsistency scores by taking the sum

of the inconsistent values and using that to draw tentative

conclusions about the relative likelihood of the hypotheses,

(f) analyzing the sensitivity of conclusions to a change in the

interpretation of a few critical items of relevant information,

(g) reporting conclusions, and (h) identifying indicators for

future observation.

By comparison, in the control condition, participants were

asked to “consider the relative likelihood of all of the hy-

potheses, state which items of information were the most

diagnostic, and how compelling a case they make in iden-

tifying the most likely hypothesis, and also say why alter-

native hypotheses were rejected.” They were provided with

two pages of blank paper on which to respond (none asked

for more paper).

All participants completed the same final page of the ques-

tionnaire. The first four questions prompted analysts for the

probability that the target belonged to each of the four tribes

(A-D). Next, they were asked for the probability that the

target was friendly and also for the probability that the target

was hostile. Probability judgments were made on a 101-

point scale that shows numeric probabilities starting at 0 and

continuing at every 5% increment up to 100. The instruc-

tions noted that 0% meant “impossible” and 100% meant

“absolutely certain.” Next participants rated on an unnum-

bered 11-point scale, ranging from not at all to completely,

how useful each of the 12 cues was in assessing which the

target’s tribe membership. For the purpose of statistical anal-

ysis, these ratings were entered as values ranging from 1 to

11. We examined analysts’ responses to the scale measures

of probability and information usefulness.

2.4 Coherentization and coherence weighting

As described previously, more often than not, individuals

produce probability estimates that are incoherent and violate

probability axioms, and there is evidence that more coher-

ent estimates are associated with more accurate estimates

(Mellers, Baker, Chen, Mandel & Tetlock, 2017). Given a

set or vector of elicited probabilities that is incoherent, the

coherent approximation principle (CAP; Osherson & Vardi,

2006; Predd et al., 2008) was proposed to obtain a coher-

ent set of probabilities that is minimally different in terms

of Euclidean distance from the elicited probabilities with

the goal of improving accuracy. This “closest” set of co-

herent probabilities is found by projecting the incoherent

probabilities onto the coherent space of probabilities. An

incoherence metric can then be defined as the Euclidean dis-

tance from an incoherent set of probabilities to the closest

coherent set of probabilities. For example, if an analyst in

the present research provided probability judgments of .2,

.3, .4, and .3 for the four MECE hypotheses A-D, respec-

tively, these estimates are incoherent because they sum to a

value greater than 1 and thus violate the unitarity constraint.

Using the CAP and (if needed) quadratic programming (see

Karvetski, Olson, Mandel et al., 2013) a coherent set of re-

calibrated probabilities can be obtained, which minimizes

the Euclidean distance between the point {.2, .3, .4, .3} and

all quartet vectors with values between 0 and 1, such that the

sum of the four values is 1. For this example, the probabil-

ities of .15, .25, .35, and .25 represent the closest coherent

set, with minimum distance as follows:

√
(.2 − .15)2 + (.3 − .25)2 + (.4 − .35)2 + (.3 − .25)2 = .10.

The resulting value, moreover, represents an incoherence

metric, expressed, more generally, as

IM =

√√√
K∑

i=1

(yi − y
c
i
)2. (1)

In Equation 1, IM is calculated over the sum of k judg-

ments that form a related set, and notably IM is zero when

elicited judgments are perfectly coherent. The CAP is not

limited to using only the unitarity constraint but can be ap-

plied with any set of coherence constraints that can be defined

mathematically as an optimization program.

As noted earlier, variations in IM across individuals can

also be used as a basis for performance-weighted aggrega-

tion. With IM j as the incoherence metric for the j th indi-

vidual in an aggregate, a weighting function should satisfy

general properties. First, it should be strictly decreasing as

IM j increases, thus assigning harsher penalties to more inco-

herent individuals. Because weights are normalized during

the aggregation, only the ratio values of weights are relevant.

Thus, the function can be arbitrarily scaled in the [0, 1] in-

terval, with 1 representing a perfectly coherent judge. In the

present research, we use a weighting function similar to that

of Wang et al. (2011)

ωj = e−IM j ·β . (2)

The weighting function assigns full weight to the j th indi-

vidual if IM j = 0 or if β = 0. In the former case, this

is due to the perfect coherence of j’s raw estimates, while

in the latter case the weighting function is nondiscrimina-

tory and equivalent to taking the arithmetic average across

individuals.

