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Higher Rank Wavelets

Sean Olphert and Stephen C. Power

Abstract. A theory of higher rank multiresolution analysis is given in the setting of abelian multiscal-

ings. This theory enables the construction, from a higher rank MRA, of finite wavelet sets whose multi-

dilations have translates forming an orthonormal basis in L2(R
d). While tensor products of uniscaled

MRAs provide simple examples we construct many nonseparable higher rank wavelets. In particular

we construct Latin square wavelets as rank 2 variants of Haar wavelets. Also we construct nonseparable

scaling functions for rank 2 variants of Meyer wavelet scaling functions, and we construct the associ-

ated nonseparable wavelets with compactly supported Fourier transforms. On the other hand we show

that compactly supported scaling functions for biscaled MRAs are necessarily separable.

1 Introduction

The term multiscaling in wavelet theory commonly refers to the various scaling levels

present in a nest of subspaces

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · ·

of a multiresolution analysis in L2(R
d). See, for example, Dutkay and Jorgensen [5].

However such subspaces are associated with the powers of a single dilation matrix. In

contrast we develop here a theory of wavelets for higher rank multiresolution analyses

that are generated by several independent commuting dilation matrices.

Recall that a wavelet set, or multiwavelet, is generally taken to be a set of functions

ψ1(x), . . . , ψt (x) in L2(R
d) for which certain translates of dilates form an orthonor-

mal basis of the form

{(det A)
m
2 ψi(Amx + k) : m ∈ Z, k ∈ Z

d, 1 ≤ i ≤ t},

where A is a scaling matrix in GL(R
n). Wavelet theory is concerned with identifying

constructions for which the wavelets ψi exhibit forms of directionality and smooth-

ness. In particular it has been of interest to obtain multivariable wavelets which are

in some sense nonseparable with respect to the coordinates of R
d. See for example

[1], [3], [7], [9], [11], [12], [16]. In particular Belogay and Wang [1] construct non-

separable wavelets in R
2, for some dilation matrices with determinant 2, which are

arbitrarily smooth.

Most commonly, particularly in multiresolution analysis, the dilation group is

singly generated, as above. Some recent studies with multiscalings that go beyond
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this are summarised in Gu, Labate, Lim, Weiss and Wilson [8]. In these settings

volume-preserving sheering unitaries combine with a single strict dilation to gener-

ate the nonabelian dilation groups of interest, and associated wavelet sets are con-

structed. Also these so-called affine orthonormal systems exhibit specific forms of

directionality and nonseparability. In contrast to this our wavelets are constructed

for a dilation representation of the abelian group Z
r.

There are two main approaches to constructing wavelet sets, namely the multi-

resolution analysis approach of Mallat [13], on the one hand, and constructions as-

sociated with self-similar tilings of R
d on the other. See Wang [16], for example, for

connections with tilings. As far as the authors are aware there has been little develop-

ment of traditional multiresolution analysis wavelet theory for multiscaled settings

in which the role of dilation matrices Am is played by an abelian group of dilation

matrices Am1

1 Am2

2 · · ·Ams
r . The simplest such multiscaled context of this kind is the

biscaled dyadic case for wavelets in L2(R
2) associated with the dilation matrices

A =

[

2 0

0 1

]

, B =

[

1 0

0 2

]

.

If ψA(x) and ψB(x) are univariate dyadic wavelets in L2(R) then the separable func-

tion ψ(x, y) = ψA(x)ψB(y) is a biscaled wavelet, that is, the set

{2(m+n)/2ψ(AmBnx + k) : (m, n) ∈ Z
2, k ∈ Z

2}

is an orthonormal basis in L2(R
2).

The evident nonlocality of such separable wavelets has possibly not encouraged

the elaboration of a multiscaled wavelet theory. (See, for example, the discussion

in [17].) However, we shall show that even in this apparently adverse setting of sep-

arated coordinates it is possible to construct nonseparable wavelets and even non-

separable scaling functions. Moreover we develop what might be termed a theory of

higher rank wavelets and multiresolution analysis.

We define a higher rank multiresolution analysis (φ, V), of rank r, where V =

{Vi : i ∈ Z
r} is a commuting lattice of closed subspaces of L2(R

d) with appropriate

inclusions. See Definition 2.3 and Section 2.8. In our first main result, Theorem 3.4,

we show how one may construct multiscaled wavelet sets from a higher rank mul-

tiresolution of rank two.

The distinguished novelties of higher rank multiresolution analysis are already

present in the simplest setting of biscaling (r = 2) and dimension 2 (d = 2). For such

a biscaled multiresolution analysis (BMRA) the scaling function φ(x, y) possesses

two marginal filter functions mA
φ(ξ), mB

φ(ξ) and these must satisfy the intertwining

relation

(1) mA
φ(Bξ)mB

φ(ξ) = mA
φ(ξ)mB

φ(Aξ).

This filter relation follows from the coincidence of the triple subspace inclusions as-

sociated with the dilation pairs B, AB and A, BA. That is, the intertwining relation

is a consequence of the lattice structure of V. In addition to this the orthogonality
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structure, or commuting (projection lattice) structure, of the BMRA leads to a filter

identity of some complexity, namely,

mA
φ(ξ1 + π, 2ξ2)mA

φ(ξ1, ξ2)mB
φ(ξ1, ξ2)mB

φ(2ξ1, ξ2 + π)

− mA
φ(ξ1, 2ξ2)mA

φ(ξ1 + π, ξ2)mB
φ(ξ1 + π, ξ2)mB

φ(2ξ1, ξ2 + π)

− mA
φ(ξ1 + π, 2ξ2)mA

φ(ξ1, ξ2 + π)mB
φ(ξ1, ξ2 + π)mB

φ(2ξ1, ξ2)

+ mA
φ(ξ1, 2ξ2)mA

φ(ξ1 + π, ξ2 + π)mB
φ(ξ1 + π, ξ2 + π)mB

φ(2ξ1, ξ2) = 0.

These two necessary conditions present challenges for the construction of nonsep-

arable scaling functions. Nevertheless, in another of our main results, Theorem 7.2,

we construct examples of BMRAs for which the scaling function is indeed nonsepa-

rable. In this case the derived wavelets are similarly nonseparable. Furthermore, they

inherit smoothness from φ. In this way we obtain singleton bidyadic wavelets whose

Fourier transforms have compact support and these wavelets are in fact higher ranks

variants of the well-known Meyer wavelets [14].

On the other hand, even for separable rank 2 multiresolutions and separable scal-

ing functions we show that there is sufficient freedom in the nondyadic case

(det A − 1)(det B − 1) ≥ 2

to derive nonseparable wavelets. This is achieved by constructing filter matrix func-

tions that are not elementary tensor products. The construction of these filter func-

tions parallels the well-known method of unitary matrix completion although our

arguments, given in the proof of Theorem 3.4, involve a nesting of several Gram–

Schmidt completion processes. The wavelet sets here include some very interesting

and computable examples of what we term Latin square wavelet sets, for evident rea-

sons. (See Theorem 4.3.) These are multiscaled versions of the classical wavelets

associated with Haar bases.

In another of our main results we reveal a striking constraint for compactly sup-

ported scaling functions in the biscaled theory in L2(R
2), namely that such func-

tions are necessarily separable. Equivalently put, a BMRA (φ, V) with compactly

supported scaling function φ is equivalent to an elementary tensor of two uniscaled

MRAs. This fact may have been a further implicit obstacle to the development of

multiscaled multiresolution wavelets.

There are many intriguing wavelet directions that now seem to beckon. For exam-

ple, we have not particularly addressed smoothness and approximation properties in

this article. Although we have shown that the generalised Meyer context, with scal-

ing functions with compactly supported Fourier transforms, allows the appearance

of nonseparable wavelets, the context is nevertheless a constraining one. Also, we

have shown that the intertwining relation is an exactitude that rules out compactly

supported higher rank scaling functions. It is plausible that the setting of frames and

higher rank GMRAs, which relaxes this condition in some way, may allow for the

construction of compactly supported higher rank frames. Moreover it will also be of
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interest to develop this theory further for dilation representations of Z
d on R

n other

than the basic ones we consider.

