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Abstract

Given an integer n ≥ 2, let λ(n) := (log n)/(log γ (n)), where γ (n)=
∏

p|n p, denote the index of
composition of n, with λ(1)= 1. Letting φ and σ stand for the Euler function and the sum of divisors
function, we show that both λ(φ(n)) and λ(σ(n)) have normal order 1 and mean value 1. Given an
arbitrary integer k ≥ 2, we then study the size of min{λ(φ(n)), λ(φ(n + 1)), . . . , λ(φ(n + k − 1))} and
of min{λ(σ(n)), λ(σ (n + 1)), . . . , λ(σ (n + k − 1))} as n becomes large.

2000 Mathematics subject classification: primary 11N25; secondary 11A25.
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1. Introduction

Given an integer n ≥ 2, we define its index of composition by

λ(n) := (log n)/(log γ (n)),

where γ (n) (often called the kernel of n) stands for the product of the distinct primes
dividing n. For convenience, we let λ(1)= γ (1)= 1. In a sense, λ(n) measures the
level of compositeness of n. First introduced by Browkin [2] in 2000, the function λ
was further studied by De Koninck and Doyon [3] who examined its global and local
behavior, namely by showing that its mean value is 1 and moreover by establishing
that given any integer k ≥ 2 and setting

Qk(n) :=min{λ(n), λ(n + 1), . . . , λ(n + k − 1)}, (1)

and given any ε > 0, then

Qk(n) >
k

k − 1
− ε (2)
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for infinitely many values of n, which is most likely optimal. Indeed, De Koninck
and Doyon [3, p. 164] conjecture that lim supn→∞ Qk(n)= k/(k − 1) and show that
the abc conjecture implies the validity of the above conjecture when k = 3. In this
paper, we show that the above conjecture from [3] holds under the abc conjecture for
all k ≥ 2.

More recently, De Koninck and Kátai [4] as well as De Koninck et al. [5] have
studied the distribution function of (λ(n)− 1) log n as n runs through particular sets
of integers, such as the shifted primes. The mean value of the function λ(n) was also
studied by Zhai [12].

In this paper, we also examine the global and local behavior of λ(φ(n)) and
λ(σ(n)), where φ and σ stand for the Euler function and the sum of divisors function,
respectively. More precisely, we first establish that each of λ(φ(n)) and λ(σ(n)) have
normal orders 1 and mean values 1. Then, given an integer k ≥ 2, we discuss the
behavior of the expressions

Fk(n) :=min{λ(φ(n)), λ(φ(n + 1)), . . . , λ(φ(n + k − 1))} (3)

and
Sk(n) :=min{λ(σ(n)), λ(σ (n + 1)), . . . , λ(σ (n + k − 1))} (4)

and conjecture that, for any fixed k, Fk(n) and Sk(n) can become arbitrarily large,
providing heuristic arguments in their favor.

In what follows, the letter p always stands for a prime number. Moreover, given
any integer n ≥ 2, let P(n) stand for the largest prime factor of n. We shall also write
ω(n) for the number of distinct prime factors of n and �(n) for the total number
of prime factors of n counting their multiplicity, with ω(1)=�(1)= 0. Finally, a
positive integer n is said to be powerful (or square-full) if p2

| n whenever the prime
number p divides n.

We write log2 x for log log x and we let logk x = log logk−1 x for each integer
k ≥ 3. The input x will always be assumed to be large enough so that the resulting
iterated logarithms are greater than 1.

We use the Landau symbols O and o as well as the Vinogradov symbols� and�
with their usual meanings.

2. Preliminary results

Henceforth, given any integer n ≥ 2, we shall write

φ(n)= A(n)B(n), with gcd(A(n), B(n))= 1, (5)

where A(n) is the square-full part of φ(n) and B(n) its square-free part. To establish
our results, we shall need the following lemmas.

LEMMA 1. As x→∞,

#{n ≤ x |�(n) > 10 log2 x} = O

(
x

log2 x

)
.
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PROOF. From [11, Lemma 13], uniformly for every positive integer K ,∑
n≤x :�(n)≥K

1�
K

2K x log x .