Next, we define the coherence-weighted average of n

(where 2≤n≤N) individuals’ coherentized probability judg-

ments of the ith hypothesis as

ȳ
cc
i =

∑n
j=1
ωj y

c
i j∑n

j=1
ωj

. (3)
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Again, if β = 0, we have an equal-weighted (arithmetic)

average of the coherentized judgments

ȳ
c
i =

1

n

n∑

j=1

y
c
i j . (4)

Note that the coherence constraints on y
c
i j

imply that set of

all coherent probabilities is a convex set, and any linear com-

bination of elements from a convex set is again an element

of the same set. Therefore, the aggregated estimates must

also be coherent and do not have to be coherentized again.

In the present research, we let β = 5, and we later show

that the results are not sensitive to the exact value chosen.

Choosing a sufficiently large value alleviates the issue with

the “fifty-fifty blip”, which results when an individual ex-

presses epistemic uncertainty by responding .5 over multiple

judgments (Bruine de Bruin Fischbeck, Stiber & Fischhoff,

2002). In the present research, if an analyst entered .5 for

each hypothesis, A-D, the values would sum to 2, and the

participant’s IM score would be .50. In the weighting func-

tion, we have ω(.50) = .082. This participant would be

assigned only 8.2% of the weight that would be assigned to

a perfectly coherent participant.

2.5 Metrics

The primary measure of accuracy we use is mean absolute

error (MAE), which in this research computes the mean ab-

solute difference between a human-originated judgment (i.e.,

raw, transformed, or aggregated), yi , and the corresponding

posterior probabilities derived from Bayes theorem assum-

ing class conditional independence (i.e., a “naïve Bayes”

model), xi . We acknowledge that this simplifying assump-

tion is not necessitated by the task. However, we believe it is

reasonable to assume that participants did not perceive con-

ditional dependence and subsequently take it into account —

at least we found no evidence to support such a conclusion

in participants’ responses. Using the naïve Bayes model,

xA = .08, xB = .15, xC4 = .46, and xD = .31. Accordingly,

MAE =
1

kn

k∑

i=1

n∑

j=1

|yi j − xi |. (5)

The summation over i refers to the set of hypotheses (i.e., in

this research, k = 4).

An advantage of MAE over mean squared error or root

mean squared error is that it is less susceptible to outliers

(Armstrong, 2001; Willmott & Matsuura, 2005). In addition,

MAE is decomposable into quantity disagreement (QD) and

allocation disagreement (AD):

QD = |ME |, where MD =
1

kn

k∑

i=1

n∑

j=1

(yi j − xi).

(6)

AD = MAE = QD. (7)

QD is the absolute value of mean error (ME) or bias. AD

represents remaining inaccuracy after removal of QD (i.e.,

absolute bias), which necessarily involves a fair balance be-

tween under- and over-estimations of correct values (i.e., any

imbalance is part of QD). Coherentization reduces MAE by

eliminating QD.

As noted earlier, we used a measure of classification ac-

curacy improvement called probability gain (Nelson, 2005)

to assess analysts’ accuracy in rating cue usefulness:

probability gain (Q) =



∑

qj

P(qj) max P(hi |qj)


. (8)

3 Results

3.1 Coherence of probability judgments

We tested the coherence of analysts’ probability judgments

as a function of tradecraft using the following logical con-

straints:

yA + yB + yC + yD = 1 unitary, quarternary partition.

(9)

yH + yF = 1 unitary, binary partition.

(10)

yH = yA+yC, yF = yB+yD additivity, two binary partitions.

(11)

Equations 9 and 10 reflect the unitarity axiom and Equation

11 reflects the additivity axiom.2 In violation of Equation 9

and showing a strong unpacking effect, the sum of the prob-

abilities assigned to the four MECE hypotheses significantly

exceeded unity in the control condition (M = 1.54 [1.33,

1.76], t[24] = 13.63, d = 0.96, p < 001) and in the ACH

condition (M = 1.77 [1.56, 1.97], t[24] = 19.53, d = 1.69,

p < .001). The unpacking effect did not significantly differ

between conditions, but the difference in the size of these

effects was nevertheless of medium effect size by Cohen’s

(1992) standards and favored the control group, ∆ = 0.22

[−0.08, 0.55], t[45.8)] = 1.55, d = 0.45, p = .13.

