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1. In deriving an expression for the number of representations of a sufficiently
large integer N in the form

where A: is a positive integer, s(k) a suitably large function of k and pt is a prime
number, i = 1, 2, ..., s(k), by Vinogradov's method it is necessary to obtain
estimates for trigonometrical sums of the type

E <ap*) (1)

where co = \\k and the real number a satisfies 0 | a ^ 1 and is " near " a
rational number ajq, (a, q) = 1, with " large " denominator q. See Estermann
(1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning
of " near " and " large " is made clear below—Lemma 4—as it is necessary
for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is
obtained for the trigonometrical sum

E e(«4) (2)

where a satisfies the same conditions as above and where nr denotes a square-
free number with r prime factors. This estimate enables one to derive expres-
sions for the number of representations of a sufficiently large integer N in
the form

N = < + < + ... +<(fc),

where s(k) has the same meaning as above and where nri, i = 1, 2, ..., s(k),
denotes a square-free integer with rt prime factors.

The method used is to make sums of type (2) depend on sums of type (1)
by repeated use of the equality

E <KO = - ( E C-iy-1 E E ^ r - A (3)
fl7i

which expresses a sum of a function <$> over square-free integers with r prime
factors in terms of sums of $ over integers expressible as the product of a
prime power and square-free integers with fewer, r—j, 1 ^j^r, prime factors.

E.M.S.—R
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2. In obtaining our estimates we use the following notation. As already
stated, N denotes a sufficiently large positive integer, a denotes a real number
and e(oc) stands for e2aix; p, with or without a suffix, denotes a prime, nr,
r = 0, 1, 2, ..., is a square free integer with r prime factors, so that n0 = 1
and nt is a prime, kisa. positive integer and co = I/A:, a, a0, au a2, are positive
real numbers. 9 is a real number satisfying —1 ^ 9 ^ 1. Constants implied
by the <̂  and O notations depend, at most, on r and k.

3. We need the following lemmas.

Lemma 1. Let a— — ^ —r, with (a, q) = 1, and

in(t/,-i-A
\ 2{am}JiZi = 2, m i n

then
Qt ^ 6U+qlogq.

Proof. Hua (2), Hilfssatz 3.5.

Lemma 2. Let 1 ^ a ^ q, (a, q) = 1, w/?A

Define

d runs through the positive integers satisfying D<d ^ Z>', D'<^D, with
(log N)"i<D :g JV^log N)~"t, and m runs through an increasing sequence of
positive integers with m ^ N^d'1. Then

if a and ax satisfy
min((T, < 7 1 ) ^

Proof. Lemma 2 is Hua (2), Hilfssatz 6.3, with P = N°,f(x) =^,o3= 0,
so that / = 1, a5 = at and a6 = at.

In proving Hilfssatz 6.3, Hua uses Lemma 1 with a = a/q. Using the same
method of proof and the full strength of Lemma 1, Lemma 2 is seen still to
hold if, in the expression for Q2, a\q is replaced by a, with | a—a/q \ ^ l/q2.
Indeed, the same method of proof yields the following lemma.

Lemma 3. Let a = - + —-, 1 ^ a ^ q, (a, q) = 1, with
a q2

(log N)"<q ^ N(logNy.
Define

where d runs through the positive integers satisfying D<d ^ D', D'<^D, with
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(log N)"i<D g Na(\og N)~"',m runs through an increasing sequence of positive
integers with m ^ A ^ " 1 and £,{d) = 0(1). Then

x
if a and ay satisfy

min(ff, a 1 ) ^
Proof. In proving Lemma 2, Hua uses the inequality (2), p. 68

m \q )
The proof depends on the derivation of an upper bound for the expression
on the right hand side. By using the full force of Lemma 1, the same upper
bound is seen to be an upper bound for

l
d

2if | a—a/q | ^ 1/q2. Hence Lemma 3 can be proved using the same method
of proof as that of Lemma 2, for since £(d) = 0(1), we have

d

Lemma 4. Let 1 ^ a ^ q, (a, q) — 1, with

(log N)"<q ^ NQogNy.
Define

Then Q3 < ATflog A')""0,

Proof. This is Hua (2), Satz 10, with/O) = Pk, Q = 1 and P = N".

Again, the use of the full force of Lemma 1 in Hua's proof of Lemma 4,
rather than the particular case of a = a/q, enables one to prove that Lemma 4

still holds if, in the expression for Q3, a/q is replaced by a, with a
q

Indeed, the proof can be further modified to yield the following lemma.

Lemma 5. Let 1 g G g (log N)a*. Let a = - + —, with 1 ^ a g q,
q q

(a, q) = 1, and

Define

where Z(v),for v = 1, 2, ..., G, satisfies 0 ^ £(*>)<!•
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Proof. The further modification of Hua's proof of Lemma 4 necessary to
include the summation over v and the function £(y) that occur in the expression
for S2 is simple. The proof of Lemma 5 is exactly parallel to Hua's proof
((2), pp. 71-76), with the same values for the constants A1; A2, A3 that occur in
that proof.