Applying this with K = b10 log2 xc leads to the desired estimate. 2

LEMMA 2. The inequality A(n)≤ (log x)4 holds for all positive integers n ≤ x with
O(x/(log x)2) exceptions.

PROOF. It is well known that the number of square-full numbers n ≤ x is O(
√

x) (see,
for example, [9, Theorem 14.4]). Given any y ∈ [1,

√
x] and any square-full number

d ≥ y, it is clear that the number of positive integers n ≤ x that are multiples of d is at
most x/d , and therefore by Abel’s summation formula, we easily get that the number
of n ≤ x having a square-full divisor d ≥ y is O(x/

√
y). Taking y = (log x)4, we get

the desired result. 2

LEMMA 3. For large x, the number of positive integers n ≤ x such that

max{�(φ(n)), �(σ(n))}> 110(log2 x)2

is O(x/(log x)2).

PROOF. By Lemma 2, we may assume that A(n) < (log x)4. Thus,

φ(A(n))≤ A(n)≤ σ(A(n)) < (log x)5,

and therefore

max{�(φ(A(n))), �(σ(A(n)))}< (5/ log 2) log log x < 10 log2 x .

By Lemma 1, we may further assume that �(B(n)) < 10 log2 x . Thus, if

max{�(φ(n)), �(σ(n))}> 110(log2 x)2,

it then follows that there exists a prime divisor p of n such that�(p ± 1) > 10 log2 x .
Let n = pm. Then p < x/m, so that p ± 1≤ x/m + 1≤ 2x/m. The number of such
numbers p is, by the argument from the proof of Lemma 1, at most a multiple of

K

2K

x log x

m
,

where K = b10 log2 xc. Summing up over all values of m ≤ x , the number of such
numbers n ≤ x is at most

K log x

2K

∑
m≤x

1
m
�

x(log x)2 log2 x

2b10 log2 xc
�

x

(log x)2
,

because 10 log 2> 4. 2
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LEMMA 4. The estimate

#{n ≤ x : p2
| σ(n) for some p > (log x)5} = O

(
x

(log x)2

)
holds as x→∞. A similar estimate holds when σ(n) is replaced by φ(n).

PROOF. By Lemma 2, we may assume that A(n) < (log x)4. Hence,

φ(A(n))≤ A(n)≤ σ(A(n)) < (log x)5

for large x . If p2
| σ(n) or p2

| φ(n) for some p > (log x)5, it follows that p2
|

σ(B(n)) or p2
| φ(B(n)), respectively. Now [1, Lemma 2] shows that

#{n ≤ x | φ(B(n))≡ 0 mod p2
} �

x(log2 x)2

p2 ,

and a straightforward adaptation of it shows that the same is true when φ is replaced
by σ . Thus, the number of positive integers n ≤ x such that either p2

| σ(n) or
p2
| φ(n) for some p > (log x)5 is, by the above inequality, at most a multiple of

x(log2 x)2
∑

p>(log x)5

1

p2 < x(log2 x)2
∫ x1/2

(log x)5

dt

t2 �
x(log2 x)2

(log x)5
�

x

(log x)2
. 2

3. The normal order of λ(φ(n))

Here, we prove the following result.

THEOREM 5. For every ε > 0, the inequality 1≤ λ(φ(n))≤ 1+ ε holds for all n
except for a set of asymptotic density zero. The same inequality holds when φ is
replaced by σ .

PROOF. We shall prove this result only for σ since the proof for φ is entirely similar.
Since n ≤ σ(n)� n log2 n holds for all n, we have that

log(σ (n))= log n + O(log3 n). (6)

By Lemmas 2–4, for most n we have that if Q(n) is the largest prime p such that
p2
| σ(n) (equivalently, Q(n)= P(σ (n)/γ (σ (n)))), then Q(n) < (log n)5. Further-

more, �(σ(n)) < 110(log2 n)2. This shows that

log(γ (σ (n)))≥ log(σ (n))−�(σ(n)) log(Q(n))= log n + O((log2 n)3). (7)

From estimates (6) and (7), we immediately get that for most n,

λ(σ(n))= 1+ O

(
(log2 n)3

log n

)
= 1+ o(1), as n→∞,

which is what we wanted to prove. 2
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4. The mean value of λ(φ(n))

In this section we prove the following result.

