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Flowing granular materials exhibit several features that distinguish them from molecular
fluids. A prominent feature is dilatancy, or volume deformation caused by shear
deformation. Its significance in sustained flow has not been much appreciated, as its
effect was thought to be confined to thin shear layers. However, it was demonstrated
recently by Krishnaraj & Nott (Nat. Commun., vol. 7, 2016, 10630) that dilatancy drives
a large-scale secondary flow in a cylindrical Couette device. They hypothesized that the
combination of shear and gravity, when their directions are non-collinear, is necessary
for the occurrence of the secondary flow. In this paper we investigate the phenomenon
by considering a more complex primary flow generated in a split-bottom Couette device,
wherein a part of the base of the container filled with a granular material is translated or
rotated. It is known from previous studies that the height to which the material is filled
determines the shape and extent of the shearing region in the primary flow. We show that
the fill height also determines the form of the secondary flow, and argue that the two
are intricately coupled and evolve together. Though the secondary flow is more complex
than in a cylindrical Couette device, the mechanism is indeed what Krishnaraj & Nott
hypothesized: the combined effect of dilatancy driven expansion, and gravity-driven flow
down regions of low density. Unlike fluid instabilities that are typically driven by inertia,
the secondary flow occurs at arbitrarily low shear rate and appears to be an integral part of
the kinematic response.

Key words: granular media

1. Introduction

Understanding the kinematics and mechanics of the flow of granular materials is of
considerable importance, as they are encountered in a wide variety of industrial and natural
processes. Though a variety of complicating factors, such as intergrain cohesion and
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complex grain shape, may be present in practical systems, the limit of non-cohesive and
nearly spherical grains is sufficiently prevalent and challenging that it has been investigated
in numerous previous studies. For such systems, the relative importance of grain inertia
is one of the factors that determine the kinematics and rheology. It is quantified by the
dimensionless Savage number (Savage & Hutter 1989) Sa, or equivalently the inertial
number I (GDR MiDi 2004), defined as

Sa = ρpd2
pγ̇

2

N
= I2, (1.1)

where ρp and dp are the density and size of the particles, γ̇ is the nominal strain rate and
N is a stress scale. The numerator in (1.1) is proportional to the stress arising from inertial
collisions between grains; Sa is therefore a measure of the contribution of grain inertia
to the stress. When Sa � 1, grain inertia is of little consequence and stress transmission
is primarily via sustained grain contacts wherein Coulomb friction plays an important
role. This regime is commonly referred to as slow flow; it is operational in many terrestrial
flows where gravity consolidates the medium to a dense enough state that contacts between
particles are abiding – examples are flow through hoppers and silos, conveying of mineral
ores through screw conveyors, and in earthmoving operations. In the opposite limiting
regime of Sa ∼ 1, grains interact by short term collisions, and momentum transport is due
to the inertial impulse during collisions; it is operational in avalanches, flow down inclined
chutes, and fluidized beds. Continuum models for the above limiting regimes are based on
extensions of soil and metal plasticity for the former, and the kinetic theory of gases for
the latter. The range of Sa between these limiting regimes is the so-called intermediate
regime, which is not very well understood and is an active area of research.

Our attention in this paper is restricted to the slow flow of dense non-cohesive granular
materials. Experimental observations in this regime show the following characteristic
features: (i) the stress is independent (or very weakly dependent) on the magnitude of
the deformation rate (Wieghardt 1975; Rao & Nott 2008); (ii) shear is typically confined
to narrow shear layers (Natarajan, Hunt & Taylor 1995; Losert et al. 2000; Ananda, Moka
& Nott 2008); and (iii) dilatancy, or volume deformation caused by shear deformation
(Reynolds 1885; Desrues et al. 1996; Kabla & Senden 2009). Of these, dilatancy is perhaps
the most distinctive feature – while rate independence may be thought of as an extreme
example of a shear thinning fluid, and shear banding is observed in a variety of complex
fluids (foams, emulsions and nematic liquid crystals being a few examples), dilatancy has
no analogue in fluids.

Until recently, dilatancy was thought to be important only during flow initiation within
the shear layer. It was generally believed to have little consequence on the kinematics
and rheology in sustained flow – indeed almost all rheological models for slow granular
flow treat the medium as incompressible. The recent study of Krishnaraj & Nott (2016)
showed that its effect can extend well beyond the shear layer; they demonstrated the
occurrence of a dilatancy-driven steady secondary flow in the form of a system-spanning
vortex in the velocity gradient-gravity plane in a cylindrical Couette device. A sample
result from Krishnaraj & Nott (2016) is reproduced in figure 1 to illustrate their findings.
The primary flow in this geometry is the azimuthal velocity field uθ (r) that decays roughly
exponentially with distance from the inner cylinder. Dilatancy in the shear layer requires
depletion of grains, resulting in a radial outward and upward flow of particles (figure 1b).
Simultaneously, particles percolate down the region of low density near the inner cylinder
due to gravity, and at steady state the balance between these two effects results in
a system-spanning vortex (figure 1c). They found no secondary flow in the absence
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Figure 1. Dilatancy-driven secondary flow in a cylindrical Couette device. The figures are adapted from
Krishnaraj & Nott (2016). (a) Schematic of the cylindrical Couette device. (b) Streamlines of the secondary
flow at early stages of shear, after a 3.4◦ rotation of the inner cylinder. (c) The secondary flow at steady state,
showing a system-spanning vortex. The colours in panels (b,c) indicate log10 s, where s ≡ (u2

r + u2
y)

1/2 is the
speed of the secondary flow.

of gravity, which led them to the conclusion that dilatancy and gravity are necessary
ingredients for the secondary vortex, provided the velocity gradient (of the primary flow)
and gravity directions are not collinear. Krishnaraj & Nott (2016) further showed that the
secondary flow explains the puzzling rheological anomaly observed by Mehandia, Gutam
& Nott (2012) and Gutam, Mehandia & Nott (2013) that all components of the stress on
the outer cylinder in a cylindrical Couette cell were found to rise exponentially with depth.
Thus, though the secondary flow is weak, the rate independence of the stress in the slow
flow regime implies that it can leave a large rheological signature.