In contrast, but consistent with several studies also finding

unitarity for binary complements (e.g., Brenner & Rotten-

streich, 1999; Dhami & Mandel, 2013; Mandel, 2005; Tver-

sky & Koehler, 1994), the total probability assigned to the

binary complements, H and F, did not significantly differ

from unity in either the control condition (M = 0.98 [0.90,

1.04], t[24] = 27.38, d = 0.12, p < .001) or the ACH con-

dition (M = 0.95 [0.83, 1.00], t[24] = 23.45, d = 0.25,

2Square brackets show bootstrapped 95% confidence intervals from

1,000 bias-corrected and accelerated samples, ∆ denotes the mean differ-

ence between conditions, and d refers to the effect size estimator, Cohen’s

d.
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p < .001). Thus, on average, analysts respected the unitarity

constraint imposed by Equation 10.

Turning to tests of additivity, we computed the sum of the

(signed) non-additivity (SSN):

SSN = (yA + yC − yH ) + (yB + yD − yF ). (12)

If Equation 12 is respected, SSN = 0. However, it is evident

that implicit disjunctions were assigned significantly less

probability than what was assigned, in sum, to their con-

stituents in both the ACH condition (M = 0.82 [0.64, 0.99],

t[24] = 8.98, d = 1.80, p < .001) and the control condition

(M = 0.56 [0.37, 0.74], t[24] = 5.34, d = 1.07, p < .001).

In addition, mean additivity violation, consistent with the

unpacking effect, was marginally greater in the ACH condi-

tion than in the control condition, ∆ = 0.25 [−0.05, 0.57],

t(48) = 1.81, d = 0.52, p = .08. Once again, this difference

was of medium effect size.

3.2 Accuracy of probability judgments

As noted earlier, we compared the accuracy of analysts’ un-

transformed (i.e., not coherentized) probability judgments

for the four-way MECE partition (i.e., Tribes A-D) using

analysts’ MAE calculated over the four estimates. Although

there was a significant degree of inaccuracy in both the con-

trol condition (MAE = 0.21 [0.17, 0.26], t[24] = 9.69,

d = 1.94, p < .001) and the ACH condition (MAE = 0.26

[0.22, 0.29], t[24] = 14.39, d = 2.88, p < .001), the effect

of tradecraft was not significant, ∆ = 0.04 [−0.02, 0.11],

t(45.9) = 1.49, d = 0.43, p = .14. Nevertheless, as the

effect-size estimate reveals, there was a medium-sized effect

of tradecraft that, once again, favored the control group.

The observed MAE in the sample was also compared to

that obtained from 10,000 random draws of probability val-

ues for each of the four hypotheses, A-D (i.e., where each

probability was drawn from a uniform distribution over the

[0, 1] interval — a simulated dart-throwing chimp, to use

Tetlock’s [2005] metaphor). MAE for the random judgments

was 0.33. Thus, analysts performed significantly better than

chance, analysts’ MAE = 0.23 [0.21, 0.26], t(49) = 6.69,

d = 0.95, p < .001.

Given that the QD decomposition of MAE calculated over

the four MECE hypotheses is directly related to unitarity

violation and, further, given that we have established that

this type of coherence violation is greater in the ACH con-

dition than in the control condition, we can verify that the

proportion of total inaccuracy (MAE) accounted for by QD

is greater in the ACH condition than in the control condi-

tion. In fact, this was confirmed: The QD/MAE proportion

was .73 [.60, .86] in the ACH condition and .50 [.32, .67]

in the control condition, a significant effect of medium size,

∆ = .23 [.04, .45], t(45.7) = 2.08, d = 0.60, p = .04.

Although the preceding analyses do not indicate that ACH

helps to improve analysts’ probability judgments, critics

might argue that the method is not aimed at minimizing

absolute error but rather at improving the rank ordering of

alternative hypotheses in terms of their probability of be-

ing correct. To address this point, we calculated the rank-

order (Spearman) correlation between each analyst’s four

raw probability judgments of A-D and the probability vec-

tor of the naïve Bayes model. The mean correlations in

the ACH condition (M = .29 [.02, .55]) and the control

condition (M = .24 [−.08, .55] did not significantly differ,

t[46.9] = 0.28, d = 0.08, p = .78. Therefore, we find no

support for the hypothesis that ACH helped analysts to better

assess the relative probability of the four hypotheses.

