
CELL GROWTH PROBLEMS 

DAVID A. KLARNER 

In memory of Eoin L. Whitney, a friend and teacher 

1. Introduction. The square lattice is the set of all points of the plane whose 
Cartesian coordinates are integers. A cell of the square lattice is a point-set 
consisting of the boundary and interior points of a unit square having its 
vertices at lattice points. An n-omino is a union of n cells which is connected 
and has no finite cut set. 

The set of all w-ominoes, Rnj is an infinite set for each n\ however, we are 
interested in the elements of two finite sets of equivalence classes, Sn and Tni 

which are defined on the elements of Rn as follows: Two elements of Rn belong 
to the same equivalence class (i) in Snj or (ii) in Tni if one can be transformed 
into the other by (i) a translation or (ii) by a translation, rotation, and reflec
tion of the plane. An element of Rn is in standard position if it is above the 
x-axis with a cell at the origin and all cells in the first row are to the right of the 
j-axis. 

There is exactly one element in each equivalence class in Sn which is in 
standard position, while an equivalence class in Tn may contain as many as 
eight elements all in standard position. Thus, if s{n) and t(n) denote the number 
of elements in Sn and Tn, then 

(1) %s(n) < tin) < s{n). 

Harary (3) has listed the cell growth problem as an unsolved problem in the 
enumeration of graphs. Stated in the terms we have just defined, Harary's 
formulation of the cell growth problem is to find t*(n), the number of equiva
lence classes of Tn which contain simply connected w-ominoes. If an ?z-omino 
is not simply connected, in the sense that it has *'holes," then it is said to be 
multiply connected. Harary (4) later reported that a computer had been 
programmed to find t{n) for n < 12, and he listed these values. Evidently 
this work was carried out independently by Stein, Walden, and Williamson at 
the Los Alamos Scientific Laboratories and by Lander and Parkin at the 
Aerospace Corporation. This and more detailed information about the counts 
were communicated to the author by Mr. Parkin. 

Read (8) calls representative elements of the equivalence classes of Sn and 
Tn fixed and free animals with n cells respectively; also, he gave a method for 
finding the number of equivalence classes of Sn which contain w-ominoes in 
standard position having cells in exactly k rows above the x-axis. He calculated 
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these numbers for k < 5 and n < 10 and used these results to find tin) and 
t*(n) for n < 10; an error in his calculations involving /(10) was discovered by 
Parkin and subsequently corrected by Read. The known values of t(n) and 
t*(n) are as follows: 

# 1 2 3 4 5 6 7 8 9 10 11 12 
(2) t(n) 1 1 2 5 12 35 108 369 1285 4655 17073 63600 

/*(») 1 1 2 5 12 35 107 363 1248 4271 — — 

Eden (1 ) seems to have been the first person to give upper and lower bounds 
for t(n) ; his bounds are 

(3) (3.14)* < tin) < 4W, 

for sufficiently large n. The proof for this upper bound is questionable, however. 
We shall show that a = limw^œ {s(n))l,n exists, so that from (1) we can 

conclude that l im^œ (t(n))1/n exists and is equal to a; to do this, we shall 
require a lemma due to Fekete (see Pôlya and Szego (7, p. 171) for similar 
results). 

LEMMA 1. If {Un} is a sequence of natural numbers such that {{Un)
lln) is 

bounded and Um Un < Um+n, then l im^^ (Un)
1/n exists. 

To show that \s(n)} satisfies the conditions of Lemma 1 we prove two more 
lemmas; in the proof of Lemma 3 we indicate the method Eden used in his 
attempt to establish the upper bound given in (3). 

LEMMA 2. s(m) sin) < s(m + n), m, n = 1, 2, . . . . 

Proof. Let X and Y be representative elements from equivalence classes in 
Sm and Sn respectively, such that the lower edge of the first cell in the bottom 
row of Y is joined to the upper edge of the last cell in the top row of X. The 
(m + ?z)-omino just described is a representative element of an equivalence 
class in Sm+n. The existence of this one—one correspondence between Sm X Sn 

and a subset of Sm+n implies the lemma. 