We emphasize that the phrases ‘primary flow’ and ‘secondary flow’ are used throughout
this paper differently from their standard usage to describe fluid instabilities. By primary
flow, we mean the flow in the expected direction, parallel to the moving boundary. By
secondary flow, we refer to the flow that is in the plane of the velocity gradient (of the
primary flow) and gravity. In the cylindrical Couette device, the primary flow is in the
θ direction, and the secondary flow is in the r–y plane (figure 1c). In particular, we note
that the secondary flow does not appear to arise as a result of an instability of the primary
flow, as is typically the case in fluids – all the evidence we have so far indicates that the
secondary flow is an inherent aspect of the flow field, no matter how low the shear rate.

The work reported in this paper was motivated by the question: How general is the
dilatancy-driven secondary flow observed by Krishnaraj & Nott (2016)? To answer it, we
investigate the flow in a split-bottom shear cell, in which the base of the container holding
the granular material is split into two parts, one of which moves and the other (along
with the vertical walls) is held stationary. This device was first used by Fenistein, van de
Meent & van Hecke (2004) to demonstrate the possibility of obtaining ‘wide shear bands’
in granular materials, or shear layers wider than what is typically obtained near a moving
boundary. However, that is not the property of interest for our study. Rather, it is the feature
that the primary velocity field is much more complex than in a cylindrical Couette device,
as the direction of the velocity gradient (of the primary flow) varies from nearly vertical
above the symmetry axis to nearly horizontal across the fan-shaped shear layers above the
split. Moreover, the primary flow changes character quite substantially as the fill height is
increased (Cheng et al. 2006; Fenistein, van de Meent & van Hecke 2006; Dijksman &
van Hecke 2010). We show that there is indeed a dilatancy-driven secondary flow for all
fill heights (within the range explored), but it is more complex than in the cylindrical
Couette device. Nevertheless, some key features of the secondary vortices remain the
same: an upward and lateral flow driven by dilatancy, and a downward flow through
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Figure 2. Schematics of the (a) rectangular and (b) cylindrical split-bottom shear cells. The cells are filled to
a height H by ‘raining’ the particles from above. In the rectangular device, the middle section of the base of
width W translates with a velocity Vw in the z direction, and in the cylindrical device, the central core of radius
Ri rotates with angular velocity Ωw. (c) Schematic of the interaction model in the discrete element method
(DEM). The overlap δ is exaggerated for clarity.

the dilated shear layers. Most of the results presented are obtained computationally from
particle dynamics simulations. The computations are complemented by video imaging
experiments to determine the radial velocity profile on the free surface. The experimental
measurements are found to be in good qualitative agreement with the velocity profiles
obtained from the computations.

2. Computational and experimental methods

The geometry of interest in this study is a split-bottom shear cell, shown in figure 2. It
is a container with vertical sidewalls whose base is split into two parts, one of which is
set in motion. In our computational studies, we first consider a container of rectangular
cross-section (figure 2a) as it is computationally less demanding, and also allows us to
easily illustrate the main features of the secondary flow. In this cell, the middle section of
the base translates with constant velocity Vw and the rest of the base and the sidewalls are
held stationary. The front and back faces of the cell (z = 0, L) are periodic boundaries that
impose no resistance to flow. To understand the effect of the sidewalls on the flow, we also
consider the simpler case where the left and right vertical walls (x = 0, 2W) are periodic
boundaries. We then consider a cylindrical cell (figure 2b), wherein the central core of the
base is rotated at constant angular velocityΩw and all other boundaries are held stationary.

The granular material is composed of spherical particles of mean diameter dp – to
avoid crystallization, a mixture of sizes 0.9 dp, dp and 1.1 dp with number fractions
0.3, 0.4 and 0.3, respectively, is used. The base and sidewalls of the shear cell are
composed of particles of diameter dp arranged in a triangular lattice that are either static
(stationary walls) or translated/rotated as a rigid body (moving section of the base). For
the rectangular shear cell, the half-width W and depth L of the base are 40 dp. For the
cylindrical shear cell, the radii of the rotating base and container are Ri = 37 dp and
Ro = 50 dp. The shear cell is filled by ‘raining’ particles from a reservoir above the system
under gravity until the required fill height is reached. The height H that is reported is
the maximum height reached by the material at steady state – we have considered fill
heights, H = 35 dp, 45 dp and 55 dp for the reasons given in § 3. As our interest is in the
slow flow regime, we choose the velocities of the moving walls such that the Savage or
inertial numbers are small. Taking the stress scale N to be the hydrostatic head ρgH,
and the nominal shear rate γ̇ as Vw/W, the Savage number Sa in the simulations is
in the range 8.2 × 10−7 to 1.8 × 10−5 (I is in the range 9 × 10−4 to 4.2 × 10−3). For
the cylindrical cell, Vw ≡ ΩwRi is the velocity scale, whence the nominal shear rate
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is γ̇ = Ωw. To confirm that this is low enough, we have conducted a simulation for the
smallest fill height with a wall velocity lower by a factor of 10 (Sa lower by a factor of
100), and found no qualitative difference in the velocity and density fields. To explore the
effect of particle inertia, we have conducted one simulation in the cylindrical cell in which
rotation speed of the base was increased by a factor of 100, yielding a Savage number of
Sa = 8.2 × 10−3 (I = 9 × 10−2).