3.3 Information usefulness

As noted earlier, we hypothesized that the consistency rating

process in ACH, which requires analysts to assess each piece

of evidence for consistency with each hypothesis, and the

subsequent diagnosticity assessment process, which requires

analysts to consider information usefulness, might help an-

alysts capture variation in information utility. Accordingly,

we computed the Pearson correlation between each analyst’s

ratings of the information usefulness of the 12 cues and the

probability gain values for those cues. Providing support for

the preceding hypothesis, the mean correlation in the ACH

condition (M = .68 [.61, .75]) was significantly greater than

the mean value in the control condition (M = .17 [−.02,

.35]), and the effect size was very large, t[29.5] = 5.35,

d = 1.59, p < .001.

Next, we examined whether these correlations were them-

selves related to analysts’ MAE scores. Overall, this correla-

tion was non-significant, r(49) = −.14 [−.39, .15], p = .53.

However, the observed relationship was strikingly different

between the two conditions. The correlation was negligible

in the ACH condition, r(24) = −.10 [−.44, .28], p = .63,

but it was significant and of medium-to-large effect size in

the control condition, r(24) = −.42 [−.69, −.07], p = .045.

Although analysts using ACH were more likely than analysts

in the control condition to track the variation in probability

gain with their usefulness ratings, the degree to which the

ACH group tracked probability gain had almost no corre-

spondence to their accuracy, whereas it did for the control

group.

3.4 Recalibrating probability judgments

The substantial degree of nonadditivity observed in analysts’

probability judgments implies that recalibration procedures

that coherentize the judgments will not only ensure coher-

ence, they will also benefit accuracy by eliminating the QD

component of MAE. Thus, we coherentized analysts’ prob-

ability judgments of A-D so that they respected the unitar-
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Figure 1: Accuracy of probability judgments by group size and aggregation method.

ity constraint in Equation 9.3 The coherentized probability

judgments (MAE = 0.15 [0.13, 0.18]) were significantly

more accurate than the raw judgments (MAE = 0.23 [0.21,

0.26]), ∆ = −0.08 [−0.11, −0.06], t[49] = 6.77, d = 0.96,

p < .001. This represents a 35% reduction in MAE and ap-

proximately a 1 SD improvement. Recall that the proportion

of MAE attributable to QD was significantly greater in the

ACH condition than in the control condition. This suggests

that the effect of coherentizing will be stronger in the ACH

condition. In fact, d = 0.69 in the control condition and d =

1.37 in the ACH condition. Therefore, the SD improvement

is roughly twice as large in the ACH condition as it is in the

control condition. Moreover, after coherentizing, the effect

of tradecraft on accuracy is negligible, ∆ = 0.01 [−0.04,

0.07].

We once again compared analysts’ judgment accuracy to

the performance of the average dart-throwing chimp. How-

ever, this time we coherentized the randomly generated prob-

abilities, which yielded MAE = 0.21, a value that was signif-

icantly inferior to the observed coherentized MAE of 0.15,

t[49] = 4.56, d = 0.64, p < .001. An alternative method

of assessing chance is to define it in terms of all possible

permutations of the probabilities actually provided by each

participant, rather than as a uniform distribution. Using this

definition, the superiority of the analysts over chance was

still apparent but not as large: 0.16 for chance, 0.13 for the

participants (t(49) = 2.75, p = .008), a difference of about

3An alternative form of coherentization that used Equations 9 and 11

was also tested but found to be virtually indistinguishable. Thus, we used

the simpler form.

0.03 rather than 0.06.4 This analysis suggests that probability

judgments were in the right range, but they were conveying

very little information about the relative probabilities of the

four hypotheses, this reducing the power of the experiment

to detect group differences.

3.5 Aggregating probability judgments

Coherentization yielded a large improvement in the accu-

racy of analysts’ probability judgments. We examined how

much further improvement in accuracy might be achieved by

aggregating analysts’ probability judgments. To do so, we

generated 1,000 bootstrap samples of statistical group sizes

ranging from 1 (i.e., no aggregation) to 49 in increments of

two. We aggregated probability judgments in two ways: us-

ing an unweighted arithmetic average of coherentized proba-

bility judgments and using a coherence-weighted average of

such estimates.5 We examined the effect of aggregation on

MAE as well as on the average Spearman correlation between

the aggregated estimates and the vector of values from the

naïve Bayes model. As a benchmark, we also examined the

effect of these aggregation methods on random responses,

where each data point is based on 1,000 simulations of prob-

ability judgments from a uniform distribution over the [0, 1]

interval.

4Jon Baron conducted this analysis and used normalization (i.e., dividing

each stated probability by the sum of the four) rather than coherentization

as the recalibration method.