LEMMA 3. s{n) < (27/4)". 

Proof. Following Eden, we assign a unique sequence of binary digits to each 
element X of Sn which will be denoted by W(X) = {(«i /3i) (a2 &2 72). . . 
(oin (3n yn) 1 • To do this, we assume X is in standard position and draw a labelled, 
directed tree over the cells of X\ the nodes of the tree will be the centres of 
the cells of X and the directed edges will be drawn between some of the nodes 
in connected cells. The centre of the cell located at the origin is given the label 
Ci, and directed edges are drawn to the centres of the cells connected to it; 
these nodes are called C2, . . . , proceeding clockwise from the 3>-axis around C\. 
Now we describe a process that must be carried out at the nodes C2, C3, . . . , 
Cn, the nodes being taken in this order. Suppose the process has been carried 
out at Ci, C2, • . . , Ci-i, and that a directed edge has been drawn from Cj to Ct. 
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Beginning with the side of Ct to the right of Cj and proceeding clockwise 
around Ci we draw a directed edge to any cell connected to d which has not 
already been labelled, giving the labels Ck, Ck+\, . . . , to the new nodes, where 
k is the smallest index not used previously. Now at, pit and yt are assigned the 
binary digits 1 or 0 if an edge going from d cuts the first, second, or third side 
encountered, proceeding clockwise from Cj around Ct. 

The units which appear as digits in W(X) correspond to the edges of the 
tree drawn over the cells of X; thus, the binary digits of W(X) must sum to 
n — 1, since a tree with n nodes has exactly n — 1 edges. The number of binary 

/Sn — l \ 
sequences of length Zn — 1 that contain exactly n — 1 ones is ( J ; 

since different elements of Sn give rise to different binary sequences, it follows 
that 

(4) *<•> < t~-l) < (!)*• 
This completes the proof of Lemma 3; in Figure 1 we show a 7-omino in 

standard position with its labelled tree and corresponding binary sequence. 

" 6 — < r ~ 

->—c, 

->—-c , 

(11) (Oil) (000) (100) (010) (000) (000) 

FIGURE 1 

Combining Lemmas 1, 2, and 3 we have the following result. 

THEOREM 1. limw (s(n)y a exists, and a < 27/4. 

If there is a directed edge from d to C\, and from Cj to Ck, then the choice 
of the binary digits in (at Pi y t) and (ajPjyj) usually imposes restraints on 
the choice of (ak. j3k yk). Using this idea, Eden claims to have shown that fewer 
than 4n of the binary sequences of length 3n — 1 have digits which satisfy these 
restraints, but his argument is thought to be incomplete. 

If an n-omino in standard position has exactly aj cells in the jth row above 
the x-axis, for j = 1, 2, . . . , i, we say the equivalence class it represents in 
Sn belongs to the set Faia2...ai. Eden observed that if /(#i, a2, . . . , at) denotes 
the number of elements in Fa then 

(5) / (a i , a2, . . . , at) > (ai + a2 - l)(a2 + az - 1). . . ( a^ i + at - 1). 

The product in the right member of (5) gives the number of equivalence 
classes in Faia2...ai which contain w-ominoes that have a connected strip of aj 
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cells in the j th row, for j = 1, 2, . . . , i, when the ^-omino is in standard 
position. This follows from the fact that a strip of r cells can be joined above 
a strip of 5 cells in r + s — 1 ways. Since there is a set Fai(n...ai corresponding 
to every composition of n, we have 

(6) s(n) > b(n) = X) (fli + a* ~ !)(a2 + az — 1) . . . (af_i + at - 1), 

where the sum extends over all compositions of n into an unrestricted number 
of positive parts. 

Eden was able to show that for sufficiently large n, &(n) > (3.14)w and in 
this way proved the lower bound given in (3). Klarner (5) later improved this 
estimate to (3.20)w <b(n) < (3.21 ) n , for sufficiently large n\ in a subsequent 
paper (6) a theory for sums like (6) was given. We shall now apply this theory 
to find the generating function for [b{n)\ as defined by (6), and at the same 
time prepare the machinery for treating similar problems. 