The computations are carried out using the DEM, a widely used tool for simulating
granular statics and flow. As it is described in numerous papers, we provide only a
brief outline of the method here. In DEM, particles are treated as deformable during
interactions, but rather than calculate their deformation in detail, they are allowed to
overlap. The interaction forces are written in terms of the overlap and its time rate
of change (Cundall & Strack 1979; Walton & Braun 1986; Silbert et al. 2001). The
normal and tangential forces have elastic and viscous components, and the tangential force
incorporates an additional Coulomb slider to capture rate-independent friction (figure 2c).
Considering the contact of particles i and j centred at position vectors ri and rj, the normal
and tangential forces on particle i are

F n = knδn − meff γnvn, (2.1)

F t =
⎧⎨
⎩

−kt�s − meff γtvt, if |Fn/Ft| < μ,

−μ|Fn| vt

|vt| , otherwise. (2.2)

Here, n is the unit normal at the point of contact pointing towards the centre of i, δ ≡
1
2 (di + dj)− |ri − rj| is the overlap, �s is the tangential displacement post contact, vn
and vt are the normal and tangential relative velocities at contact, and meff ≡ (1/mi +
1/mj)

−1 is the effective mass. The interaction parameters are the normal and tangential
spring constants kn and kt, the corresponding damping coefficients γn and γt, and the
Coulomb friction coefficient μ. Their values are taken from Krishnaraj & Nott (2016),
namely kn = 106 mpg/dp, kt = 2

7 kn, γn = 317
√

g/dp, γt = 1
2γn and μ = 0.5, as they were

found to be appropriate for hard spheres such as glass beads. Here mp is the mass of a
particle of diameter dp. The position of each particle is tracked by integrating Newton’s
second law in time. The time step used for numerical integration is tcoll/50, where tcoll =
π(2kn/mp − γ 2

n /4)
−1/2 is the duration of a collision between grains (Silbert et al. 2001).

The continuum density and velocity fields were calculated by averaging particle
quantities over suitably chosen bins for a sufficiently long period of time. For the
rectangular cell, the bins were square cuboids of depth L and cross-sectional area in the
range 1.21–3 d2

p , and for the cylindrical cell they were toroids of square cross-sectional
area 1.21 d2

p. The simulations were run until the velocity uz averaged in time windows
of 5/γ̇ changed by less than 0.3 % in every bin, which was taken to be the steady state.
Small fluctuations in the secondary velocity are seen between adjacent time windows at
steady state, but the average change over all bins was less than 2.4 %. To ensure that the
flow at steady state is fully developed, the shear cell was divided into two halves in the
flow direction and the velocity fields in them compared – they were found to be nearly
indistinguishable.

In our experiments, a cylindrical split-bottom device with dimensions diameter Ri =
37 mm, Ro = 50 mm was constructed from aluminium, and the base was coated with
sandpaper. The system is filled with glass beads of mean diameter dp = 1 mm and density
ρp = 2500 kg m−3; the height increases slightly as the material dilates during shear, and
the steady state height at the cylinder is reported as the fill height H. The base was rotated
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Figure 3. The primary flow obtained from DEM simulations of the rectangular split-bottom shear cell for fill
heights H of (a) 0.88W, (b) 1.13W and (c) 1.38W. The colours indicate the scaled velocity uz/Vw, and the lines
are contours of constant velocity in steps of 0.091.

at 1 rpm, for which Sa ≈ 10−6. The flow on the free surface was imaged using a video
camera (Phantom C110) mounted above the system such that the field of view spans the
entire bed surface. The base was rotated for 30 revolutions to ensure that steady state
was reached, after which the surface was imaged at 70 frames s−1. The tangential and
radial velocities were determined using a particle image velocimetry module in MATLAB
(Thielicke & Stamhuis 2014).

3. Results for the rectangular shear cell

The features of the primary and secondary flows are best illustrated by first considering
the shear cell of rectangular cross-section. The expected flow is in the z direction – this
is the primary flow. Shear originates at the split and permeates to distances in the x and y
directions that depend on the fill height. However, shear is accompanied by dilation, which
causes an initially dense material to expand. As shown by Krishnaraj & Nott (2016), this
leads to a secondary flow in the velocity gradient-gravity plane – their sample results
reproduced in figure 1 are a useful reference point to compare our findings with. As the
geometry and boundary conditions are symmetric about the plane x = 0.5, we expect the
velocity and density fields to exhibit the same symmetry.