Even in theoretical articles such as this one it is customary to make a few remarks

concerning the potential efficiency of any new species of wavelets or frames. In the

current climate of diverse and burgeoning applications this hardly seems necessary.

However, we remark that nature often presents pairs of partially independent features

with their own scaling aspects. Space-time scales are one obvious source of this. A

purely spatial context can be found in the statistical theory of textures. This theory is

suitable for localised analysis through wavelets (see [6]) and, evidently, many natural

textures have a rectangular emphasis.

Our account is self-contained with complete proofs apart from a few basic stan-

dard lemmas. In particular in Section 5 we reprove the construction and formula

of a uniscaled dyadic wavelet associated with an MRA, and in Section 7 we give the

construction scheme for classical Meyer wavelets. We refer the reader to the books

of Wojtaszczyk [17] and Brattelli and Jorgensen [2], which are excellent sources for

diverse wavelet theory.

2 Higher Rank Multi-resolution Analysis

In this section we formulate the structure of a higher rank multiresolution analysis

although we focus attention on the biscaled case of Definition 2.3. We obtain the

frequency domain identification of a function f (x) in Vi, j in terms of a filter func-

tion m f (ξ) and the Fourier transform φ̂(ξ). As preparation for the construction of

wavelets from a BMRA we obtain a filter function matrix criterion in order that a

given set { f1, . . . , fr} of unit vectors in L2(R
d) should generate an orthonormal basis

under the operations of translation and bidilation.

2.1 Preliminaries

We take the Fourier transform f̂ of an integrable function f (x) on R
d in the form

f̂ (ξ) =
1

(2π)
d
2

∫

Rd

e−i〈ξ,x〉 f (x) dx,

and define f̂ for f in L2(R
d) by the usual unitary extension of the map f → f̂ . The

domain of Fourier transforms is referred to as the frequency domain and for empha-

sis is denoted R̂
d. For a matrix A ∈ GLd(R) and a point x in the time domain R

d

write Ax the product with x viewed as a column vector and define the unitary opera-

tor DA : L2(R
d) → L2(R

d) by

(2) (DA f )(x) = | det A|1/2 f (Ax).

Recall that A is said to be an expansive matrix if all eigenvalues of A have absolute

value greater than one. We say here that A is a dilation matrix if in addition A(Z
d) ⊂

Z
d, that is, if A is a matrix of integers.

https://doi.org/10.4153/CJM-2011-012-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-012-1


Higher Rank Wavelets 693

A commuting dilation pair (A, B) is a pair of matrices in GLd(R) such that after a

suitable permutation of the standard basis of R
d we have

(3) A =

[

A ′ 0

0 Id−p

]

, B =

[

Id−q 0

0 B ′

]

where A ′ and B ′ are dilation matrices in GLp(R) and GLq(R). Note that T = AnBm

is a dilation matrix if and only if n ≥ 1 and m ≥ 1, while the matrices Ai and B j

are weak dilation matrices in the sense that their eigenvalues are not less than 1. In

Sections 5, 6, and 7 we confine attention to wavelets in L2(R
d) for a fundamental

dilation pair

A =

[

αI 0

0 I

]

, B =

[

I 0

0 βI

]

where α, β ≥ 2 are integers.

2.2 Biscaled Multiresolution Analysis

We now define a biscaled analogue of a multiresolution analysis associated with a

single dilation matrix.

Definition 2.3 A biscaled multiresolution analysis, or BMRA, with respect to the

commuting dilation pair (A, B) in GLd(R) is a pair (φ, V) where φ ∈ L2(R
d) and

V = {Vi, j : (i, j) ∈ Z
2} is a family of closed subspaces of L2(R

d) such that

(i) Vi, j ⊆ Vl,m, for i ≤ l, j ≤ m,

(ii) Di
AD

j
BV0,0 = Vi, j , for all i, j,

(iii)
⋂

(i, j)∈Z2 Vi, j = {0},

(iv)
⋃

(i, j)∈Z2 Vi, j = L2(R
d),

(v) Pi, jPl,m = Pl,mPi, j for all orthogonal projections Ps,t : L2(R
d) → Vs,t .

(vi) {φ(x − k) : k ∈ Z
d} is an orthonormal basis for V0,0.

It is helpful to make the following distinctions.

If we have merely conditions (i), (iii), (iv) then we say that V is a grid of subspaces.

If, additionally, Vi, j ∩Vk,l = Vm,n with m = min{i, k}, n = min{ j, l}, for all i, j, k, l,

then we say that V is a lattice of subspaces. Finally, if, additionally, the stronger com-

muting condition (v) holds, then we say that V is a commuting lattice of subspaces.

Thus a BMRA is a commuting lattice of type Z × Z which is generated by a single

function φ and the dilation operators.

We begin the analysis of BMRAs by identifying the various frequency domain de-

scriptions of functions in Vi, j .

Let f ∈ Vi, j , T = AiB j and let t = det T. Then f ◦ T−1 is in V0,0 and so there is

an expansion

f (T−1x) =

∑

k∈Zd

c f (k)φ(x − k)

in L2(R
d) for some square summable sequence {c f (k)}k∈Zd . This sequence provides

the filter coefficients of f for the dilation T. Define the 2πZ
d-periodic function m f (ξ)
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in L2(R̂
d) by

m f (ξ) =
1

t

∑

k∈Zd

c f (k)e−i〈ξ,k〉.

This function is the filter function for f associated with T. Note that ̂f ◦ T−1(ξ) =

t f̂ (T∗ξ) and on the other hand

̂( f ◦ T−1)(ξ) =

∑

k∈Zd

c f (k)e−i〈ξ,k〉φ̂(ξ).

Thus f̂ (T∗ξ) = m f (ξ)φ̂(ξ) and so the filter function determines f in TV0,0 by means

of the formula

(4) f̂ (ξ) = m f (T∗−1ξ)φ̂(T∗−1ξ).

We may view the filter function m f (ξ) as being defined on 2πT
d, in which case one

readily sees that

‖m f ‖L2(2πTd) =
1√
t
‖ f ‖2.

In view of our applications and for notational simplicity we assume henceforth that

A = A∗, B = B∗ and hence T = T∗.

Note that m f (T−1ξ) is periodic by translates from 2πTZ
d and that we have the

following converse. If g(ξ) is 2πTZ
d periodic and has square integrable restriction

to 2πT
d then the function f in L2(R

d) with f̂ (ξ) = g(ξ)φ̂(T−1ξ) lies in Vi, j . In

particular we have the following criterion for membership of V0,0 which we state

explicitly as it will play a role in establishing the lattice property of a BMRA.

Proposition 2.4 Let (φ, V) be a BMRA. Then a function f in L2(R
d) lies in V0,0 if and

only if f̂ (ξ) = g(ξ)φ̂(ξ) for some 2πZ
d periodic function g which has square summable

restriction to 2πT
d.

Consider now the cosets of TZ
d in the abelian group Z

d, of which there are t in

number, say E0, . . . , Et−1. (See Proposition 5.5 in [17] for example.) Representative

elements Γ0, . . . ,Γt−1 of the cosets are often known as digits and comprise a set of

digits for T.

For 0 ≤ i ≤ t − 1 define the i-th translate function for the filter m f (ξ) as the

function

(5) mi
f (ξ) = m f (ξ + 2πT−1

Γi).

Note that from the proof of Lemma 2.7 it follows that if f is a unit vector then the row

vector formed by the t translates mi
f (ξ) is a unit vector almost everywhere on 2πT

d.

Definition 2.5 Let (φ, V) be a biscaled multiresolution analysis, let (i, j) ∈ Z
2, and

let F = { f0, . . . , fs} be an ordered set of functions in Vi, j . The (translation form)

filter matrix for F is the function matrix UF(ξ) where

UF(ξ) = [mn
fl
(ξ)]

s,t−1
l=0,n=0

and t = det AiB j .
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We remark that in Section 4 we define a related filter matrix U ′
F(ξ) whose rows

are formed by the partial sums over cosets of the filter functions in the first column

of UK.

The key filter matrix lemma below will be used in the construction of biscaled

wavelets and in this connection it will be applied to various pairs X,Y from the

spaces V0,0,V1,0,V0,1,V1,1. The proof is similar to well-known constructions in the

the monoscaled case.