2. Generating functions. Suppose {/(ra, n): m,n = 1, 2, . . .} and {g(n): 
m = 1, 2, . . .} are given sets of numbers and consider the set of numbers 
{6(n): n = 1, 2, . . .} defined by 

(7) b{n) = Z / O i , a2)f(a2, a3). . ./(a*_i, ^ )g(a , ) , 

where the sum extends over all compositions (ai, a2, . . . , at) of n into an 
unrestricted number of positive parts, and g(n) is the contribution to the sum 
when the number of parts of the composition is one. The symbol bk

j(a, n), 
used with all or only some of the suffixes, denotes the partial sum obtained 
from (7) when the index of summation has been restricted to those composi
tions of n which have exactly k parts, no part greater than j , and the first part 
equal to a; if a suffix is dropped, the corresponding restriction on the index of 
summation is dropped as well. 

In (6) we showed that if 

oo oo 

(8) F(x,y)=nZ,n£f(m,n)xmf 
m=l n=l 

is an analytic function of x for fixed y and of y for fixed x in neighbourhoods 
of x = 0 and y = 0 respectively, and if 

oo 

(9) G(x) = £ g{n)xn 

n=l 

is an analytic function in a neighbourhood of x = 0, then each of the functions 
found by deleting any of the subscripts from 

(10) Bk'(x, y) = Ë Ê hj(a, n)yV 
n=l a = l 

https://doi.org/10.4153/CJM-1967-080-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-080-4


CELL GROWTH PROBLEMS 855 

is an analytic function of x for fixed y in a neighbourhood of x = 0. Further
more, 

(11) B1(x,y) = G(xy), 

(12) Bk+1{x,y)=~ \ F{xy,l/s)Bk(x,s)~, * = 1, 2, . . . , 
Z TÎ «/ c S 

(13) B(x, y) = G(xy) + ~ f F(xy, l/s)B(x, s) - , 
z irt t/ c s 

where c is a contour in the s-plane which includes the singularities of 
F(xy, l/s)/s but excludes those of Bk(x, s) or B(x,s) respectively. Since 
B(x,y) = Bx(x, y) + B2(x,y) + . . . , (13) follows from (11) and (12); 
actually, (13) is a special case of the Fredholm integral equation. 

Now (6) has the form of (7) with g(n) = 1 and f(tn, n) = m + n — 1. 
If we suppose tha t / (m, n) = w(m) + tin) and that 

W(x) = w(l)x + w(2)x2 + . . . , T(x) = t(X)x + t(2)x2 + . . . , 

then 

(14) nXty) = f^ + *JM. 

In general, if the kernel of (13) has the special form 

(15) F(x,y)=i,Rk(x)Sk(y), 
k=l 

the integral equation is said to be of finite rank because its solution reduces 
to a system of linear algebraic equations. (For more details on this point, see 
Riesz and Sz-Nagy (9, p. 161).) Substituting the expression for F(xy, 1/s) 
given by (14) into (13), we obtain an integral equation having a kernel with 
finite rank: 

0.) B(X, „ . GM+wwo, i)+£ x « " T i y . 
Multiplying equation (16) by T(l/y)/y and integrating, we obtain a relation 

which implies that 

where 

(18) P(x) = — , f r ( l /y)G(ry) Ç = Ê f (»)«(»)*", 
Z7Ti t / c 3/ w = = i 

(19) Q(x) = ^~. f r ( l / ;y)^(x30 ^ = Ë t{n)w{n)^. 
Ziri Jc y n=1 

The integral representation of sums such as appear in (18) and (19) was 
probably first discovered by Hadamard (see for example, Titchmarsh (10, 
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pp. 157-159)). Substituting the expression for the integral given by (17) into 
(16) and setting y = 1, we obtain a linear equation in B(x, 1) ; solving this we 
obtain 

on\ R / r n = q-x)G(x)(l-T(x))+xP(x) 

The relations in (16), (17), and (20) can be combined to find B(x, y) in 
closed form in terms of W, T, G, P , and Q. When G(x) = x / ( l — x), then 
P(x) = r (x ) , and (20) reduces to 
(21) B(x, 1) = x/{(l - x)(l - T(x))(l - Wix)) - xQ(x)}. 