3.1. Rigid sidewalls
We first consider a rectangular split-bottom shear cell with rigid, frictional sidewalls. The
steady state primary velocity fields uz(x, y) for the three fill heights are shown in figure 3.
For the smallest fill height H = 0.88W, shear propagates all the way to the free surface,
with the contours of constant uz fanning out above the two splits and the width of the shear
layer increasing with y (figure 3a). The velocity gradient within the fan is predominantly
in the x direction. In addition, there is a region of relatively weak shear in the dome-shaped
region above the moving base. For the largest fill height H = 1.38W, the contours of
constant uz connect one split to the other, forming a dome-shaped shear zone over the
moving base (figure 3c). In this case, uz has gradients in the x and y directions, and it
decays rapidly with y. For the fill height of 1.13W, the nature of the primary velocity
field is intermediate between the other two cases: we see a dome-shaped shear layer over
the base as well as weak fan-shaped shear layers over the two splits (figure 3b). These
three heights suffice to describe qualitatively the entire range of primary flow seen for
all fill heights. The observed transitions between shallow, intermediate and deep systems
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Figure 4. Volume fraction and secondary velocity fields in the rectangular shear cell. (a–c) Colour maps of
the particle volume fraction φ for fill heights H of (a) 0.88W, (b) 1.13W and (c) 1.38W. Regions of very low
φ are coloured white – we have chosen a cutoff of 0.4, but any cutoff less than ≈0.55 yields the same result.
(d–f ) Streamlines of the secondary flow for the same fill heights as in figures above. The colours indicate the
speed of the secondary flow s ≡ (u2

x + u2
y)

1/2/Vw on a logarithmic scale.

are consistent with those observed by previous studies (Cheng et al. 2006; Fenistein
et al. 2006).

The different regions of shear for the three fill heights result in correspondingly different
density fields. Figure 4(a–c) show the steady state density field for the three cases in terms
of the particle volume fraction φ(x, y). For the smallest fill height, φ is low in the fan-like
shear layers due to strong dilation; dilation is also evident in the relatively weakly sheared
dome-shaped region over the moving base (see figure 4a). As the fill height increases, the
extent of dilation decreases over the fan-line shear layers and increases in the dome-shaped
shearing region over the moving base (see figure 4b,c). Thus, the dilated regions of low
density largely coincide with the shearing regions in all the cases.

As in the cylindrical Couette cell of Krishnaraj & Nott (2016) (see figure 1b), a
secondary flow in the form of steady vortices in the plane of the velocity gradient (of
the primary flow) and gravity is observed for all fill heights. Streamlines constructed by
interpolation of the local velocity vectors are shown in figure 4(d–f ), with the background
colour indicating the logarithm of the speed s ≡ (u2

x + u2
y)

1/2/Vw of the secondary flow.
For the smallest fill height, we see two counter-rotating vortices (figure 4d) that span the
entire cell. Particles rise around the centre of the moving plate and fall through the dilated
shear layer over the splits. For the intermediate and large fill heights, there are four vortices,
two in each half of the shear cell – the upper vortices are larger and their sense is the same
as in the shallow system. The lower vortices have the opposite sense: particles rise over the
splits and fall through the dilated region over the moving base. The strength of the vortices
decreases sharply with increasing H. We note that the streamlines shown in figure 4(d–f )
are obtained by averaging over a long period of time, as there are considerable fluctuations
in the secondary flow, particularly at the intermediate and largest fill heights. The vortices
seen in the figures are therefore only statistically steady. However, the time-averaged flow
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Figure 5. Magnitude of the scaled (a) primary and (b) secondary velocities as a function of x at two heights,
y = 0.25 H (dashed lines) and y = 0.75 H (solid lines) in the rectangular shear cell.

at the statistically steady state is reproducible over repeated runs. Supplementary movie
1 shows an animation of the motion of particles in the x–y plane for the simulation with
H = 0.88W – despite the fluctuations in particle motion, the formation of the secondary
vortices is clearly discernible. The x and y axes in figures 3 and 4 are scaled by 2W and
H, respectively, to obtain plots of the same size. To clearly convey the aspect ratio of the
shear cells and size of the vortices, the figures are presented with both axes scaled by 2W
in supplementary figure S1, which is available at https://doi.org/10.1017/jfm.2020.1029.

Several features of the velocity and density fields merit discussion. The form of the
primary flow for the first two fill heights is quite similar to what is observed in experiments
(Cheng et al. 2006) and our simulations (see § 4) of a cylindrical split-bottom cell. The
rectangular shear cell yields a clearer picture of the flow, due to the absence of the
curvature-induced bending of the shear layer. The weakly dilated regions seen for the two
larger fill heights (figure 4b,c) are indeed regions of shear – this is not apparent from the
colour map of the primary velocity field (figure 3b,c), but it is seen clearly in figure 5(a),
which shows uz on a logarithmic scale as a function of x for two heights. It is evident that
there is an exponential decay of the velocity all the way up to the sidewalls. Comparison
of figures 5(a) and 5(b) reveals that the secondary flow is much slower than the primary –
except close to the sidewalls, s is smaller than uz/Vw by approximately a factor of ∼100.
Nevertheless, as already stated, the secondary flow is robust and reproducible. A close
inspection of figure 4(d–f ) may give the impression that the streamlines spiral inwards.
This is an artefact of discretization errors in computing the continuum velocity field and
errors in interpolation. As discussed in § 4, if we determine the stream function and draw
streamlines as contours of constant stream function, we get near-perfect circulations for the
smallest fill height (see figure 9); for larger fill heights, computation of the stream function
too is susceptible discretization and interpolation errors. Further discussion on how the
system chooses the form of the primary and secondary flow fields for each fill height and
other aspects of the kinematics is given in § 5.