Let X ⊆ Y be closed subspaces of L2(R
d) with Y = DTX and let φ be a scaling

function for X,Y in the sense that the translates of φ form an orthonormal basis

for X. In the light of our applications later we make the simplifying assumption that

the digits are chosen so that the set T[0, 2π]d is the essentially disjoint union of the

sets [0, 2π]d + 2πΓi , i = 0, . . . , t − 1.

First we note the following well known simple property of scaling functions, which

is equivalent to the orthonormality of translates. This will feature in the proof of

Lemma 2.7 and in the construction of higher rank Meyer wavelets.

Lemma 2.6 The set of Z
d-translates of a function φ in L2(R

d) forms an orthonormal

set if and only if
∑

k∈Zd

|φ̂(η − 2πk)|2 =
1

(2π)d
.

Lemma 2.7 Let (φ, X, T,Y, {Γi}) be as above and let F = { f0, . . . , fs} be a finite

ordered set in Y with filter matrix UF(ξ). Then the system { fl(x − k)}k∈Zd,l=0,...,s is

an orthonormal set in Y if and only if for almost every ξ the matrix UF(ξ) is a partial

isometry with full range. Furthermore the system is an orthonormal basis for Y if and

only if s = t − 1 and for almost every ξ the matrix UF(ξ) is unitary.

Proof Let f , g be two functions in F. We evaluate the inner product

I = 〈 f (x − k1), g(x − k2)〉

for k1, k2 ∈ Z
d. Since f (x − k) has Fourier transform e−i〈ξ,k〉 f̂ (ξ) the unitarity of the

Fourier transform implies

(6) I =

∫

R̂2

f̂ (ξ)ĝ(ξ)e−i〈ξ,k1−k2〉 dξ.

Thus using (4), the substitution η = T−1ξ, and the 2πZ
d periodicity of the filter

functions, we have

I =

∫

R̂d

m f (T−1ξ)mg(T−1ξ)|φ̂(T−1ξ)|2e−i〈ξ,k1−k2〉 dξ(7)

= t

∫

R̂d

m f (η)mg(η)|φ̂(η)|2e−i〈Tη,k1−k2〉 dη(8)

=

∑

k∈Zd

t

∫

[0,2π]d

m f (η)mg(η)|φ̂(η − 2πk)|2e−i〈Tη,k1−k2〉 dη.(9)
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By the last lemma,

(10)
∑

k∈Zd

|φ̂(η − 2πk)|2 =
1

(2π)d

and so

(11) I =
t

(2π)d

∫

[0,2π]d

m f (η)mg(η)e−i〈Tη,k1−k2〉 dη,

thus

(12) I =
1

(2π)d

∫

T[0,2π]d

m f (T−1ξ)mg(T−1ξ)e−i〈ξ,k1−k2〉 dξ.

Considering translates by 2πΓi and using periodicity in the exponential factor, we

conclude that the inner product 〈 f (x − k1), g(x − k2)〉 is equal to

(13)
1

(2π)d

∫

[0,2π]d

(

t−1
∑

i=0

mi
f (T−1ξ)mi

g(T−1ξ)
)

e−i(〈ξ,k1−k2〉) dξ.

Now the sum function in the integrand is not merely 2πTZ
d periodic (in view of its

terms) but is 2πZ
d periodic by virtue of being a sum over all translates. Thus the

integral is the (k1 − k2)-th Fourier coefficient of the sum function. In particular, with

f = g we deduce that the row vector function

[m0
f (ξ) m1

f (ξ) · · · mt−1
f (ξ)]

is a unit vector almost everywhere. Now the lemma follows exactly as in the mono-

scaled case.

2.8 Separability and Higher Rank

We define a general higher rank multiresolution analysis for a commuting r-tuple

(A1, . . . , Ar) in GLd(R) to be a pair (φ, V), where φ ∈ L2(R
d) and V = {Vk : k ∈ Z

r}
is a family of closed subspaces satisfying the r-fold version of the conditions (i)–(vi)

of Definition 2.3. The r-tuple is assumed to take the form

A1 = A ′
1 ⊕ Id2

⊕ · · · ⊕ Idr
, . . . , Ar = Id1

⊕ · · · ⊕ Idr−1
⊕ A ′

r ,

where d1 + d2 + · · · + dr = d and A ′
i ∈ GLdi

(R) are dilation matrices (with integer

entries).

The simplest way to create such a multiresolution analysis is as the tensor product

(φ1 ⊗ · · · ⊗ φr, V1 ⊗ · · · ⊗ Vr)
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of MRAs (φi , Vi), with Vk = {V (k)
i : i ∈ Z}, where

V1 ⊗ · · · ⊗ Vr = {Vk = V (1)
k1

⊗ · · · ⊗V (r)
kr

: k = (k1, . . . , kr) ∈ Z
r}.

Here the scaling function φ = φ1 ⊗ · · · ⊗ φr is separable in the sense that there is

an evident partition of the coordinates of L2(R
d) with φ(x) = φ1(x)φ2(x) · · ·φr(x),

where φi(x) is a function of the coordinates in the i-th partition set.

We say that a higher rank MRA (φ, V) of rank r is purely separable if it is unitarily

equivalent to such an r-fold tensor product. For r ≥ 3 there can be partial forms

of separability, which we do not discuss here, while for r = 2 we shall simply say

that a BMRA (φ, V) is separable if it is unitarily equivalent to a 2-fold tensor product

decomposition.

If (φ, {V(i, j)}) is a BMRA then selecting the diagonally labelled subspaces Vi,i gives

rise to the MRA (φ, {Vi,i}). We may thus observe from known facts for MRAs that

there are redundancies in the conditions of Definition 2.3. Thus condition (iii) fol-

lows from (i), (ii), (vi). See Lemma 7.1. In general, however, we have not found that

the presence of MRAs in BMRAs provides any shortcuts to the construction of higher

rank wavelets. One can develop formulae for filter functions of functions in Vk and

pursue the theory for rank greater than two but we do not do so here.

3 Construction of Wavelets from BMRAs

We now show how to construct wavelets and wavelet sets from a given BMRA, and

we elucidate the interrelationship between filter functions.

Let (φ, V) be a BMRA in L2(R
d) for the dilation pair (A, B). We refine some

notation for filter functions as follows. If f lies in V1,0 then we write mA
f (ξ) for the

2πZ
d-periodic filter function m f (ξ) arising from T = A, and if f lies in V0,1 we write

mB
f (ξ) for the filter function for T = B. Thus if f lies in V1,0 ∩ V0,1 then we have,

from (4),

f̂ (ξ) = mA
f (A−1ξ)φ̂(A−1ξ),

and

f̂ (ξ) = mB
f (B−1ξ)φ̂(B−1ξ).

In particular these remarks apply to φ itself and so

φ̂(Aξ) = mA
φ(ξ)φ̂(ξ),(14)

φ̂(Bξ) = mB
φ(ξ)φ̂(ξ).(15)

Put Bξ for ξ in (14) and use (15) to obtain

φ̂(ABξ) = mA
φ(Bξ)mB

φ(ξ)φ̂(ξ).(16)
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Reciprocally

φ̂(BAξ) = mB
φ(Aξ)mA

φ(ξ)φ̂(ξ).(17)

Thus, if φ̂(ξ) is nonvanishing almost everywhere then we obtain the fundamental

intertwining relation

(18) mA
φ(Bξ)mB

φ(ξ) = mA
φ(ξ)mB

φ(Aξ).

Since V is a commuting lattice the subspaces V1,0 ⊖ V0,0 and V0,1 ⊖ V0,0 are or-

thogonal and so we may define

W0,0 = V1,1 ⊖
(

(V1,0 ⊖V0,0) ⊕ (V0,1 ⊖V0,0) ⊕V0,0

)

.

Moreover, let Wi, j = Di
AD

j
BW0,0 for (i, j) ∈ Z

2, so that

Wi, j = Vi+1, j+1 ⊖
(

(Vi+1, j ⊖Vi, j) ⊕ (Vi, j+1 ⊖Vi, j) ⊕Vi, j

)

.