An elementary proof of (21) is given in the appendix of this paper. 

3. Some lower bounds. Now to find the generating function of {b(n)\ as 
defined in (6), we put 

(22) w = n.) = Ê(»- i)*--§è$, 

(23) «»-§(—^-"Vl-^-
Substituting these functions into (21) gives 

Multiplying equation (24) by 1 — 5x + 7x2 — 4x3 and equating coefficients 
in the resulting identity gives 6(1) = 1, 6(2) = 2, 6(3) = 6, 6(4) = 19, and 

(25) b(n + 3) = 5b(n + 2) - 7b(n + 1) + 46(»), 

for n = 2, 3, . . . . Since the largest real root of the auxiliary equation for the 
difference equation in (25) lies between 3.20 and 3.21, we conclude that 
(3.20)* <b(n) < (3.21)* for sufficiently large n. 

The method just used to obtain a lower bound for w-ominoes also applies to 
animals with cells of different shapes. For example, animals with connected 
strips of hexagons in each row are enumerated by 

(26) bin) = 2^ {ai + a2)(a2 + a3). . .(a«_i + a,), 

where the sum extends over all compositions of n. This follows since a strip of 
r hexagons can be connected along the upper edge of a strip of s hexagons in 
r + s ways. 

To find the generating function for the sequence {b(n)\ defined by (26), we 
substitute 

(27) Wix) = Tix) = Y. nxn = T ~ ~ T 2 
n=l ( 1 — X) 

and 

(28) Q(x) = Ë «V = 7 ^ 4 
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into equation (21) to obtain 

(29) B (x, 1 ) = ^ - j % = 2 ^ 3
7 3 , 4 = Ë b (»)*". 

1 — 6x + 10x — 7x + x ^ 1 
The relation in (29) implies that 6(1) = 1, 6(2) = 3, 6(3) = 11, 6(4)^ = 42, 

and 

(30) bin + 4) = 66(w + 3) - 106 (» + 2) + 7b(n + 1) - bin), 

for n = 1, 2, . . . . Furthermore, the largest real root of the auxiliary equation 
for the difference equation in (30) lies between 3.87 and 3.88, so that for 
sufficiently large n, [s.88)n > bin) > (3.87)w. 

Golomb (2) suggested the problem of determining the number of incongruent 
^-celled animals with hexagonal cells; these numbers are 1, 1, 3, 7, 22, and 83 
for n = 1,2, 3, 4, 5, and 6 respectively. They correspond to free animals while 
the numbers defined in (26) correspond to fixed animals of a certain type. 
Since a hexagon has 12 symmetries in the plane, the numbers of fixed and free 
animals with hexagonal cells differ by a factor of 12 at most. 

A rhombus is formed when two equilateral triangles are joined along an 
edge; thus, a lower bound for the number of animals with n rhomboidal cells 
can be used to find a lower bound for the number of animals with 2n triangular 
cells. A connected strip of r rhombuses can be joined above a strip of s rhom
buses in 2(r + s — 1) ways, since the strip of r rhombuses has two orientations 
with respect to a reflection about its mid-section. Thus, a lower bound for the 
number of fixed animals with n rhomboidal cells is 

(31) b{n) = S (2a! + 2a2 - 2)(2a2 + 2a3 - 2). . ,(2a,_i + 2a, - 2), 

where the sum extends over all compositions of n. Now to find the generating 
function of {bin)) as defined by (31), we can obtain the appropriate expression 
for W(x) and Q(x) by multiplying equations (22) and (23) by 2 and 4 respec
tively. Substituting these functions into (21) gives 

(32) B(x, 1) = z ^%f^7T3- i = £ bin)x\ 
1 — bx + Sx — ox — x t^i 

Of course, (32) implies 6(1) = 1, 6(2) = 3, 6(3) = 13, 6(4) = 59, and 

(33) bin + 4) = 66(n + 3) - 86(rc + 2) + 66(w + 1) + 6(»), 

for n = 1 , 2 , . . . . The auxiliary equation for (33) has its largest real root 
between 4.54 and 4.55, so for sufficiently large n, (4.55)w > bin) > (4.54)w; 
from this we can conclude that the number of fixed animals with n triangular 
cells is greater than (2.13)w for sufficiently large n. 