We note that Krishnaraj & Nott (2016) found no secondary flow in the absence of gravity
in the cylindrical Couette cell. To assess the effect of gravity in the split bottom cell, we
conducted a simulation wherein the grains are ‘rained’ into the shear cell under gravity to a
fill height H = 0.88W, after which a rigid, frictionless upper plate is fixed at a height 1 dp
above the free surface. Gravity is then turned off, shear initiated, and the system allowed to
reach steady state. The results are shown in figure 6, where it is clear that the primary flow
is very different from that in the presence of gravity (figure 3a). While shear is confined
to the shallow dome-shaped region in the absence of gravity, there is a fan-like shear layer
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Figure 6. The primary velocity and density fields in the absence of gravity in the rectangular shear cell for fill
height H = 0.88W. The figures should be compared with figures 3(a) and 4(a), respectively, that show the two
fields for shear in the presence of gravity.

that propagates all the way to the free surface in the presence of gravity. The density field
in figure 6(b) also differs substantially from that in the presence of gravity (figure 4a)
– dilation is confined to the dome over the splits, and the material beyond is compacted.
Importantly, there is no secondary flow at steady state in the absence of gravity, confirming
the hypothesis of Krishnaraj & Nott (2016) that the vortices are a result of the combined
effect of dilatancy and gravity. Further discussion on how gravity affects the evolution of
the velocity and density fields is given in § 5.

Ries, Wolf & Unger (2007) conducted DEM simulations of the flow of perfectly inelastic
grains in a split-bottom cell wherein each sidewall moves with the same velocity as the
section of the split base to which it is joined. Though the geometry of their shear cell
and the nature of grain interactions differ from ours, it is notable that in the absence of
gravity they found transient secondary vortices that vanish at steady state, in agreement
with our hypothesis. Ries et al. did not study the secondary flow in the presence of
gravity. Transient vortices were also observed by Rognon, Miller & Einav (2015) when
they sheared a two-dimensional assembly of disks resting on a smooth surface.

3.2. Periodic sidewalls
It is of interest to understand in what way the sidewalls impede and modulate the flow.
For this, we replace the rigid, frictional sidewalls with periodic boundaries, about which
the velocity and volume fraction fields are symmetric. As the gradients of the velocity
and volume fraction normal to the periodic boundaries must vanish, the symmetry about
x = W and invariance with respect to the Galilean shift uz → uz − Vw, accompanied by
translation of the origin by W along the x axis and reversal of the z and x axes, implies
that the planes x = 0 and x = 2W are identical to x = W. The results of simulations for
the same fill heights as in the shear cell with walls are displayed in figure 7 (see also
supplementary figure S2).

The primary velocity field differs mainly in two respects from that observed in figure 3
for the case with sidewalls: the first is the presence of dome-shaped shear layers over
the stationary sections of the base for all the fill heights. The second is that uz far above
the stationary base is higher, and for the largest fill height it asymptotes to Vw/2 (while
in figure 3c it asymptotes to 0). The other features of the primary flow, such as the
fan-shaped shear zones over the splits transitioning to the dome-shaped shear zone over
the moving base with increasing H remain largely unchanged. Expectedly, shear over the
stationary sections of the base is accompanied by dilation, leading to low-density regions
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Figure 7. Results of the DEM simulations for a rectangular shear cell with periodic sidewalls. The figures in
each column are for the same fill height H. (a–c) The primary flow for fill heights H of 0.88W, 1.13W and
1.38W. The colours indicate the scaled velocity uz/Vw, and the solid lines are contours of constant velocity in
steps of 0.091. The dashed line in panel (b) is a contour for uz/Vw = 0.6. (d–f ) Colour maps of the particle
volume fraction φ. (g–i) Streamlines of the secondary flow. The colours indicate the speed of the secondary
flow s ≡ (u2

x + u2
y)

1/2/Vw on a logarithmic scale.

therein (figure 7d–f ). For the smallest fill height, this leads to additional vortices in the
secondary flow wherein particle rise at the periphery and fall into the fan-shaped dilated
region over the splits (figure 7g). The absence of the sidewalls has a bigger effect on the
upper vortices for the larger fill heights: they are much smaller in extent for H = 1.13W
and vanish altogether for H = 1.38W. For the latter case, the streamlines in figure 7(i)
indicate continuous dilation of the bed, but this obviously cannot continue indefinitely –
slow dilation is punctuated by fast compaction events (not shown), and the process appears
to repeat itself indefinitely. A transverse flow or drift to the right is seen in figure 7(i),
which we believe is due to slight asymmetry in packing that occurs spontaneously – the
direction of drift depends on the averaging time, as flow in both directions is observed
during the simulation. However, the magnitude of the transverse velocity is very small.

It is thus clear that while the base drives shear, the impenetrable, frictional sidewalls do
play a role in determining the shape of the dilated regions and the form of the secondary
flow. However, the broad features of the secondary flow and their relation to the form of the
primary flow remain the same, regardless of the nature of the sidewalls. Supplementary
movie 2 shows an animation of the motion of particles in the x–y plane for the simulation
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with periodic sidewalls with H = 1.13W, where the formation of the secondary vortices
is clearly observable.

4. Results for the cylindrical shear cell

We have established the existence of a dilatancy-driven secondary flow in split-bottom
shear cells using the rectangular geometry. Nevertheless, verification by experiment is
desirable, thereby requiring simulation of a cylindrical shear cell. Apart from allowing
experimental verification, the curvilinear primary flow uθ (r, z) in a cylindrical cell
introduces some changes in the kinematics that merit study. Nevertheless, we shall see
that the essential features of the flow and density fields are largely similar to those in a
rectangular cell.