THEOREM 6. The estimate
1
x

∑
n≤x

λ(φ(n))= 1+ o(1)

holds as x→∞. The same holds when φ is replaced by σ .

PROOF. Again, we shall give the proof only for σ since for φ it is entirely similar. The
arguments from Section 3 show that the estimates

log(σ (n))= log x + O(log3 x) and log(γ (σ (n)))= log x + O((log2 x)3)

both hold for all positive integers n ≤ x with at most O(x/(log x)2) exceptions. On
the exceptional set, it is clear that λ(σ(n))≤ log x . Hence,∑

n≤x
λ(σ(n)) =

∑
n≤x :Q(n)<(log x)5

�(σ(n))<110(log2 x)2

(
1+ O

(
(log2 x)3

log x

))
+ O

(
x

(log x)2
log x

)

= x + O

(
x(log2 x)3

log x

)
,

which is the desired estimate. 2

5. The local behavior of λ(φ(n))

We prove the analogue of [3, Theorem 3] for the case of the quantity Fk(n) given
by (3).

THEOREM 7. Given any integer k ≥ 2, for every ε > 0, there exist infinitely many n
such that

Fk(n) >
k

k − 1
− ε.

PROOF. We follow the method of [3, Proof of Theorem 3]. Let y > k be sufficiently
large so that the interval [y, y + y2/3

] contains at least k prime numbers. Let these be
y < p1 < · · ·< pk < y + y2/3. Observe that

pk

p1
= 1+ O

(
1

y1/3

)
= 1+ o(1) (y→∞). (8)

Let a > 3 be a large positive integer and let n be such that n ≡−i mod pa
i for all

i = 1, 2, . . . , k. This system is solvable by the Chinese remainder theorem and it
therefore has a solution n ∈ [M, 2M), where M =

∏k
i=1 pa

i . Since

2M + O(1)≥ n + i > φ(n + i)�
n + i

log2(n + i)
≥

M

log2(2M + k)
,

we get that
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log(φ(n + i))= n + i + O(log3 M)= log M + O(log3 M), i = 1, 2, . . . , k,
(9)

whenever the pi are fixed and a tends to infinity. However, note that since n + i =
pa

i mi for some positive integer mi ,

φ(n + i)= pa−1
i (pi − 1)ni ,

for some positive integer ni (here, ni = φ(mi ) if pi - mi and ni = φ(mi )pi/(pi − 1) if
pi | mi , so that in any case ni ≤ mi always holds). Therefore, in light of (9), for each
i = 1, 2, . . . , k,

log(γ (φ(n + i))) ≤ log(piγ (pi − 1)γ (ni ))≤ log(p2
i mi )

= log
(

pa
i mi

pa−2
i

)
= log

(
n + i

pa−2
i

)
= log(φ(n + i))+ O(log3 M)− (a − 2) log pi

= log M + O(log3 M)− (a − 2) log pi . (10)

On the other hand, using (8), it is clear that

log M = a
k∑

j=1

log p j = ka(1+ o(1)) log pi , i = 1, 2, . . . , k. (11)

Combining (10) and (11), we obtain that

log(γ (φ(n + i))) ≤ log M −
log M

k
(1+ o(1))+ O(log3 M)

=

(
1−

1
k
+ o(1)

)
log M,

which together with estimate (9) shows that, for each i = 1, 2, . . . , k,

λ(φ(n + i))=
log(φ(n + i))

log(γ (φ(n + i)))
≥

1
1− (1/k)+ o(1)

=
k

k − 1
+ o(1),

which implies the desired inequality. 2

6. The local behavior of λ(σ(n))

Here, the method of proof of Theorem 7 does not work because if p is a fixed prime
and a is a positive integer, then γ (σ (pa)) is not small (in fact, it probably tends to
infinity with a, and the abc conjecture predicts that it is as large as pa(1−ε) for every
ε > 0 provided that a is sufficiently large with respect to ε). However, the same result
holds nevertheless.
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THEOREM 8. Given any integer k ≥ 2, for every ε > 0, the inequality

Sk(n)≥
k

k − 1
− ε

holds for infinitely many positive integers n.

We shall need the following well-known lemma, essentially due to Erdős [7].