4. Improved lower bounds. We have defined Faia2...ai to be the subset of 
equivalence classes in Sn which contain n-ominoes with exactly a,j cells in the 
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j th row of the w-omino for j = 1, 2, . . . , i, and in (5) gave a lower bound for 
/ (ai , a2, . . . , az), the number of equivalence classes in Faia2...ai. Now we are 
going to show that there is a one-one correspondence between the elements of 
Faiaz X Fa2az X . . . X Fat._iai andasubsetof Faia2mmmai. 

THEOREM 2.f(au a2, . . . , at) >f(au a2)f(a2, az) . . ./(a*_lf a*). 

Proof. We call an r X 1 rectangle located in a column of the square lattice and 
a non-empty subset of the r cells contained in this rectangle an r-component. For 
example, an n-omino in an equivalence class in Faia2...ar is a sequence of r-
components contained in an r X j rectangle. 

Now suppose an r X j rectangle contains a sequence R of r-components 
such that the top row of the rectangle contains exactly c cells belonging to the 
components of R; also, suppose an 5 X k rectangle contains a sequence 5 of 
s-components such that the bottom row of the rectangle contains exactly c 
cells belonging to the components of S. Clearly, we can translate the components 
to the right in either or both of the rectangles leaving gaps between the com
ponents so that the c cells in the bottom row of S can be made to cover the 
c cells in the top row of R. The sequence R * S of (r + s — 1)-components 
which results when the components of R and »S are joined in this way is called 
the sum of R and S. 

Let (Fi, F2, . . . , 7i_i) be a given element of Faia2 X Fa2az X . . . X Fai_iai 

and suppose y3 is a representative element of Yjt for j — 1, 2, . . . , i — 1. We 
are going to construct a representative element y of an equivalence class 
Y = F(Fi , F2, . . . , Yi-i) of Faia2...ai such that the sequence of 2-components 
in thej th and (j + l)st rows of y is the same as the sequence of 2-components 
of yj} for j = 1, 2, . . . , i — 1. 

Consider the sequence of i-components given by 

( ( . . . ( ( ^ i *y2) *^3) * . . . ) *3 ; z - i ) = yi *^2 * • • . *:y*-i; 

if this sequence is not an w-omino, 2-components containing disconnected cells 
can be translated to the left and joined to cells they were joined to formerly in 
yu 3>2, . . . > 3>z-i> it being understood that overlapping 2-components must be 
translated simultaneously. The w-omino formed in this way has the desired 
properties; since, different sequences (Yu F2, . . . , F*_i) of Faia2 X Fa2az X 
. . . X Fai_iai give rise to different elements F of Faia2...ai, the theorem is 
proved. An example of the construction is given in Figure 2. 

We note that when yi * y2 * . . . * yi-i (described in the proof of Theorem 2) 
is disconnected, there may be many ways in which the cells can be translated 
to the right or the left to eventually form an w-omino; thus, w-ominoes in 
different equivalence classes in Faia2...ai may have the same sequence of 
2-components in their j th and (j + l)st rows, for j = 1, 2, . . . , i — 1. An 
example of this is given in Figure 3. Since f(m, n) is generally larger than 
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V y 2 

y
4 

(V1 * y 2 ^ * y 3 

FIGURE 2 

( ( y ^ y 2 ) * y 3 ) * y 4 

FIGURE 3. Both 4̂ and 5 correspond to (yif y2) ; 4̂ corresponds to yi*y2. 

m + n — 1, Theorem 2 leads to a lower bound for s(w) which is larger than 
the one given by (5). Thus, if 

(34) b(n) = J^f(ah a2)f(a2, az).. ./(a,_i, aO, 

where the sum extends over all compositions (ai, a2, . . . , at) of w, then 
s(w) > 6(«), for w = 1, 2, . . . . Once we have the generating function of 
{f(m, n)}, the methods given in (6) can be applied to the sum in (34). 