5For coherence-weighted aggregation, β = 5. However, as shown in the

supplementary figure, the effect of coherence weighting was robust across

a wide parametric range.
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Figure 2: Probability of improvement achieved by increasing group size by one member. Bars show 95% confidence intervals

from 1,000 bootstrap samples. The reference line shows the probability of improvement by chance.

As Figure 1 shows, these analyses yield several impor-

tant findings. First, they confirm that, when aggregated,

analysts’ judgments are substantially more accurate than ag-

gregated random judgments. Second, it is evident from the

left panel in Figure 1 that aggregation greatly improves ac-

curacy in analysts’ judgments, but to a degree comparable

to that observed in the randomly generated response data.

This suggests that most of the error reduction observed is

due to variance reduction from averaging and should not be

attributed to an eking out of any crowd wisdom, as clearly

there is no wisdom in the random response data.6 Third,

it is equally evident from the right panel in Figure 1 that

aggregation over increasingly larger group sizes steadily in-

creases the correct rank ordering of probabilities. This effect

is clearly not manifested in random response data, where

aggregation has no benefit. Fourth, aggregation with coher-

ence weighting did not outperform aggregation with equal

weighting; in fact, it slightly underperformed. Finally, the

left panel in Figure 1 shows that most error reduction due to

aggregation was achieved with small group sizes. Figure 2

clarifies that there was a significantly greater the proportion

of cases where MAE was lower for a group size of two than

for single individuals (i.e., the probability of improvement),

and likewise the stepwise increase in group size from two to

three significantly increased the proportion with lower MAE

6Note that aggregation of random responses will bring all responses

closer to .25. In the limit, the MAE of this constant response may be lower

than that for a set of responses with excessive variability.

scores. However, no additional stepwise increase in group

size yielded significant improvements.

Finally, we assessed the proportional gain in accuracy

achieved by recalibration and equal-weight aggregation

when n = 50. As noted earlier, coherentizing the disag-

gregated judgments yielded a 35% reduction in MAE. If we

combine coherentization with equal-weight aggregation of

the full sample of 50 analysts, we obtain MAE = 0.09, a

61% reduction in MAE over the value for analysts’ original

probability judgments (i.e., MAE = .23). That is, 61% of

the inaccuracy of analysts’ probabilistic assessments of the

target’s category membership was eliminated by first coher-

entizing those assessments and then taking an unweighted

average of them prior to scoring.

4 Discussion

Although intelligence organizations routinely train and ad-

vise analysts to use tradecraft methods, such as ACH, to

mitigate cognitive biases and thereby improve the coherence

and accuracy of their assessments, there has been a dire lack

of research on their effectiveness. The present research con-

ducted such a test and found that ACH failed to improve

intelligence analysts’ probabilistic judgments about alterna-

tive hypotheses. It even had a small detrimental effect on

some measures of coherence and accuracy. In such cases,

the comparison between conditions yielded a medium effect
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size in favor of the control group. To better understand the

advantage of not using ACH in the present research task, it is

helpful to convert the effect size into a stochastic superiority

or probability of superiority estimate equal to the area under

the receiver-operator characteristic curve in signal detection

theory (Grissom & Kim, 2005; Ruscio & Mullen, 2012;

Vargha & Delaney, 2000). The probability of superiority

is the probability that a randomly selected member of one

condition will outperform a randomly selected member of

another condition. For accuracy, for instance, the effect size,

d = 0.45, yields a probability of superiority estimate equal

to .62 favoring the control condition. That is, if one analyst

were randomly drawn from the ACH condition and another

randomly drawn from the control condition, there would be

a 62% chance of the former having worse accuracy than the

latter.

Comparable probabilities of superiority favoring the con-

trol condition likewise are obtained in tests of unitarity and

additivity. In each case, coherence violations conformed to

the unpacking effect predicted by support theory (Rottenstre-

ich & Tversky, 1997; Tversky & Koehler, 1994). As noted

earlier, the unpacking effect refers to the tendency for people

to assign greater total probability to the sum of a MECE par-

tition of a disjunctive event (in the case of additivity) or an

event space (in the case of unitarity). The unpacking effect

has been shown to undermine the logical coherence of geopo-

litical assessments (Tetlock & Lebow, 2001), which suggests

that such forms of incoherence can undermine strategic in-

telligence assessments. Indeed, compared to regular fore-

casters, elite super-forecasters of geopolitical topics tend to

display greater coherence on other, unrelated probabilistic

tasks (Mellers et al., 2017). It should concern the intel-

ligence community that a commonplace analytic tradecraft

technique served to increase (rather than reduce) this form

of judgmental error.