Thus these spaces are orthogonal. Moreover since the intersection of the spaces Vi, j

is the zero space it follows that

Vi+1, j+1 =

∑ ⊕

(m,n)≤(i, j)

Wm,n,

and since the union of the Vi, j is dense, L2(R
d) is the Hilbert space direct sum of all

the Wm,n.

As in the monoscaled theory, if an explicit orthonormal basis {ψ1, . . . , ψs} can

be constructed for the subspace W0,0 then this is a wavelet set in the sense of the

following definition.

Definition 3.1 Let (A, B) be a commuting dilation pair in GLd(R). Then

{ψ1, . . . , ψs} is a wavelet set for (A, B) if

{| det(AmBn)| 1
2 ψi(AmBnx + k) : (m, n) ∈ Z

2, k ∈ Z
d, 1 ≤ i ≤ s}

is an orthonormal basis in L2(R
d).

We now show how one can construct a wavelet set in W0,0 by means of a nested

Gram–Schmidt orthogonalisation process and repeated applications of both direc-

tions of the equivalences given in Lemma 2.7.

It is convenient to introduce the following terminology which anticipates the con-

struction process. As before we consider a BMRA (φ, V) for the dilation pair (A, B),

where V satisfies the lattice condition. Also p = det A, q = det B.
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Definition 3.2 A wavelet family for the BMRA (φ, V) is a set

F = {ψA
1 , . . . , ψA

p−1, ψ
B
1 , . . . , ψB

q−1, ψ1, . . . , ψs}

where s = (p − 1)(q − 1), and {ψA
i } (respectively {ψB

j }, respectively {ψk}) is an

orthonormal set whose Z
2 translates form an orthonormal basis for V1,0 ⊖ V0,0 (re-

spectively V0,1 ⊖V0,0, respectively W0,0).

Definition 3.3 A filter bank for the BMRA (φ, V) is a set of functions F̃ in L2(R
d),

F̃ = {φ, ψA
1 , . . . , ψA

p−1, ψ
B
1 , . . . , ψB

q−1, ψ1, . . . , ψs},

where the functions ψA
i ∈ V1,0 ⊖V0,0, ψB

j ∈ V0,1 ⊖V0,0, and ψk ∈ W0,0 are such that

(i) the associated (pq − 1) × (pq − 1) filter matrix UF̃(ξ) for T = AB is unitary

almost everywhere,

(ii) the p × p (respectively q × q) filter matrix U A(ξ) (respectively U B(ξ)) for the

set {φ, ψA
1 , . . . , ψA

p−1} and T = A (respectively {φ, ψB
1 , . . . , ψB

q−1} and T = B)

is unitary almost everywhere.

If F̃ is a filter bank as above then by (i) and Lemma 2.7 the functions of F̃ and their

Z
d translates provide an orthonormal basis for V1,1. Also, by (ii) and Lemma 2.7 ap-

plied twice, the set {φ, ψA
1 , . . . , ψA

p−1} (resp. {ψB
1 , . . . , ψB

q−1}) has translates forming

an orthonormal basis for V1,0 (resp. V0,1). It follows that the set {ψ1, . . . , ψs} has

translates which form an orthonormal basis of W0,0 and so this set is a wavelet set.

Although Theorem 3.4 is stated as an existence theorem, the proof provides a

recipe for construction which we shall carry out in the next section.

Theorem 3.4 Let (φ, V) be a rank 2 MRA with respect to the commuting dilation pair

(A, B). Then there exists a wavelet set for (A, B).

Proof From the preceding discussion it suffices to construct a filter bank F̃ =

{φ} ∪ F.

From φ and the dilation T = A construct the row vector valued function of ξ
given by the normalised row of translated functions for mA

φ(ξ). This has the form

[mA
φ(ξ) mA

φ(ξ + 2πA−1d1) · · · mA
φ(ξ + 2πA−1dp−1)]

where d1, . . . , dp−1 in Z
p × {0}, together with d0 = 0, give a set of digits for A.

Precisely as in the monoscaled theory we may apply the Gram–Schmidt process to

any full rank p × p completion of this row (by rows which are similarly translates

of their first entry) to obtain a p × p unitary matrix-valued function U (ξ). We thus

obtain U (ξ) = UG(ξ) for a family G = {φ, ψA
1 , . . . , ψA

p−1} where each ψA
i lies in

V1,0 ⊖V0,0. By Lemma 2.7, these functions are orthonormal, with translates forming

an orthonormal basis of V1,0 ⊖V0,0.
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In a similar way, using φ, the dilation T = B and a set of digits in {0} × Z
q for B,

construct a unitary matrix UK(ξ) and orthonormal set K = {φ, ψB
1 , . . . , ψB

q−1} for

which the functions ψB
j have translates forming an orthonormal basis for V0,1 ⊖V0,0.

Consider now the union,

FAB = {φ, ψA
1 , . . . , ψA

p−1, ψ
B
1 , . . . , ψB

q−1}.

Since V is a lattice the ψA
i and the ψB

j are orthogonal. Moreover elements of FAB have

orthonormal translates in V1,1 ⊖V0,0. It thus follows from Lemma 2.7 again that for

T = AB the (p + q−1)× pq filter matrix for FAB and T, denoted UFAB
(ξ), is a partial

isometry almost everywhere.

As before we may complete UFAB
(ξ) to a unitary pq × pq matrix which is the

filter matrix of a family FAB ∪ {ψ1, . . . , ψs}. This is the desired filter bank and, by

Lemma 2.7, yet again, {ψ1, . . . , ψs} is the desired wavelet set.

4 Latin Square Wavelets

4.1 Coset Filter Matrices

First we introduce a companion matrix U ′
F(ξ) for the filter matrix UF(ξ) determined

by functions { f0, . . . , ft−1} in Vi, j and a fixed dilation unitary T, as given in Defini-

tion 2.5. This companion t×t matrix uses cosets rather than translates and is unitary

if and only if UF(ξ) is unitary. Furthermore it takes a particularly simple form in the

case of the latin square wavelets. We were unable to find a reference for this equiva-

lence and so give the detail here.

Let T be a (possibly weak) dilation matrix, let t = det T and let E0, . . . , Et−1 be the

cosets of TZ
d. Let d0, . . . , dt−1 be representative digits, with d0 = 0 and E0 = TZ

2.

We are interested in the case T = AiB j with spaces V0,0 and Vi, j . For a function

f in Vi, j we have the coefficients c f (k) for f and T as before, determining the filter

function

m f (ξ) =
1

t

∑

k∈Zd

c f (k)e−i〈ξ,k〉.

Recall that the matrix UF(ξ) is determined by its first column which consists of the

filter functions m fl
(ξ), 0 ≤ l ≤ t − 1. The rows are formed by the translates mi

fl
(ξ),

1 ≤ i ≤ t − 1. Consider the coset sum

m fl,p
(ξ) =

1

t

∑

j∈Ep

c fl
( j)e−i〈ξ, j〉

=

( 1√
t

∑

k∈Z2

c fl
(dp + Tk)e−i〈ξ,Tk〉

) 1√
t

e−i〈ξ,dp〉

= µ fl,p
(ξ)

1√
t

e−i〈ξ,dp〉,
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where µ fl,p
(ξ) is defined as the bracketed sum. Then

mi
fl,p

(ξ) = m fl,p
(ξ + 2πT−1di)

= µ fl,p
(ξ + 2πT−1di)

1√
t

e−i〈ξ+2πT−1di ,dp〉

= µ fl,p
(ξ)Dp,i(ξ),

by the T−1
Z

2 periodicity of µ fl,p
(ξ), where

D j,k(ξ) = ei〈ξ,d j〉 1√
t

e−i〈2πT−1dk,d j〉.

Note that D = (D j,k) is a unitary valued matrix and

mi
fl

=

t−1
∑

p=0

mi
fl,p

=

t−1
∑

p=0

µi
fl,p

Dp,i = (U ′
FD)l,i .

Thus

UF = U ′
FD,

where U ′
F, which we call the coset filter matrix for F and T, is defined by

U ′
F(ξ) =

(

µ fl,p
(ξ)

) t,t−1

l=1,p=0
.