1 — xy oo oo 

= LE/(«.»)*"/• 
THEOREM 3. 

(35) H(x, y)=z , , < 
1 - x - y + xy m=on=o 

Proof. First, we observe that 

/(w,0) = / ( 0 , « ) = 1, « = 0, 1, . . . , 
and 

/ (» , 1) = / ( l , w) = w, » = 1, 2, 

Next, we show that 

(36) f(m + 2, n + 2) = / (w + 2, n + 1) + / ( w + 1, n + 2) - / ( m , w ) , 
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for m, n = 0, 1, . . . . There is a way to construct a representative element of 
each equivalence class in Fm+2,n+2 by adding a cell to representative elements 
in each of the equivalence classes in Fm+2,n+i ^ Fm+it7l+2 so that exactly 
f(m, n) elements are duplicated in the process. To do this suppose x is in 
standard position and is an element of an equivalence class in Fm+2,n+i (or in 
Fm+\,n+2), and join a new cell to x in the second row (or first row) so that the 
new cell is a maximum distance to the right of the origin. It is easy to see that 
the (n -\- m -\- 4)-ominoes obtained in this way are distinct except those that 
can be obtained by connecting a 2 X 2 block to the right end of elements in 
standard position selected from the equivalence classes of Fmn ; these (m + n + 
4)-ominoes will be constructed once in connection with an element of Fm+itn+2 

and again in connection with an element of Fm+2,n+i-
In order to verify that H(x, y) generates {/(m, n): m, n = 0, 1, . . .} we 

check that H(x,y) and dH(x,y)/dy respectively generate {/(m, 0)} and 
{f(m, 1)} at y = 0; similarly, we see that H(x, y) and dH(x, y)/dx generate 
j / (0, n)} and {/(l, n)} at x = 0. Multiplying relation (35) by (1 - x - y + 
x2y2) and equating coefficients of xmyn, we see that (35) implies (36). This 
completes the proof of Theorem 3. 

Theorem 3 implies that 

m=l n=-l 

(1 — xy) 

(37) F(x, y) = J2 Y,f(m, n)xmyn 

m=l n=-l 

= H(x, y) -
( I - X H I - J O ' 

furthermore, we know that B(x,y), the generating function of {b{a, n)} as 
defined by (34), satisfies the integral equation (13) with the kernel defined by 
(37) and G(x) = x/(l - x). 

Since 

(38) b{n) > b3(n) = J2f(ai> ^)f(a2j a3). . . / (a^i , at), 

where the sum extends over all compositions (a1} a2, . . . , at) of n into positive 
parts less than or equal to j , a lower bound for the Taylor coefficients of 
B3(x, 1) is also a lower bound for b(n). In (6) we showed that Bj(x, 1) is a 
rational function whose denominator is given by det Aj(x), where Aj(x) = [aTS], 
and 

jf(r,r)xr-l iir = s, 
^ Œrs \f(r,s)xr iîr^s, 

r, s = 1, 2, . . . , j . Thus, if 6j is the largest real root of det A ;( l /x) = 0, we 
have 

lim (bj(n))1/n = dj < lim (b(n))1/n, 

and Bx < 62 < 
For small j it is feasible to calculate the polynomials xj{j+l)/2 det Aj(l/x), 

and the corresponding polynomial equations can be used to find #i = 1.00. . . , 
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02 = 2.41. . . , A» = 3.04. . . , 04 = 3.34. . . , 05 = 3.50. . . , 06 = 3.59 Calcu
lations made by T. R. Parkin and associates at the Aerospace Corporation on 
the CDC 6600 computer show that dj = 3.72. . . , for j = 15, 16, . . . , 23, 
with 023 = 3.72274322. . . . Thus, we have the following theorem. 