We consider fill heights H = 0.43, 0.73 and 1.27 Ri (16 , 27 and 47 dp, respectively) as
representative examples of small, intermediate and large H. Figure 8 shows the results
for all three fill heights (see also supplementary figure S3). The form of the primary
flow (figure 8a–c), given in terms of ω ≡ uθ /r, is quite similar to that determined
experimentally by Cheng et al. (2006) using magnetic resonance imaging, and less
accurately by Fenistein et al. (2006) who inferred the bulk motion by removing particles
above different heights z and inspecting the pattern formed by coloured tracers. For
the smallest fill height H = 0.43 Ri, we see a core undergoing solid body rotation, and
shear occurring predominantly in the fan-shaped shear layer. For the largest fill height
H = 1.27 Ri shear is primarily in the dome-shaped region above the rotating portion of the
base. For H = 0.73 Ri the primary flow is intermediate between the other two, with
the dome-shaped shear zone smoothly merging into a broad fan-shaped shear zone. Thus,
the primary velocity field qualitatively resembles the right half (0.5 � x/(2W) � 1) of the
plots for the rectangular cell shown in figure 3. The density fields (figure 8d–f ) conform
to expectation, showing dilation in the shearing region and compaction far from it.

The secondary velocity field exhibits a few qualitative differences with that in the
rectangular cell. For all the fill heights, there are two adjacent counter-rotating vortices.
The vortices span the height of the shear cell for H = 0.43 and 0.73 Ri, but shrink
considerably as a fraction of the fill height for H = 1.27 Ri. For the largest fill height,
figure 8(i) shows material dilating slowly over the vortices, but as in the rectangular cell
with periodic sidewalls (figure 7i), this slow dilation is punctuated by fast compaction
events. The sense of the vortices is such that the downflow is roughly over the split in
the outer vortex and near the centre for the inner vortex. As already mentioned, there is
considerable fluctuation in the secondary flow, and the streamlines shown in figure 8(g–i)
are long-time averages. Even then, the outer vortex in figure 8(g) does not seem well
formed. To show that it is indeed a vortex, we define the stream function ψ such that

φur = ∂ψ

∂y
, φuy = −∂ψ

∂r
, (4.1a,b)

which identically satisfies the steady state mass conservation. For the rectangular shear
cell, r is replaced by x. The stream function was determined by numerically integrating
(4.1a,b) using the discretized array of ur, uz and φ; the streamlines then are contours of
constant ψ . The results for the smallest fill heights of the rectangular and cylindrical
cells are shown in figure 9(a,b), which are to be compared with figures 4(d) and
8(g), respectively. It is clear that the streamlines of the secondary flow are indeed
closed circulations. However, computation of ψ is susceptible to the same errors as the
interpolated velocity fields, rendering the results much noisier and therefore not useful for
the larger fill heights.
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Figure 8. Results of the DEM simulations for the cylindrical shear cell. The figures in each column are for
the same fill height H. (a–c) The primary flow for fill heights H of 0.43 Ri, 0.73 Ri and 1.27 Ri. The colours
indicate the scaled angular velocity ω/Ωw, and the lines are contours of constant angular velocity in steps
of 0.091. (d–f ) Colour maps of the particle volume fraction φ. (g–i) Streamlines of the secondary flow. The
colours indicate the speed of the secondary flow s ≡ (u2

r + u2
y)

1/2/Vw on a logarithmic scale.
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Figure 9. Streamlines of the secondary flow determined as contours of constant stream function ψ , defined
in (4.1a,b). (a) Contours of constant ψ in a rectangular shear cell with frictional sidewalls for fill height H =
0.88W. (b) Contours of constant ψ in a cylindrical shear cell for H = 0.43 Ri.
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Figure 10. Radial velocity profiles on the free surface in a cylindrical shear cell for fill heights (a) H = 0.43 Ri
and (b) H = 0.73 Ri. The red lines with error bars are data from the imaging experiments and the blue lines are
the results of DEM simulations.

The only other studies that we are aware of where such a secondary flow has been
observed are those of Wortel et al. (2015) and Fischer et al. (2016) for slender rods, where
the secondary flow results in the formation of a heap, or a curved free surface, centred at
the axis of rotation. Interestingly, they found the secondary flow to be entirely absent for
spherical particles, and argue that the secondary flow is caused by a misalignment of the
orientation of particles with the direction of flow. Our simulations and experiments (in 4.1)
show unambiguously the presence of secondary flows for spherical particles, and suggest
strongly that they are caused by dilatancy which should be present even for non-spherical
particles. It is quite possible that the secondary flow and heaping in beds of slender rods
is caused by dilatancy, but modulated by the alignment of the long axis of the particles in
the flow direction.

4.1. Experimental validation
To experimentally verify the secondary flows seen in our simulations, we imaged the
free surface of a bed of glass beads sheared in the cylindrical split-bottom device and
determined the radial velocity profile by particle image velocimetry (see § 2). The profiles
of ur for the smallest and intermediate fill heights are shown in figure 10. The blue lines
are the radial velocities at the topmost bins in the DEM simulations (figure 8g,h) and
the red lines with error bars are results from experiments. The error bars are determined
from repeated measurements from multiple runs, and their length is one standard
deviation. Note that the dimensions Ri and Ro of the experimental device (figure 2b)
and the fill height H were chosen to match those used in the DEM simulations in units
of dp.