LEMMA 9. There exists a constant δ ∈ (0, 1) such that the estimate

#{p ∈ [y, 2y] | P(p + 1) < yδ} � π(y)

holds for large y.

Specific values of δ are known from the work of several mathematicians but they
are of no use to us.

PROOF. Let δ ∈ (0, 1) be as in Lemma 9, y be large and ε ∈ (0, 1− δ). Let
U = byδ+εc and V = kU . Choose p1 < · · ·< pV primes in (y, 2y) such that

P(pi + 1) < yδ for all i = 1, 2, . . . , V .

This is possible for large y by Lemma 9 and the fact that V = O(yδ+ε)= o(π(y)) as
y→∞. For j = 1, 2, . . . , k put

m j =

U j∏
i=U ( j−1)+1

pi .

Note that

log m j =

U j∑
i=U ( j−1)+1

log pi =U log y + O(U )= (1+ o(1))yδ+ε log y

for all j = 1, 2, . . . , k as y→∞. Since σ(m j )=
∏

p|m j
(p + 1), it follows, from the

way we have chosen the prime factors of m j , that

γ (σ (m j ))≤
∏
p≤yδ

p = exp((1+ o(1))yδ),

where the last estimate follows from the prime number theorem. Therefore

log γ (σ (m j ))≤ (1+ o(1))yδ = o(log(m j ))

for all j = 1, 2, . . . , k as y→∞. Now let n be a positive integer such that
n + j ≡ 0 mod m j for all j = 1, 2, . . . , k. The above system is solvable by the
Chinese remainder theorem and all its solutions are of the form n = M`+ N , where
M =

∏k
j=1 m j and N ∈ [0, 1, . . . , M − 1] is the smallest nonnegative solution of
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the above system of congruences. We claim that there exists ` ∈ [y, 2y] such
that the corresponding n satisfies the fact that (n + j)/m j and m j are coprime for
j = 1, 2, . . . , k. Indeed, note that

(n + j)= M`+ (N + j)= m j ((M/m j )`+ (N + j)/m j ),

so that

(n + j)/m j = (M/m j )`+ (N + j)/m j .

Clearly, M/m j and m j are coprime since M is square-free. Thus, if (n + j)/m j and
m j are, say, both divisible by the prime p, then this puts ` into a certain uniquely
determined congruence class modulo p. The number of such ` in the interval [y, 2y]
is less than or equal to y/p + 1. Thus, the number of ` ∈ [y, 2y] for which the
corresponding n has the property that (n + j)/m j and m j are not coprime for some
j = 1, 2, . . . , k is at most

y
∑
p|M

1
p
+ ω(M)≤

ky1+δ+ε

y
+ kyδ+ε < 2kyδ+ε.

Since δ + ε < 1 and since the interval [y, 2y] contains at least y − 1 integers, we
get that there are at least y − 1− 2kyδ+ε > 0 integers ` ∈ [y, 2y] such that the
corresponding n does indeed have the property that (n + j)/m j and m j are coprime
for all j = 1, 2, . . . , k. Such an n has the following properties:

log(σ (n + j)) = (1+ o(1)) log n = (1+ o(1))(log M + log y)

= (k + o(1))yδ+ε log y;

further, since (n + j)/m j and m j are coprime,

σ(n + j)= σ(m j )σ ((n + j)/m j ),

so that

log(γ (σ (n + j))) ≤ log(γ (σ (m j )))+ log(γ (σ ((n + j)/m j )))

= o(log(m j ))+ (1+ o(1)) log((n + j)/m j )

= (1+ o(1))(log n − log m j )

= (1+ o(1))(log M + log y − log m j )

= (k − 1+ o(1))yδ+ε log y,

which yields

λ(σ(n + j))≥
k

k − 1
+ o(1)

for all j = 1, 2, . . . , k as y→∞, therefore establishing the desired conclusion. 2
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7. Heuristics

As we have already mentioned, [3, Theorem 3] shows that inequality (2) holds for
infinitely many n, and it was conjectured that apart from the ε this inequality is the
best possible. Here, we prove that this is indeed so under the abc conjecture.

THEOREM 10. For each integer k ≥ 2, let Qk(n) be as in (1). The estimate

lim sup
n→∞

Qk(n)=
k

k − 1

holds under the abc conjecture.