4. We can now prove the following theorem.

Theorem 1. Let a. = —I—-, 1 ^ a ^ q and {a, q) = 1 with
1 q

Then

if

(log NY<q ^ iV(logA0

S= r = 1, 2, ...,

_ >>. o6fc/"-)2(fc+1) I i \ - _ i *)6k/')2(k+1) i -">6fc—2 i i \
(7 ^ Z (*• -TIJOQ+L (Z +Z +-!•/•

Proof. If r = 1, we have, by Lemma 5, with G = 1 and £(1) = 1,

S < Nm(log JV)-<TO+iV'0/2 <̂  ATOog JV)-"°,

since <7>26Vo+!)•
Let r>2, t be a positive integer g r—2, and A,-, / = 1, 2, ..., ?, be positive

t

integers such that A = £ ^ i ^ r — 2. Let o-3 = 22k+1(<T0 + l) + 2 3 ( 2 * ~ 1 ) and
i = 1

write A = (log N)"*. We use the notation £' throughout the remainder of
this section to denote summation over? primes plt ...,p,, satisfying p\l...p}' ^ A.
In such sums we write b = p\l...p*' so that b ^ A.

We now show that, if

s 3 = I E '
then

r-X-2

S3?k I' IP nr-A-J §
+ O(Nm(\og Ny°) (4)

where, if the sum over j is empty i.e. if A = r—2, it is defined to be zero.
Repeated applications of (4) will enable us to establish Theorem 1.

Using equality (3), we write

z , - - ( - ryp 2 E e

^ E

r-X

= E I FJ I' s ay-
1
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Clearly, since r—X ^ 2, we have

| Fr.x | g Nmlr-xL'l « AT(log N)-"0.

If j<r—X, we write / } in the form

where Fj1 } is the sum got from the sum which is Fs by imposing on the variables
of summation the further condition bpJ ^ A, F j 2 ) is the sum got from Ft by
imposing the condition bpJ ^ NaA~l. Fj 3 ) is therefore got from the sum
Fj by imposing the condition A<bpi KN^A'1.

To estimate Fj3 ) the range of values of bp' is split into < l̂og N ranges of the
type

D<bp> g D', D'<D.

In this way Fj 3 ) is expressed as the sum of < l̂og N sums of the type considered
in Lemma 3, with nr-x-j — m> a\ = ff3 a n d £(d) denoting the number of
representations of d in the form d = bp1. £(d) is therefore 0(1) since it denotes
the number of representations of d as the product of less than r—X prime
factors. So, by Lemma 3, we have

! log N. N^Qog Ny{ao+1> = N"(log N

since a and cr3 satisfy

min {a, o3) ^ 22fl+1((T0+l)+23<2*-1>.

Ifj> 1, then clearly

To estimate F|2), we write

F < 2 ) _ V ' V V

- Z' Z Z <<*{bpnr-x-iY)= F[2Xl)-F[2X2),

say. Lemma 5 is applicable to F(2\l) with G = A2 and C(̂ ) denoting the
number of representations of v in the form v = for,..^!. Then 0 5S £(y) <^1
and so, by Lemma 5, we have

F[2\l) <•; N*°/I2(log iV)-^0"1-2"3^ JV^log N)-" 0

since

We estimate F(!2)(2) by splitting the range of values of bp into <glog N subranges
of the type

D<bp g D', D'<D.
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Lemma 3 is applicable to the sum over each subrange, with m = 71,-^-.^,
ay = a3 and E,{d) denoting the number of representations of d in the form
d = bp with p ^ JVra/2. Thus £(d) = 0(1) since it does not exceed the number
of representations of d as the product of k •+1 primes. Hence, by Lemma 3,
we have

F[2\2) « log N. N^log JV)-(ff0 + 1) = ATflog N)""0,

since a and u3 satisfy

min O, <r3) ^

It remains to consider F)-x-i- Now

^i\-i = E' E E
P ni

Thus, applying Lemma 5, with G = A and ((v) denoting the number of
representations of v in the form v = bp"~ x~1 — so that 0 ^ £(t>) <l 1 — we have

! <g TV10. A .(log jV)-(ffo+<r3) + Ar/2,4 <̂  N^log AT)

since

By combining the above estimates for F£L\-lt F)2)and F^, and summing
over j we get

r

j= 1

which is (4). In almost identical fashion, if r ^ 2, it is shown that
r-2

Es 1 =

)-'">), (5)
where an empty sum, i.e. if r = 2, is defined to be zero.

If r = 2, Theorem 1 is given by (5). If r> 2 relation (4) is applied repeatedly
to the/-sum on the right-hand side of (5). The application of (4) r—2 times
establishes the theorem.

5. Using Theorem 1 and Vinogradov's method one can derive expressions
for the number of representations of a sufficiently large integer N in the form

The Page-Siegel-Walfisz Theorem concerning the number of primes in an
arithmetic progression is replaced by H. E. Richert's generations of it (3),
Satz 1, concerning the number of square-free integers with a constant number
of prime factors in an arithmetic progression. To illustrate, we now state the
result, Theorem 2, proved by the author | concerning the case k = 1. We

t In a doctoral thesis, Trinity College, Dublin, 1965.
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define

(i,«) = i

n(q) and 4>(q) denote the Mobius and Euler functions respectively, and B
denotes Merten's constant.

Theorem 2. Every sufficiently large odd integer N is representable in the
form

N = nri+nri+nr3

and the number of representations, p{N), satisfies

Vi+r2 + r3-3 ( 3

2 (log N)3

If r1 + r2 + r3 ^ 4, every sufficiently large integer N whether even or odd, is
thus representable and the number, p(N), of representations satisfies

2 (logN)3

log log J

-(loglogJV)"1 £ ( r , - l ) Y ^ ^ % •1
The particular case r± = r2 = r3 = 1 of Theorem 2 is Vinogradov's Theorem

(1), Chapter 3 and the case rt = r2 = 1, r3 = 2 was proved by Richert (3),
Satz 2.
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