Of course, critics might argue that perhaps analysts inter-

preted the request for probabilities as requiring only a relative

probability assessment of the hypotheses. After all, ACH is

primarily aimed at ranking hypotheses by likelihood, and for

that reason our control analysts were also instructed to as-

sess the relative likelihoods of the hypotheses. However, we

elicited probabilities for each hypothesis separately on a scale

covering the [0, 1] interval. Moreover, the four probabilities

(A-D) that are bound by the unitarity axiom were elicited in

immediate succession, an elicitation feature shown to miti-

gate incoherence (Mandel, 2005). Therefore, we expect to

find even greater incoherence in analytic practice where the

logical relations between assessments are likely to be ob-

scured. Finally, we found that the rank-order correlations

between analysts’ judgments and the correct values were

small, on average, having only about 7% shared variance.

Another striking result of the present research concerns

the relationship between the quality of analysts’ information

usefulness evaluations and the quality of their probability

judgments regarding the alternative hypotheses. Although

analysts who used ACH provided ratings of probabilistic cue

usefulness that were more strongly correlated with the cues’

probability gain values than analysts who did not use ACH,

the former group’s assessments of information usefulness

did virtually nothing to guide them to exploit the knowledge

effectively to boost accuracy in probability judgments. In

contrast, among analysts in the control group, there was sub-

stantially better correspondence between accuracy and the

degree to which their usefulness ratings tracked probabil-

ity gain. Analysts in the control group whose usefulness

ratings tracked probability gain were better poised than ana-

lysts in the ACH group to use that knowledge to improve the

accuracy of their probability assessments. This finding was

unanticipated and should ideally be tested for reproducibility

in future research.

While speculative, one explanation for the disconnect be-

tween accurate evaluation of information usefulness and

accuracy of probability judgments is that the consistency-

encoding phase in ACH prompts analysts to adopt a per-

spective that is evidence-contingent rather than hypothesis-

contingent. That is, analysts are taught to evaluate evidence-

hypothesis consistency within pieces of evidence and across

hypotheses rather than the other way around. This approach

is deliberate, reflecting Heuer’s (1999) belief that analysts

are susceptible to confirmation bias and thus need to be

made to focus on evidence rather than their preferred hy-

pothesis. The evidence-contingent approach should prompt

consideration of information usefulness given that the con-

sistency between a piece of evidence and each hypothesis be-

ing evaluated is assessed before proceeding to another piece

of evidence. However, we see that information integration

within hypotheses is left to the questionable “sum of the in-

consistency scores” rule in ACH. Unlike a normative (e.g.,

Bayesian) approach, this rule merely serves as a summator

and, moreover, selectively so by choosing to ignore scores

that indicate degree of positive consistency. The integration

rule is also exceptionally coarse in its treatment of evidence,

assigning one of only three levels (−2, −1, 0) to each piece of

evidence, and such coarseness is likely to impede judgment

accuracy (Friedman, Baker, Mellers, Tetlock & Zeckhauser,

2018).

Moreover, ACH does virtually nothing as an analytic sup-

port tool to ensure that analysts consistently map evidential

strength onto −1 and −2 ratings. Consider two hypotheses,

A and B. Assume that given five pieces of evidence, three

analysts, X, Y, and Z agreed on the following. All five pieces

of evidence are inconsistent with A and three pieces are in-

consistent with B. Assume further that compared to Y, X has

a low threshold for assigning −2 ratings, and Z has a high

threshold. All three analysts might agree that the five pieces

of evidence are inconsistent with A, but not strongly so, and

they would assign -1 for each piece. They might further

agree that the three pieces of evidence that are inconsistent
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with B are stronger in their inconsistency than in the case

of A, but given their differing thresholds for assigning −2

ratings, they may vary in their ratings. For instance, X might

assign −2 to the three pieces that are inconsistent with B, Y

might assign, two −2 ratings and one −1 rating, and Z might

assign −1 ratings to each of the three pieces of evidence in-

consistent with B. If so, in spite of the substantial agreement

among analysts, using ACH, X would judge A less probable

than B, Y would judge A and B as equally probable, and Z

would judge A as more probable than B!