PROOF. Instead of recalling the abc conjecture, we recall the following consequence
of it (see [6, 8], or [10]).

LEMMA 11 (The ABC conjecture). Let f be a homogeneous polynomial with integer
coefficients having no repeated irreducible factors. Then for every ε > 0 and coprime
positive integers m and n,

γ ( f (m, n))�max{m, n}d−2−ε,

where d is the degree of f and the constant implied by the Vinogradov symbol above
depends on both f and ε.

The classical abc conjecture is usually the above statement for the polynomial
f (X, Y )= XY (X + Y ). To deduce Theorem 10 from Lemma 11, we may assume
that k ≥ 3 and look at the homogeneous polynomial

f (X, Y )= XY (Y − X)(2Y − X)(3Y − 2X) . . . ((k − 1)Y − (k − 2)X),

which obviously has degree k + 1 and no repeated factors. Note that

f (n, n + 1)= n(n + 1)(n + 2)(n + 3) . . . (n + k − 1),

so that by Lemma 11 we have that the inequality

γ (n(n + 1) . . . (n + k − 1))� nk−1−ε/2 (12)

holds for every fixed ε > 0 where the implied constant depends on ε and k. Now
consider an integer n such that

Qk(n)≥
k

k − 1
+ ε.

Then

γ (n + i)≤ (n + i)((k−1)/(k+(k−1)ε))
� n((k−1)/(k+(k−1)ε)), i = 0, 1, . . . , k.
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Multiplying all these relations for i = 0, 1, . . . , k − 1, we get that

k∏
i=1

γ (n + i − 1)� n((k(k−1))/(k+(k−1)ε)).

But for ε < 1/(k − 1),

k(k − 1)
k + (k − 1)ε

< k − 1− ε,

because this last inequality is equivalent to (k − 1)2 ≥ k + (k − 1)ε, which is implied
by (k − 1)2 ≥ k + 1 (because ε ≤ 1/(k − 1)), and this last inequality is equivalent to
k ≥ 3. Hence,

γ (n(n + 1) . . . (n + k − 1))≤
k∏

i=1

γ (n + i − 1)� nk−1−ε,

which compared with inequality (12) gives us an upper bound on n. This completes
the proof of the theorem. 2

We conjecture that, unlike Qk(n), both the amounts Fk(n) and Sk(n) should be
unbounded and that in fact each of the inequalities Fk(n)� log n and Sk(n)� log n
should hold for infinitely many positive integers n, where the implied constants depend
on k. In what follows, we will treat only the case of Fk(n). To see why, let us first look
at the case k = 2.

If there existed infinitely many primes p of the form 2a
· 3b
+ 1, then it would

follow that F2(n) is unbounded. Indeed, let p = 2a
· 3b
+ 1 be such a large prime and

set n = p − 1. Then

φ(n)= φ(2a
· 3b)= 2a

· 3b−1 and φ(n + 1)= 2a
· 3b,

so that λ(φ(n))= ((a log 2+ (b − 1) log 3)/(log 2+ log 3))� log n and similarly
λ(φ(n + 1))� log n. Hence, F2(n)� log n, proving our claim. A computer check
showed that the number of primes p ≤ x of the above form is equal to 66 for x = 1010

and to 789 for x = 10100.
Using essentially the same argument as above, let us show how one would go about

constructing integers n for which Fk(n)� log n. Assume that

2= p1 < p2 < · · ·< pk

are the first k prime numbers. Assume that a1, . . . , ak are such that ai > log k/ log pi
and such that if we set

n = pa1
1 pa2

2 . . . pak
k ,
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then (n + i)/ i is a prime number for all i = 1, 2, . . . , k. Note that, from the
conditions we imposed on the exponents ai , the number (n + i)/ i is always an integer
coprime to i . If this is the case, then

φ(n + i)= φ(i)

(
n + i

i
− 1

)
=
φ(i)n

i
,

so that

γ (φ(n + i))= log(p1 . . . pk)= O(1) for all i = 1, 2, . . . , k.