THEOREM 4. There are more than (3.72)w n-ominoes for all sufficiently large nm 

The method we have used to prove the last theorem can be applied to 
problems involving other types of animals. For example, if regular hexagons 
with unit area are used as cells of an animal, the number of "two-rowed 
animals" of this type with m cells in the first row and n cells in the second is 

( m ~\~ fl\ 
J. By modifying the proof of Theorem 2 slightly we can show 

that there are more than 

(40, « , , . z ( • •+- ) ( - :»•). . . ( • " + * ) 
"fixed animals" with n hexagonal cells, where the sum in (40) extends over the 
compositions of n. We can estimate b(n) as defined in (40) just as before, and 
obtain the following result. 

THEOREM 5. There are more than 4W hexagonal celled animals for all sufficiently 
large n. 

Appendix. Let b(n, n) = 1, and for 1 < a < n, n = 1, 2, . . . , define 

(41) b(a, n) = £ (w(a) + /(ai)}{w(ai) + t(a2)} 

where the sum extends over all compositions (ah a2, • • .) of n — a; now (41) 
implies that 

n—a n—a 

(42) b(a, n) = w(a)^2 b(v,n — a) + 2 Kv)b(v> n — a) 
n—a 

= w(a)b(n — a) + ^ t(v)b(v, n — a). 
v=l 

Writing a — k and n — k in place of a and n in (42) we obtain a similar 
expression for b{a — k, n — k)\ taking the difference b(a, n) — b(a — kf 

n — k) and transposing a term gives 

(43) b(a, n) = b(a — k, n — k) + [w(a) — w(a — k)]b(n — a). 

When k = a — 1 in (43), we find that each of the numbers b(ay n) can be 
written in terms of &(1, v) and b(y), v = 1, 2, . . . ; thus, for a < n, 

(44) b(a, n) = 6(1, n - a + 1) + [w(a) - w(l)]b(n - a). 

Using the fact that b(n,n) = g(n) = 1, we substitute expressions for 
b(a, n) given by (44) into b(n) = b(l, n) + b(2, n) + . . . + b(n, n) to 
obtain 

n-l 

(45) b(n) = 1 + 2 6(1. n - a+1) + [w(a) - w(l)]b(n - a). 
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This can be used to show that 

TO-2 

(46) b{n) - bin - 1) = 6(1, w) + ]C [w(n - a) - w(n - a - l)]6(a), 
a = l 

for n > 2 ; when w = 1 and 2 we have 

(47) 6(1) = 6(1, 1) and 6(2) - 6(1) = 6(1, 2). 

Equations (46) and (47) imply the following relationship between the 
generating series: 

OO OO OO 

(48) £ b{n)xn - £ b(n)xn+1 = £ 6(1, «)xM 

TO=1 TO=1 71=1 

oo TO—2 oo TO—2 

+ £ 2 win - a)b(a)xn - £ ^ w(» - a - l)6(a)xTC. 
TO=3 a = l TO=3 <z=l 

Each of the series in (48) can be replaced by the function it represents. 
Writing dB for the partial derivative of B(x, s) with respect to s at s = 0, the 
result after collecting terms is 

(49) dB = {w(l) + (1 - x) ( l - W(*))}£(*, 1). 

Now we eliminate dB from (49). First, setting a = 1 in (42) gives 

w - l 

(50) 6(1, n) = w(l)b(n - 1) + X) t{v)b{v% n - 1), 

and substituting expressions for b(v, n — 1) given by (44) into the sum in the 
right member of (50) gives 

71-1 

(51) 6(1, n) = w(l)b(n - 1) + X) t(v)b(l, n - v) 

n—2 TO-2 

+ X w(v)t(v)b(n — v — 1) — *w(l)]C t(v)b(n — v — 1); 
0 = 1 0 = 1 

for ^ = 1 and 2, the relations corresponding to (51) are 

(52) 6(1, 1) = 1 and 6(1, 2) = w(l)6(l) + *(1). 

Equations (51) and (52) imply the following relationship between the 
generating functions: 

(53) dB = x + w(l)xB(x, 1) + T(x)dB 

-w(l)xT(x)B(x, 1) + xQ(x)B(x, 1), 

where Q(x) is the function defined in (19). Taken together, the relations in 
(49) and (53) imply (21). 
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