The present findings indicate that ACH is ineffective as a

means of supporting analysts in assessment tasks requiring

the integration of uncertain evidence in order to evaluate

a set of hypotheses. The findings challenge a widespread

assumption among tradecraft professionals in intelligence

organizations that, although ACH (and SATs, in general)

might not always help the analyst, at least they don’t hurt

the analyst (Mandel & Tetlock, 2018). Two of the authors

(DRM and MKD) who have worked for several years with an-

alytic tradecraft professionals have repeatedly encountered a

“nothing to lose” attitude when it comes to SAT training and

on-the-job use. Yet, our findings suggest that, in fact, ACH

can impede the quality of intelligence assessments. It can

do so in two ways: first, by undermining the coherence and

accuracy of estimates and, second, by fostering a disconnec-

tion between evidence evaluation and hypothesis evaluation.

We therefore urge intelligence organizations to be more cir-

cumspect about the benefits of training analysts to use ACH

and other SATs that have not received adequate testing.

Indeed, a commonplace rebuttal from intelligence profes-

sionals to any criticism of tradecraft methods is that although

they aren’t perfect, intelligence organizations can’t just “do

nothing.” The idea of leaving analysts to their own “intu-

itive” reasoning is thought to — and often does — result in

bias and error. Our findings challenge this assumption since

analysts who were left to their own devices performed better

than analysts who used ACH.

SAT proponents are likely to object and claim that our

findings lack external validity. After all, intelligence ana-

lysts seldom are presented with such neat problems where

all evidence is precisely quantified and expresses relative

frequencies and where the full set of pertinent hypotheses is

explicit and, further, it is evident that these hypotheses are

also neatly partitioned (i.e., MECE). We agree that in these

and other respects the experimental task we used lacks mun-

dane realism. However, we disagree with the implications

that proponents would likely draw from such observations.

Intelligence problems are murkier in many respects — the

quality of evidence will be variable, the hypotheses might

be unclearly defined and will often fail to yield a MECE set,

and analysts are likely to give no more than vague probabil-

ity estimates on coarse verbal probability scales (Dhami et

al., 2015; Friedman et al., 2018; Mandel, in press; Mandel

& Barnes, 2018). We see no compelling reason why ACH

should help under those conditions when it does not help

hypothesis evaluation under the much more modest require-

ments of the present experimental task. Indeed, it is possible

that ACH can do even more harm to judgment when analysts

use it on the job.

Clearly, it would be beneficial to conduct research in the

future that uses tasks that are more challenging in the respects

noted while permitting unambiguous evaluation of the mer-

its of ACH or other SATs. However, the present research

already shows that ACH is not an all-purpose judgment cor-

rective for problems involving the evaluation of multiple hy-

potheses on the basis of uncertain evidence. In fact, the poor

performance of both groups of analysts in this research raise

a more basic question: why were they so inaccurate on a task

(even in terms of their relative probability judgments) that is

arguably much easier than the types of so-called puzzles and

mysteries they encounter on the job? This may ultimately

prove to be a more important finding than the relative per-

formance between conditions. In the present task, analysts

had unambiguous sources of accurate information that they

could exploit, yet most were at a loss do so regardless of

whether they used ACH or not. Our findings therefore raise

a fundamental question about the competence of analysts to

judge probabilities. Given the small and homogeneous sam-

ple of analysts we tested, it would be wrong to draw sweeping

generalizations. Yet, if our findings do generalize across a

wide range of analyst samples, it should prompt the intel-

ligence community and the bodies that provide intelligence

oversight to take stock of the practical significance of the

findings and study the putative causes of poor performance.

We also respond to SAT proponents by noting that “doing

nothing” is not the only alternative to using conventional

analytic tradecraft techniques such as ACH. In this research,

we examined two promising statistical methods that intelli-

gence organizations could use to improve probability judg-

ments after analysts had provided judgments — methods we

accordingly describe as post-analytic. One method, coher-

entization, exploits the logical structure of related queries by

recalibrating probability assessments so that they conform

to one or more axioms of probability calculus. As noted

earlier, Karvetski, Olson, Mandel et al. (2013) showed that

such methods substantially improve the accuracy of prob-

ability judgments. Likewise, in the present experiment, a

large improvement in analysts’ accuracy was achieved by

coherentizing analysts’ probability judgments such that they

respected the unitarity axiom. This method fully counter-

acted the unpacking effect exhibited by analysts in this re-

search, especially those who were instructed to use ACH.