Thus

λ(φ(n + i))� log(φ(n + i))� log n

for all such choices of n.
To back up our construction a little more, we give heuristic support to the existence

of infinitely many positive integers n of the above form. Let X be a large positive
integer. There are at least a multiple of X k k-tuples of integers (a1, . . . , ak) such that
(a1, . . . , ak) ∈ (X, 2X)k . For each one of them, we assume, heuristically, that the
probability of each one of the numbers (n + i)/ i being prime is roughly

1/ log((n + i)/ i)� 1/X.

Of course, this cannot possibly be true for all such k-tuples (a1, . . . , ak) because the
number n/ i might end up having all exponents divisible by the same odd prime in
which case the expression n/ i + 1 factors in an obvious way. To fix this, we may first
fix a1, . . . , ak−1 in an arbitrary manner, and then fix ak to be any prime in (X, 2X)
which does not divide any of ai for i = 1, 2, . . . , k − 1 (note that if X is large, ak
can be any prime in (X, 2X) except for at most k − 1 of them). Assuming further that
the events that (n + i)/ i are prime are independent for i = 1, 2, . . . , k, we conclude
that if X is large, for a suitable set of choices of (a1, . . . , ak) ∈ (X, 2X)k of total
cardinality at least a multiple of

X k−1(π(2X)− π(X)− k + 1)� X k/ log X,

the probability that all numbers (n + i)/ i are simultaneously prime is at least a
multiple of 1/X k . Multiplying those two amounts, we get that the expected number
of such primes is at least a multiple of 1/ log X . Now letting X = 2` go to infinity
through powers of 2 starting with a sufficiently large 2`0 , we get that the number of
such numbers n should be at least a multiple of

∑
`≥`0

1/`, hence, an infinite number
of them.

Computationally, letting k = 4 and choosing

n = 28
· 330
· 520
= 5 026 638 967 154 516 601 562 500 000 000,
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TABLE 1. Some values of Fk(n).

k n Number of digits of n bFk(n)c
2 244

· 340 33 40
2 2491

· 3579 425 544

3 277
· 3213 125 159

4 243
· 3 · 57 19 17

4 28
· 330
· 520 31 20

4 212
· 329
· 5281 214 144

5 246
· 341
· 519 47 31

6 242
· 36
· 55
· 74
· 1324 58 16

one can check that n + 1, (n + 2)/2 and (n + 3)/3 are all prime numbers. This allows
us to obtain that

φ(n) = 210
· 329
· 519,

so that λ(φ(n))=
10 log 2+ 29 log 3+ 19 log 5

log 2+ log 3+ log 5
≈ 20.3959,

φ(n + 1) = 28
· 330
· 520,

so that λ(φ(n + 1))=
8 log 2+ 30 log 3+ 20 log 5

log 2+ log 3+ log 5
≈ 20.7845,

φ(n + 2) = φ(28
· 330
· 520
+ 2)= φ(2(27

· 330
· 520
+ 1))= 27

· 330
· 520,

so that λ(φ(n + 2))=
7 log 2+ 30 log 3+ 20 log 5

log 2+ log 3+ log 5
≈ 20.5807,

φ(n + 3) = φ(28
· 330
· 520
+ 3)= φ(3(28

· 329
· 520
+ 1))= 2 · 28

· 329
· 520,

so that λ(φ(n + 3))=
9 log 2+ 29 log 3+ 20 log 5

log 2+ log 3+ log 5
≈ 20.6653,

thus establishing that

F4(n)≈ 20.3959=min(20.3959, 20.7845, 20.5807, 20.6653).

More examples can be seen in Table 1.
As mentioned above, similar heuristics apply for Sk(n). In fact, if instead one

does not start with only the first k primes 2= p1 < · · ·< pk , but with the first 2k
primes and sets n = pa1

1 pa2
2 . . . pa2k

2k for some sufficiently large positive integers ai
with i = 1, 2, . . . , 2k, then one can further assume that (n + i)/n and (n − i)/n are
both primes for all i = 1, 2, . . . , k, and then with such n one finds that the even

https://doi.org/10.1017/S1446788708000347 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000347


[13] On the index of composition of the Euler function and of the sum of divisors function 167

stronger inequality min{Fk(n), Sk(n)} � log n holds. We let the reader fill in the
details of such a deduction as well as working out a heuristic that would predict that
there should indeed be infinitely many such positive integers n.
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