There is good qualitative agreement between the experiments and DEM simulations for
the smallest fill height H = 0.43 Ri. The most important feature that the experiment picks
up is the signature of two counter-rotating vortices at the free surface. This is a striking
feature of the secondary flow, and therefore an important point of agreement. Moreover,
the radial positions of the maximum, minimum and crossover from negative to positive
in the ur profile are in good agreement. However, there are quantitative differences, such
as the size of the positive and negative peaks. The lack of quantitative agreement is not
surprising, as no attempt was made to tune the particle interaction parameters in DEM to
match the properties of glass beads. Moreover, the size distribution of particles and the
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nature of the walls in the simulations differ from those in the experiment, and the simple
interaction model employed in DEM does not account for of the complexity of real grains
(asperities, asphericity, etc.).

All the features of ur at the free surface mentioned above are also seen in the experiment
for the intermediate fill height H = 0.73 Ri, but the agreement with simulation results is
much poorer – the magnitude of radial inflow is much smaller, and the crossover to radial
outflow is seen at a much smaller radius. Nevertheless, given that we see two vortices at
slightly smaller fill heights, it is reasonable to conclude that the radial inflow is indicative
of an inner vortex. In addition to the reasons mentioned above, a plausible explanation
for the larger quantitative discrepancy for H = 0.73 Ri is that it is difficult to match the
fill height between the experiment and simulations in the transition from the intermediate
to deep system – even a 1–2 dp difference in fill height significantly alters the flow. It is
therefore quite possible that the vortex flow could be stronger under the free surface, as is
the case at larger fill heights. For the largest fill height H = 1.27 Ri the experiment showed
no radial velocity, in agreement with the DEM simulation results showing only dilation or
compaction in the vertical direction.

The most notable point about the experimental measurements is that the change of
sign of ur, corresponding to the presence of two adjacent counter-rotating vortices in
figure 8(g), is seen clearly for the two lower fill heights.

4.2. Secondary flow at higher rotation speed
As the primary interest of our paper is dilatancy-driven secondary flow, all the results
presented thus far are for low enough translation/rotations speed of the moving base that
the Savage or inertial numbers are small (see § 2). Nevertheless, it is useful to understand
how inertia alters the velocity and density fields. For this, we conducted a simulation for
the largest fill height H = 1.27 Ri with the base rotation speed increased by a factor of 100,
resulting in Sa = 8.2 × 10−3 (I = 9 × 10−2). The results for this simulation are shown in
figure 11. While the primary velocity field does not differ very much from figure 8(c),
the density and secondary flow fields are very different in form from figures 8( f ) and
8(i), respectively – there is a substantial low density core and an outward flow near
the base, suggesting that centrifugal effects have gained importance. To understand how
the centrifugal force modulates the density and secondary flow, we consider the ratio
of the centrifugal and gravitational body forces u2

θ /(rg) in the entire domain, shown in
figure 11(d). It is evident that this ratio is close to unity near the rotating base, where
the particles are thrown outwards, but decreases rapidly with distance from the base. The
outward flow of particles near the base causes a downward flow of particles from above
to fill the void – thus the reduction of density near the rotating base is directly due to
centrifugal expulsion, but elsewhere it is indirect. The outward expulsion of material near
the base and the downward flow near the axis of rotation together determine the density
and secondary velocity fields, but both are driven by the centrifugal force. We note that the
rise in the free surface height from the centre to the periphery, as a result of the upwelling
of the material due to the centrifugally driven secondary flow, is opposite to that seen in
figure 8( f ).

It is therefore clear that compressibility is necessary for this vortex too, but the reduction
in density derives from the centrifugal expulsion of particles near the base to the periphery,
rather than dilatancy. The observed secondary flow is similar to that observed by Corwin
(2008), though the rotation speed in that study was so large that a central cavity extending
all the way to the base was formed.
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Figure 11. Results of the simulation for H = 1.27Ri at a base rotation speed corresponding to Sa = 8.2 ×
10−3. Colour maps of (a) the primary velocity, (b) particle volume fraction and (c) streamlines of the secondary
flow. Panel (d) shows the ratio of the centrifugal and gravitational body forces on a logarithmic scale.

5. Discussion and conclusion

We first summarize the results presented in this paper. With the motivation of exploring
the generality of the dilatancy-driven secondary flow in dense granular materials subjected
to shear, shown by Krishnaraj & Nott (2016) in a cylindrical Couette shear cell, we studied
the flow in rectangular and cylindrical split bottom shear cells. The primary flow in this
device is much more complex, as the direction of the velocity gradient varies from vertical
at the symmetry axis to nearly horizontal in the fan-shaped shear layer above the split.
Moreover, the nature of primary flow in this device can be varied by changing the height
to which granular material is filled. We have shown that dilatancy-driven secondary flows
in the form of vortices occur for the entire range of fill heights studied. The number and
sense of the vortices depend on the nature of the primary flow, and therefore the fill height.
Thus, though the split-bottom shear cell generates a primary flow that is significantly
more complex than the cylindrical Couette device, our study establishes the presence of
dilatancy-driven secondary vortices. As hypothesized by Krishnaraj & Nott (2016), the
vortices are a result of the combined effect of dilatancy and gravity – in the absence of
gravity (with the material confined by a frictionless upper boundary), we find no secondary
flow.