4.2 Latin Square Wavelets

Let A =
[

3 0
0 1

]

, B =
[

1 0
0 3

]

be (weak) dilation matrices providing a commuting

dilation pair (A, B) and unitary dilation operators DA, DB on L2(R
2). Let φ be the

characteristic function of the unit square [0, 1]2 in R
2. Then φ and (A, B) generate a

BMRA (φ, V) in L2(R
2). In fact V is simply the tensor product BMRA of two copies

of the triadic Haar wavelet MRA. We have

φ
(

(AB)−1x
)

=

2
∑

i=0

2
∑

j=0

φ
(

x − (i, j)
)

.

The distinctiveness of this scaling relation is that φ
(

(AB)−1x
)

is simply a linear com-

bination of translates of φ by a set of digits for T = AB. This property, as we shall see,

persists in the wavelets that we construct for (φ, V) by the filter matrix completion

method of Theorem 3.4. We have

φ(A−1x) = φ(x) + φ(x1 − 1, x2) + φ(x1 − 2, x2)

and so

mA
φ(ξ1, ξ2) =

1

3
(1 + e−iξ1 + e−i2ξ1 ).
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Let (0, 0), (1, 0), (2, 0) be the natural set of digits for A. Then the three coset func-

tions for mA
φ(ξ) are simply the pure frequency functions 1√

3
, 1√

3
e−iξ1 , 1√

3
e−i2ξ1 . To

complete the row

1√
3

[

1 e−iξ1 e−i2ξ1
]

to a unitary matrix valued function of coset functions we first complete

1√
3

[

1 1 1
]

to a 3 × 3 unitary scalar matrix. One such completion is given by

U ′
A(ξ1, ξ2) =







1√
3

1√
3

1√
3

1√
6

1√
6

−2√
6

1√
2

− 1√
2

0






MA(ξ),

where MA(ξ) = diag(1, e−iξ1 e−i2ξ1 ). A similar completion matrix U ′
B(ξ1, ξ2), with

MB(ξ) = diag(1, e−iξ2 e−i2ξ2 ), is associated with

mB
φ(ξ1, ξ2) =

1

3
(1 + e−iξ1 + e−i2ξ1 )

and the digits (0, 0), (0, 1), (0, 2).

Rows 2, 3 of the completions above provide functions ψA
1 , ψA

2 , ψB
1 , ψB

2 such that

the five functions {φ, ψA
1 , ψA

2 , ψB
1 , ψB

2 } are part of a wavelet family in the sense of

Definition 3.3. Moreover, for this orthonormal set the coset functions for digits for

T = AB provide a partial isometry























1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
6

√
2 1

6

√
2 1

6

√
2 1

6

√
2 1

6

√
2 1

6

√
2 − 1

3

√
2 − 1

3

√
2 − 1

3

√
2

1
6

√
6 1

6

√
6 1

6

√
6 − 1

6

√
6 − 1

6

√
6 − 1

6

√
6 0 0 0

1
6

√
2 1

6

√
2 − 1

3

√
2 1

6

√
2 1

6

√
2 − 1

3

√
2 1

6

√
2 1

6

√
2 − 1

3

√
2

1
6

√
6 − 1

6

√
6 0 1

6

√
6 − 1

6

√
6 0 1

6

√
6 − 1

6

√
6 0























where we have ordered the columns according to the digit order

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2).
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We may now complete to a 9 × 9 unitary matrix,

















































1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

√
2

6

√
2

6

√
2

6

√
2

6

√
2

6

√
2

6
−

√
2

3
−

√
2

3
−

√
2

3
√

6
6

√
6

6

√
6

6
−

√
6

6
−

√
6

6
−

√
6

6
0 0 0

√
2

6

√
2

6
−

√
2

3

√
2

6

√
2

6
−

√
2

3

√
2

6

√
2

6
−

√
2

3
√

6
6

−
√

6
6

0
√

6
6

−
√

6
6

0
√

6
6

−
√

6
6

0
√

10
6

−
√

10
30

− 2
√

10
15

− 2
√

10
15

−
√

10
30

√
10
6

−
√

10
30

√
10

15
−

√
10

30

0 −
√

15
30

√
15

30
− 2

√
15

15
2
√

15
15

0 2
√

15
15

−
√

15
10

−
√

15
30

√
15

15
−

√
15
6

√
15

10
0

√
15

15
−

√
15

15
−

√
15

15

√
15

10
−

√
15

30
√

10
10

0 −
√

10
10

0
√

10
10

−
√

10
10

−
√

10
10

−
√

10
10

√
10
5

















































.

Just as the dilated scaling function φ(A−1B−1ξ) is a linear combination of digit

translates of φ, so too are the wavelets, ψ1, ψ2, ψ3, ψ4 which are determined by the

last four rows of the completion. We can confirm and understand the orthogonality

of these wavelets by arranging the coefficients of 30√
10

ψ1,
30√

15
ψ2,

30√
15

ψ3,
10√

10
ψ4 as in

the diagram of Figure 1. One readily sees that the construction creates in this way

a quadruple of latin squares which are pairwise orthogonal, that is, have vanishing

inner products. Such constructs are natural to study in their own right, and indeed

may be used to provide wavelets which, as here, are entirely natural variants of Haar

wavelets.

In summary, the arguments above have led to the following theorem, where

χi j(x, y) denotes the characteristic function of the set [0, 1/3]2 + (i/3, j/3).

Theorem 4.3 Let ψ1, . . . , ψ4 be the functions on R
2 given by

ψ1 =

√
10

30
(5χ00 − χ01 − 4χ02 − 4χ10 − χ11 + 5χ12 − χ20 + 2χ21 − χ22),

ψ2 =

√
15

30
(−χ01 + χ02 − 4χ10 + 4χ11 + 4χ20 − 3χ21 − χ22),

ψ3 =

√
10

30
(2χ00 − 5χ01 + 3χ02 + 2χ11 − 2χ12 − 2χ20 + 3χ21 − χ22),

ψ4 =

√
10

10
(χ00 − χ02 + χ11 − χ12 − χ20 − χ21 + 2χ22).

Then the set {ψ1, . . . , ψ4} is a bidyadic wavelet set. That is, the set

{3(n+m)/2ψi(3mx + k1, 3n y + k2) : (m, n), (k1, k2) ∈ Z
2, 1 ≤ i ≤ 4}

is an orthonormal basis in L2(R
2).
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√
10ψ4

10

-4

-1

5

5

-1

-1

-1

2

4

2

2

0

3 -1

2-5 3

-2

2

1 0 -1

0

-1

1 -1

-1

0

-1 -3

4

4

-4

1 0 -1

√
10ψ1

30

√
15ψ2

30

√
15ψ3

30

Figure 1: Orthogonal Latin squares for the biscaled wavelets ψ1, . . . , ψ4.

5 Dyadic Biscaled Wavelets and Filter Formulae

In this section we derive the filter formula, as given in the introduction, that corre-

sponds to the commuting projection lattice property of a BMRA.

We start by reproving the well-known fact that an MRA (φ, {Vi}) in L2(R) for the

dyadic dilation matrix A = [2] has an essentially unique wavelet ψ0. It is determined

by the necessary and sufficient condition that

ψ̂0(ξ) = mψ0
(ξ/2)φ̂(ξ/2)

where the filter mψ0
for ψ0 for the dilation T = A is given by

mψ0
= v(ξ)e−iξmφ(ξ + π)

where v(ξ) is an arbitrary 2π-periodic unimodular function in L∞(R).

To see this note that the row matrix function

[mφ(ξ) mφ(ξ + π)]

determined by the scaling function φ has a 2 × 2 unitary matrix completion of the

form
[

mφ(ξ) mφ(ξ + π)

mψ0
(ξ) mψ0

(ξ + π)

]
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for every function v(ξ) as above. Furthermore, every unitary completion in

M2

(

L2(2πT)
)

necessarily has this form. It follows from Lemma 2.7 that each such

function ψ0 has orthonormal translates forming a basis for the difference space

V1 ⊖ V0, and hence that ψ0 is a wavelet. Conversely, if ψ ′ is a wavelet, then by

Lemma 2.7 {φ, ψ ′} necessarily has unitary filter matrix for T = A and so ψ ′ nec-

essarily is of the same form as ψ0.