We view CAP-based coherentization as illustrative rather

than definitive. Other recalibration methods might be even

more effective or easier to apply. For instance, in the present

research, we could have coherentized probabilities by sim-

ple normalization (i.e., dividing each by their sum), as re-

searchers sometimes do as a step in the statistical analysis of
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probability judgment data (e.g., Prims & Moore, 2017, Study

2). This method (as noted in Section 3.4) would have yielded

even slightly better accuracy than CAP-based coherentiza-

tion (MAE = 0.13 for normalization, vs. 0.15 for CAP). Our

study is clearly not designed to examine such competitions

given it relies on a single vector of values defining proba-

bilistic accuracy. However, our findings suggest that research

comparing optimization methods using such techniques un-

der a broad range of task conditions are needed.

Another post-analytic method intelligence organizations

could use to boost the accuracy of probabilistic assessments

is to aggregate them across small numbers of analysts. We

found that substantial benefits to accuracy were achieved by

taking the arithmetic average of as few as three analysts.

These findings are consistent with earlier studies showing

that most of the advantage from aggregating can be achieved

with between two to five judges (e.g., Ashton & Ashton,

1985; Libby & Blashfield, 1978; Winkler & Clemen, 2004).

Moreover, we found that a simple equal-weighted aggre-

gate of analysts’ judgments yielded comparable benefit to

the more complex coherence-weighted aggregation method.

This result was unexpected given the superior performance

coherence weighting afforded over equal weighting in recent

studies (Karvetski, Olson, Mandel et al., 2013; Wang et al.,

2011). A key difference between the tasks in the present

research and Karvetski, Olson, Mandel et al. (2013) is that

the former included all information relevant to solving the

task, whereas the latter relied on participants’ knowledge of

world facts, such as who was the first person to walk on the

moon. Thus, whereas in the present research, coherentiza-

tion may have already reaped most of the benefit achievable

through coherence weighting, in the earlier studies coherence

weighting might also have benefited accuracy by predicting

how knowledgeable participants were.

More generally, the present results indicate that intelli-

gence organizations should be exploring how to effectively

incorporate processes for eliciting judgments from multi-

ple analysts and then aggregating them in order to reduce

judgment error. At present, intelligence organizations rarely

capitalize on statistical methods such as the recalibration and

aggregation approaches shown to be effective in the present

research. Instead, the management of intelligence produc-

tion tends to rely on traditional methods such as having sole-

source analysts provide input to an all-source analyst (an

approach that is common at the operational level), or by hav-

ing a draft intelligence report reviewed by peers with relevant

domain expertise and by the analyst’s director (an approach

often employed at the strategic level). Still, we caution not

to infer too much from the aggregation results. It is tempting

to suggest that the aggregate divines the wisdom of crowds,

as Surowieki (2004) put it, yet our finding that aggregation

of random response data yielded comparable error reduction

as in analysts’ judgments clearly challenges that interpreta-

tion as there was no wisdom in the random data to divine.

Our analysis of how aggregates can improve relative proba-

bility assessment, however, showed a large improvement in

accurately capturing the rank ordering of probabilities, and

this benefit was entirely absent in the random response data,

which suggests that aggregation did in fact boost the signal-

to-noise ratio in analysts’ ordered probability judgments.

To conclude, we argue that the intelligence community

should look to recent examples of research that illustrate how

organizations could better integrate recalibration and aggre-

gation methods pioneered in decision science into day-to-

day analytic practices. One example involves the systematic

monitoring of probabilistic forecast accuracy within intelli-

gence organizations (e.g., Mandel, 2015a; Mandel & Barnes,

2018). The results of such monitoring have shown that ana-

lysts’ forecasts tend to be underconfident, and that the cali-

bration of intelligence units can be improved post-judgment

through an organizational recalibration process that “extrem-

izes” overly-cautious forecasts (Mandel & Barnes, 2014;

Baron et al., 2014; Turner et al., 2014). Another exam-

ple is the introduction in the US intelligence community of a

classified prediction market that poses forecasting questions

not unlike those worked on by strategic analysts as part of

their routine assessment responsibilities. Stastny and Lehner

(2018) showed that analysts’ forecasts within the prediction

market, which aggregated the forecasters’ estimates but also

shared the aggregated estimates with the forecasters, were

substantially more accurate than the same forecasts arrived

at through conventional analytic means. These examples il-

lustrate the benefits to analytic accuracy and accountability

that intelligence organizations could accrue if they leveraged

post-analytic mathematical methods for boosting the quality

of expert judgment.
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