Apart from being driven by dilatancy, an essential feature of the secondary flow is that
it does not arise from an instability of the primary flow – it occurs at arbitrarily low shear
rates, implying that it is an integral part of the kinematic response. As shown by Krishnaraj
& Nott (2016) (see figure 5c–f of their paper), dilation requires flow of material away
from the shearing region, which ultimately evolves into the secondary vortices. Such an
evolution is also seen in for a rectangular split-bottom cell in figure 12. It is clear that
soon after initiation of shear, the contours of constant uz are dome-shaped curves, and the
corresponding secondary flow is across the contours. As time progresses, the dome-shaped
shearing region transforms to the fan-shaped shear layer, and the streamlines of the
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Figure 12. Evolution of the primary and secondary flow fields in time after initiation of shear in a rectangular
shear cell with periodic sidewalls for fill height H = 1.38W. Panels (a–c) show colour maps of uz(x, y) for
three dimensionless times t̂ ≡ tVw/W; the lines are contours of constant uz in steps of 0.091. Panels (d–f ) show
streamlines of the secondary flow at the same values of t̂.

secondary flow curve downwards into the regions of low density to form the beginnings
of the vortex. It takes much longer for the secondary flow to reach a statistically steady
state (shown in figure 7), but the transformation of the purely dilative streamlines into
vortices is captured figure 12. However, even if the secondary flow takes a long time to
reach steady state, Gutam et al. (2013) showed that its effect on the stress can be felt soon
after initiation of shear. In the absence of gravity, the secondary flow outward from the
splits decays with time, resulting in a dome-shaped dilated region and a compacted region
beyond (figure 6b).

The arguments above explain why there is no secondary flow when the directions
of gravity and shear are collinear, such as shear between horizontal parallel plates. In
this case, the dilatancy-induced flow transverse to the streamlines and the gravity-driven
downward flow lead simply to density stratification, as observed by Dsouza & Nott (2020).
At steady state, there is simply a gradient of φ in the gravity direction, but no secondary
flow.

This brings us to the important conclusion that dilatancy, which requires flow outward
of the shearing region, and the primary flow are inherently coupled, each influencing the
other. For example, one does not know a priori where the regions of dilation and shear will
lie for each fill height in the rectangular and cylindrical shear cells (figures 3, 4 and 8) – this
is determined by the secondary flow, which in turn is determined by the shear generated by
the primary flow. A clear illustration of this argument is the difference between the velocity
and density fields in the absence and presence of gravity for H = 0.88W – it is not a priori
obvious that shear will be restricted to the dome-shaped region over the splits in the former
(figure 6a), or that the shear layer will reach the free surface in the latter (figure 3a). The
evolution of the secondary flow, and thereby the density, determine the regions of shear.
Thus, the velocity and density fields are coupled, and one cannot in general determine one
without knowledge of the other. Surprisingly this simple point has not been appreciated in
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earlier studies. While it has been known since Reynolds (1885) that dilation is essential for
yield in dense granular materials, and experiments have shown that dilation develops with
increasing strain (Kabla & Senden 2009; Sakaie et al. 2008), it has not been recognized
that the flow transverse to the shear layer (causing dilation) and the primary shear flow are
coupled.

The first attempt to predict the form of the primary flow was by Unger et al. (2004), who
assumed the shear layer to be infinitesimally thin and determined the interface between the
rotating and static regions. They make several other assumptions, but their prediction of
the centre of the shear band is in good agreement with data from Fenistein et al. (2004) for
small fill heights. Jop (2008) using the μ(I) constitutive model for the stress to determine
the primary flow in the split bottom device by solving the continuum momentum balances.
However, this model is kinematically indeterminate in the limit I → 0 (Dsouza & Nott
2020), which is the regime of the experimental observations (Fenistein et al. 2004; Cheng
et al. 2006; Fenistein et al. 2006). Henann & Kamrin (2013) posited a non-local extension
to the μ(I) model, which brings in a mesoscopic length scale and yields a result for the
limit I → 0 – their predictions are in good agreement with the experimental data. The main
drawback of all the above models is that they assume the material to be incompressible,
thereby lacking the coupling of the volume fraction with the flow.

Indeed, almost all previously proposed constitutive models for slow granular flows treat
the medium as incompressible, and even those that do not are unable to capture dilatancy.
A detailed discussion on the available constitutive models for slow flow may be found in
our recent paper (Dsouza & Nott 2020). Therein we have proposed a non-local model that
incorporates dilatancy by a systematic extension of the critical state plasticity theory. The
features of the model that are relevant to the discussion here are the non-local terms in
the pressure, which are proportional to ∇2φ and ∇2∇ · u – these terms are responsible for
incorporating dilatancy. To the best of our knowledge, this is the first model that couples
the volume fraction and velocity fields such that it incorporates dilatancy. Dsouza & Nott
(2020) showed that the above model explains density variation in the shear layer in steady
fully developed plane shear (for which ∇ · u = 0) and its coupling to the velocity profile.
In ongoing work in our group, we have demonstrated that the model predicts transient
development of dilation in the shear layer (for which ∇ · u /= 0) due to secondary flow
transverse to the shear layer. We are currently engaged in applying this model to the
cylindrical Couette and split-bottom geometries to see if it can predict the secondary flow.
Our study motivates further investigations of granular flows in complex geometries to
study the connection between the velocity and density fields, and critically evaluate the
available models.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2020.1029. This includes raw data for the figures in the paper.
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