Consider now a dyadic biscaled wavelet ψ by which we mean a wavelet for a BMRA

(φ, V) in L2(R) for the dilation matrices

A =

[

2 0

0 1

]

, B =

[

1 0

0 2

]

obtained from Theorem 3.4. More precisely, since (det A−1)(det B−1) = 1 the proof

of Theorem 3.4 shows that there exists a wavelet set which is a singleton ψ whose

filter function mAB
ψ (ξ) for T = AB is associated with a filter bank {φ, ψA, ψB, ψ}.

This filter, mAB
ψ (ξ), arises from the step-wise unitary completion of the row matrix

function

[

mAB
φ (ξ) mAB

φ

(

ξ + π(1, 0)
)

mAB
φ

(

ξ + π(0, 1)
)

mAB
φ

(

ξ + π(1, 1)
)]

.

By our previous remarks we can make explicit how ψA(x) and ψB(x) may be de-

fined. Let us do this and recap the construction process for ψ.

Define a function ψA by specifying its filter mA
ψA (ξ) for T = A to have the form

mA
ψA (ξ) = e−iξ1 mA

φ

(

ξ + π(1, 0)
)

,

and likewise define ψB via its filter function for T = B given by

mB
ψB

(ξ) = e−iξ2 mB
φ

(

ξ + π(0, 1)
)

.

As we have already observed above, the 2 × 2-translate filter matrices for {φ, ψA}
and T = A, and for {φ, ψB} and T = B, are unitary almost everywhere. It follows

from Lemma 2.7 that ψA (resp. ψB) has orthonormal translates spanning V1,0 ⊖V0,0

(resp. V0,1 ⊖ V0,0). Since these difference spaces are orthogonal, by the commuting

lattice property of a BMRA subspace grid, we obtain, via Lemma 2.7, a 3 × 4 partial

isometry valued filter matrix function UF(ξ) for T = AB. It suffices to complete this

to a 4 × 4 unitary-valued filter matrix in order to obtain an explicit filter function

mAB
ψ which then determines the desired wavelet ψ.

5.1 The Commuting Lattice Filter Relation

We now examine more directly the orthogonality of the rows of the 3×4 filter matrix

for T = AB and {φ, ψA, ψB}.

For convenience we assume that the support of φ̂ contains [−π, π]2. We are now

regarding ψA as a function in V1,1. This will necessarily have a filter function mAB
ψA (ξ)

for T = AB satisfying

ψ̂A(ABξ) = mAB
ψA (ξ)φ̂(ξ).
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We have

ψ̂A
(

A(Bξ)
)

= mA
ψA (Bξ)φ̂(Bξ)

= mA
ψA (Bξ)mB

φ(ξ)φ̂(ξ),

and so, almost everywhere on the support of φ̂, we have

mAB
ψA (ξ) = mA

ψA (Bξ)mB
φ(ξ)

= e−iξ1 mA
φ(ξ1 + π, 2ξ2)mB

φ(ξ1, ξ2).

By the support assumption and the 2πZ
2 periodicity of the filters the identitity holds

almost everywhere. Similarly,

mAB
ψB (ξ) = e−iξ2 mB

φ(2ξ1, ξ2 + π)mA
φ(ξ1, ξ2).

To compactify notation we suppress ξ1 and ξ2 and set

A
0,0
1,1 = mA

φ(ξ1, ξ2), A
π,0
1,1 = mA

φ(ξ1 + π, ξ2),

A
0,0
2,1 = mA

φ(2ξ1, ξ2), A
π,0
2,1 = mA

φ

(

2(ξ1 + π), ξ2

)

= A
0,0
2,1,

A
0,π
2,1 = mA

φ(2ξ1, ξ2 + π),

and so on, with B
0,0
1,1, B

π,0
1,1 , . . . similarly associated with mB

φ(ξ1, ξ2). The 3 × 4 filter

matrix for {φ, ψA, ψB} is the product of the diagonal matrix D = diag{1, e−iξ1 , e−iξ2}
and the 3 × 4 matrix

U =















A
0,0
1,2B

0,0
1,1 A

π,0
1,2 B

π,0
1,1 A

0,0
1,2B

0,π
1,1 A

π,0
1,2 B

π,pi
1,1

A
π,0
1,2 B

0,0
1,1 −A

0,0
1,2B

π,0
1,1 A

π,0
1,2 B

0,π
1,1 −A

0,0
1,2B

π,π
1,1

A
0,0
1,1B

0,π
2,1 A

π,0
1,1 B

0,π
2,1 −A

0,π
1,1 B

0,0
2,1 −A

π,π
1,1 B

0,0
2,1















.

The first row of U can be written in the alternate form

[

A
0,0
1,1B

0,0
2,1 A

π,0
1,1 B

0,0
2,1 A

0,π
1,1 B

0,π
2,1 A

π,π
1,1 B

0,π
2,1

]

in view of the intertwining relations

mAB
φ (ξ1, ξ2) = A

0,0
1,2B

0,0
1,1, = A

0,0
1,1B

0,0
2,1, etc.

We note that the unitarity almost everywhere of the filter matrices for {φ, ψA} and

{φ, ψB} implies that almost everywhere

|A0,0
1,1|2 + |Aπ,0

1,1 |2 = 1, |B0,0
1,1|2 + |B0,π

1,1 |2 = 1.
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Thus, the inner product of rows 1 and 2 of U is

A
0,0
1,2A

π,0
1,2 |B0,0

1,1|2 − A
π,0
1,2 A

0,0
1,2|Bπ,0

1,1 |2 + A
0,0
1,2A

π,0
1,2 |B0,π

1,1 |2 − A
π,0
1,2 A

0,0
1,2|Bπ,π

1,1 |2

= A
0,0
1,2A

π,0
1,2 (|B0,0

1,1|2 + |B0,π
1,1 |2) − A

π,0
1,2 A

0,0
1,2(|Bπ,0

1,1 |2 + |Bπ,π
1,1 |2) = 0.

Likewise, using the alternative form for row 1, the rows 1 and 3 of U are orthogo-

nal.

To recap, we have a 3 × 4 partial isometry translate filter matrix arising from the

T = AB filters for φ, ψA, ψB, and

mAB
ψA (ξ) = e−iξ1 mA

φ(ξ1 + π, 2ξ2)mB
φ(ξ1, ξ2) = e−iξ1 A

π,0
1,2 B

0,0
1,1,

mAB
ψB (ξ) = e−iξ2 mA

φ(ξ1, ξ2)mB
φ(2ξ1, ξ2 + π) = e−iξ2 A

0,0
1,1B

0,π
2,1 .

As we have remarked, ψA and ψB lie in V1,0 ⊖ V0,0 and V0,1 ⊖ V0,0 respectively.

This is a consequence of the commuting lattice property of a BMRA and it is for

this reason that rows 3 and 4 are orthogonal almost everywhere. Conversely this

necessary condition (together with the previous row orthogonality) is sufficient for

the commuting lattice property. Indeed, the orthogonality of V1,0 ⊖ V0,0 and V0,1 ⊖
V0,0 follows from this (via Lemma 2.7 yet again) and the commuting projection lattice

property follows. The row orthogonality is the following formula, which is written

in expanded form in the introduction.

A
π,0
1,2 A

0,0
1,1B

0,0
1,1B

0,π
2,1 − A

0,0
1,2A

π,0
1,1 B

π,0
1,1 B

0,π
2,1

− A
π,0
1,2 A

0,π
1,1 B

0,π
1,1 B

0,0
2,1 + A

0,0
1,2A

π,π
1,1 B

π,π
1,1 B

0,0
2,1 = 0.

Remark 5.2 We have shown that for a dyadic BMRA scaling function φ there are

two necessary conditions on the “marginal” filters mA
φ(ξ) and mB

φ(ξ), namely the in-

tertwining condition and the commuting lattice (or orthogonality) condition above.

In the final section we shall construct a function φ which satisfies these requirements

and which defines a nonseparable BMRA. Evidently this nonseparable scaling func-

tion construction, ab initio, is considerably more complicated than that of construct-

ing nonseparable wavelets, such as the Latin square wavelets, from a given (possibly

separable) BMRA.

Remark 5.3 It would be interesting to pursue a “Riesz theory” of general not-

necessarily-commuting lattices associated with scaling functions with, perhaps, Riesz

basis translates. Going somewhat in this direction, we remark that the following is

true (and the proof is rather delicate). For a “noncommuting-BMRA”, that is a pair

(φ,V) satisfying all the axioms for a BMRA except the commuting lattice axiom (v),

the subspace grid is necessarily a lattice.

6 Impossibility of Compact Support for Nonseparable BMRA Scaling
Functions

In this section we show that if the scaling function of a BMRA (φ, V) in L2(R) is

compactly supported then φ(x, y) is separable.
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Lemma 6.1 Let a(ξ1, ξ2), b(ξ1, ξ2) be non-zero trigonometric polynomials with fre-

quencies in Z
2. Suppose that α, β ≥ 2 are integers and for all ξ1, ξ2,

(19) a(ξ1, βξ2)b(ξ1, ξ2) = a(ξ1, ξ2)b(αξ1, ξ2).

Then a(ξ1, ξ2) = a(ξ1) and b(ξ1, ξ2) = b(ξ2) for some single variable trigonometric

polynomials a(ξ1), b(ξ2).

Proof Write

a(ξ1, ξ2) =

Ma
1

∑

j=La
1

Ma
2

∑

k=La
2

a j,kei( jξ1+kξ2)(20)

and

b(ξ1, ξ2) =

Mb
1

∑

j=Lb
1

Mb
2

∑

k=Lb
2

b j,kei( jξ1+kξ2),(21)

where Qa := [La
1, Ma

1] × [La
2, Ma

2] and Qb := [Lb
1, Mb

1] × [Lb
2, Mb

2] are the minimal

rectangles containing the support of the coefficients a j,k, b j,k respectively. Also define

a j,k, b j,k to be zero outside their respective rectangles. For given p, q the (p, q)-th

term of a(ξ1, βξ2)b(ξ1, ξ2) is

∞
∑

j=−∞

∞
∑

k=−∞
ap− j,kb j,q−βk,(22)

while the (p, q)-th term of a(ξ1, ξ2)b(αξ1, ξ2) is

∞
∑

j=−∞

∞
∑

k=−∞
ap−α j,kb j,q−k.(23)

Consider the (p, βMa
2 + Mb

2)-th coefficient of a(ξ1, βξ2)b(ξ1, ξ2). Since

ap− j,kb j,q−βk = ap− j,kb j,β(Ma
2−k)+Mb

2

this term is nonzero only if k ≤ Ma
2 and β(Ma

2 − k) ≤ 0, that is, only if k = Ma
2 . Thus

the Fourier coefficient is simply

(24)

∞
∑

j=−∞
ap− j,Ma

2
b j,Mb

2
.
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On the other hand, the (p, βMa
2 + Mb

2)-th term of a(ξ1, ξ2)b(αξ1, ξ2) is

(25)

∞
∑

k=−∞

∞
∑

j=−∞
ap−α j,kb j,βMa

2 +Mb
2−k.

There are nonzero terms in this sum only if k ≤ Ma
2 and βMa

2 + Mb
2 − k ≤ Mb

2 . Thus

all terms, and the Fourier coefficient, are zero if Ma
2 6= 0.

Assume, by way of contradiction that this is the case, so that, by the assumed

identity a(ξ1, ξ2)b(αξ1, ξ2) = a(ξ1, βξ2)b(ξ1, ξ2) we have

(26)

∞
∑

j=∞
ap− j,Ma

2
b j,Mb

2
= 0.

For the case p = Ma
1 + Mb

1 , equation (26) implies

(27) aMa
1 ,Ma

2
bMb

1 ,M
b
2
= 0,

hence at least one of aMa
1 ,M

a
2
, bMb

1 ,M
b
2

is zero. Define

za = max
j∈[La

1,M
a
1 ]
{ j : a j,Ma

2
6= 0},(28)

and

zb = max
j∈[Lb

1,M
b
1 ]
{ j : b j,Mb

2
6= 0}.(29)

Let p = za + zb. We may now rewrite (26) as

(30)

zb−1
∑

j=−∞
ap− j,Ma

2
b j,Mb

2
+ aza,Ma

1
bzb,M

b
1

+

∞
∑

j=zb+1

ap− j,Ma
2
b j,Mb

2
= 0.

For j > zb, b j,Mb
2

= 0 by the definition of zb. For j < zb, p − j > za so by the

definition of za, ap− j,Ma
2

= 0. It then follows from (30) either aza,Ma
2

or bzb,M
b
2

is zero,

which is a contradiction, and so we must have Ma
2 = 0.

An analogous argument to the one just given, beginning with consideration of

q = βLa
2 + Lb

2, gives L2 = 0 and so

(31) a(ξ1, ξ2) =

Ma
1

∑

j=La
1

a j,0ei jξ1 .

Exchanging roles of the variables it follows that b(ξ1, ξ2) is independent of ξ1, as

required.
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Theorem 6.2 Let (φ, V) be a BMRA with respect to dilation pair (A, B) with scaling

function φ ∈ L2(R
2) of compact support. Then φ is separable.

Proof Recall that for a BMRA (φ, V) with respect to dilation pair (A, B), for (ξ1, ξ2)

we have the fundamental intertwining relation

mA
φ(ξ1, βξ2)mB

φ(ξ1, ξ2) = mA
φ(ξ1, ξ2)mB

φ(αξ1, ξ2).

If φ has compact support, then φ̂(ξ) is non-vanishing almost everywhere. Further-

more φ(αξ1, ξ2) and φ(ξ1, βξ2) are finite linear combinations of Z
2-translates of φ

and so the filters mA
φ, mB

φ are trigonometric polynomials. By Lemma 6.1, mA
φ(ξ1, ξ2) =

f (ξ1) and mB
φ(ξ1, ξ2) = g(ξ2), where f and g are trigonometric polynomials in one

variable. It is routine to check that φ1(ξ1) := φ(ξ1, 0), with filter f (ξ1) gives rise to

a rank 1 univariate MRA with respect to dilation by α. Likewise φ2(ξ2) := φ(0, ξ2)

with filter g(ξ2) gives rise to an MRA with respect to dilation by β.

Using the filter relation (14) N + 1 times gives

φ̂(ξ1, ξ2) =

( N
∏

n=0

f (α−nξ1)
)

φ̂(α−nξ1, ξ2).

As φ is compactly supported, φ̂ is continuous. Furthermore f is a trigonometric

polynomial, hence Lipschitz, and so the product
∏N

n=0 f (α−nξ1) converges almost

uniformly, to F(ξ1), say. Hence

φ̂(ξ1, ξ2) = F(ξ1)φ̂(0, ξ2).(32)

Similarly

φ̂(ξ1, ξ2) = G(ξ2)φ̂(ξ1, 0),(33)

where G(ξ2) = limN→∞
∏N

n=0 g(β−nξ2). Hence we have F(ξ1) = φ̂(ξ1, 0), G(ξ2) =

φ̂(0, ξ2) almost everywhere and so φ̂(ξ1, ξ2) = φ̂1(ξ1)φ̂(ξ2) almost everywhere, as

required.

7 Higher Rank Meyer BMRAs

In this section we construct a family of bidyadic BMRAs which include purely non-

separable examples. The construction is a higher rank version of the well-known

method used by Meyer to construct wavelets belonging to the Schwartz class. In par-

ticular, the Fourier transform of the scaling function and the resulting wavelet have

compact support. In fact, the separable BMRAs obtained from the tensor product of

two rank-1 dyadic Meyer type MRAs are included here as a special case. For our con-

struction the scaling function and wavelet have discontinuous Fourier transforms;

thus our wavelets do not lie in the Schwartz class, and it is not immediately obvious

to what extent the decay may be improved.
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It is natural, by way of motivation and orientation, to recall the construction of

Meyer wavelets, which we now do.

Suppose that φ ∈ L2(R) is a unit vector with orthonormal translates which satis-

fies the scaling relation

φ(x/2) =

∑

k∈Z

akφ(x − k),

with convergence in L2(R), and is such that φ̂(ξ) is continuous at 0, with φ̂(0) 6= 0.

Then from φ and the scaling unitary for A = [2] one obtains an MRA (φ, V). This

fact is well known [17, Theorem 2.13].

A scaling function φ of this type may be constructed by specifying its Fourier

transform θ(ξ) = φ̂(ξ) to have the following three properties:

(i)
∑

l∈Z
|θ(ξ + 2πl)|2 =

1
2π , almost everywhere. This condition is equivalent to

the orthonormality of translates (see Lemma 2.6).

(ii) θ(2ξ) = ψ(ξ)θ(ξ), for some 2π-periodic function ψ(ξ). This is equivalent to

the scaling relation above.

(iii) θ(ξ) is continuous at 0 with θ(0) 6= 0.

To construct such a function θ(ξ) one may take the following route of Meyer and

construct first a nonnegative function θ on R which is symmetric on [−2π, 2π], with

θ(ξ)2 + θ(ξ − 2π)2
=

1

2π
on [0, 2π],

θ(ξ) =
1√
2π

for |ξ| <
2π

3
,

θ(ξ) = 0 for |ξ| >
4π

3
.

Thus (i) holds, with at most two nonzero summands for each ξ. Let f (ξ) be the 2π-

periodic extension of
√

2πθ(2ξ) for ξ ∈ [−π, π]. Then it follows that the scaling

relation (ii) holds. If in addition θ(ξ) is continuous at 0 with θ(0) 6= 0, then the

construction is complete.

It is completely elementary to construct a function θ on R with the properties

above. The main point in the construction is that, firstly, since θ(ξ) =
1√
2π

, for

|ξ| ≤ 2π
3

, we have the scaling relation

f (ξ)θ(ξ) =

√
2πθ(2ξ)

1√
2π

= θ(2ξ),

which holds in fact for the bigger range |ξ| ≤ π since θ(2ξ), and hence f (ξ), are zero

in the range 2π
3
≤ |ξ| ≤ π. Thus, there is no obstacle to periodically extending f (ξ)

to a function on R and maintaining the scaling relation (ii).

We are going to follow a similar procedure to construct a bidyadic scaling function

in L2(R
2) which determines a multiresolution for A =

[

2 0
0 1

]

, B =
[

1 0
0 2

]

. However,

while one can readily construct a nonnegative function θ(ξ, ξ2) on [−2π, 2π]2 with
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the properties

θ(ξ) =
1

2π
for ξ ∈

(

−2π

3
,

2π

3

) 2

θ(ξ) = 0 for ξ /∈
[

−4π

3
,

4π

3

] 2

and

θ(ξ)2 + θ
(

ξ − 2π(1, 0)
) 2

+ θ
(

ξ − 2π(0, 1)
) 2

+ θ
(

ξ − 2π(1, 1)
) 2

=
1

4π2
,

there is no guarantee that one can periodically extend the functions ψA(ξ), ψB(ξ)

defined on the support of θ by

ψA(ξ) =
θ(2ξ1, ξ2)

θ(ξ1, ξ2)
, ψB(ξ) =

θ(ξ1, 2ξ2)

θ(ξ1, ξ2)
.

Our first main task is to construct θ with extra structure so that this will be pos-

sible. This step is necessary because as we have seen in the general theory, if φ and

A, B provide a BMRA then, by virtue of the subspace inclusions, φ will have periodic

filter functions mA
φ(ξ) and mB

φ(ξ) satisfying the intertwining relation. In fact, we are

arguing here in the reverse direction. We construct periodic extensions ψA(ξ), ψB(ξ).

These will be the filters for φ, since

φ̂(Aξ) = θ(2ξ1, ξ2) = ψA(ξ)θ(ξ) = ψA(ξ)φ̂(ξ),

φ̂(Bξ) = θ(ξ1, 2ξ2) = ψB(ξ)θ(ξ) = ψB(ξ)φ̂(ξ).

The intertwining condition follows from the equalities

ψA(ξ1, 2ξ2)ψB(ξ1, ξ2) =

( θ(2ξ1, 2ξ2)

θ(ξ1, 2ξ2)

)( θ(ξ1, 2ξ2)

θ(ξ1, ξ2)

)

=
θ(2ξ)

θ(ξ)
=

( θ(2ξ1, ξ2)

θ(ξ1, ξ2)

)( θ(2ξ1, 2ξ2)

θ(2ξ1, ξ2)

)

= ψA(ξ1, ξ2)ψB(2ξ1, ξ2).

However, such a condition does not yet guarantee the orthogonality structure of the

commuting lattice property and we must construct θ with further structure to ensure

this. We do this in Theorem 7.2; we consider a function φ ∈ L2(R
2) and identify

sufficient conditions on its Fourier transform φ̂ that ensure that φ, A, B determine a

BMRA.

Note first the following lemma. This follows from the rank one case (which is a

basic fact; see [10], [17]), since every BMRA (φ, V) contains the MRA {Vi,i : i ∈ Z}.

Lemma 7.1 Let φ ∈ L2(R
d) be such that {φ(x−k) : k ∈ Z

d} is an orthonormal set in

L2(R
d) spanning the closed subspace V0,0. Let Vi, j = Di

AD
j
BV0,0. Then

⋂

(i, j)∈Z2 Vi, j =

{0}. If, moreover, φ̂(0) 6= 0 and φ̂(ξ) is continuous at 0, then
⋃

(i, j)∈Z2 Vi, j is dense

in L2(R
d).
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We introduce notation for four families of rectangles that lie in the big square

(− 4π
3

, 4π
3

)2.

For i, j, k ∈ {0, 1}, let

I(i, j,k) =

(

(−1)i2i+k π

3
, (−1)i2(1−i)+k π

3

)

×
(

(−1) j2 j+(1−k) π

3
, (−1) j2(1− j)+(1−k) π

3

)

,

and

J(i, j) =

(

−π

3
+ i(−1) jπ,

π

3
+ i(−1) jπ

)

×
(

−π

3
+ (1 − i)(−1) jπ,

π

3
+ (1 − i)(−1) jπ

)

.

These rectangles lie between the big square and the small square (− 2π
3

, 2π
3

)2. In par-

ticular I0,0,0 is the rectangle which is the image of the north-east square ( 2π
3

, 4π
3

)2

under A−1 and the rectangles Ii, j,k have similar determinations. Note also that J0,0 is

the closure of the union of the disjoint rectangles A−k
(

( 2π
3

, 4π
3

)2
)

, k = 1, 2, . . . ,.

Also for i, j = 0, 1 let

Ki, j =

( −4π

3
+ i(2π),

−2π

3
+ i(2π)

)

×
( −4π

3
+ j(2π),

−2π

3
+ j(2π)

)

,

Li, j =

( −2π

3
+ i(π),

−π

3
+ i(π)

)

×
( −2π

3
+ j(π),

−π

3
+ j(π)

)

.

Thus L0,0 lies in the south west corner of the small square.

In the following theorem, φ̂ is assumed to be supported on the big square. Condi-

tion (d) is a condition on the restriction of φ̂ to the four corner squares (translates of

( 2π
3

, 4π
3

)2. Conditions (e) and (f) show how φ̂ is determined on the border rectangles

by the values of φ̂ on pairs of corner squares. Condition (g) is an additional condition

on the restrictions to corner squares.

Despite the detail in conditions (a)–(g) the construction of examples of such func-

tions φ̂ is quite elementary. (Also there is further flexibility to arrange φ to be real-

valued.) Indeed one may define φ̂ on the four corner squares to comply with (d)

and (g), and then φ̂ is constructed (and uniquely determined) by the conditions (a),

(b), (f). For example, in Figure 3 we show the regions of constancy of a function φ̂
which takes constant values on the triangular subsets of the corner squares. Con-

dition (d) is elementary and (g) holds trivially with both products in (g) identically

zero. It is evident, from the triangularity of support in the corners, that φ̂ and hence

φ are not separable.

Theorem 7.2 Let φ ∈ L2(R
2) satisfy the following properties:

(a) For (ξ1, ξ2) ∈ R̂
2 we have 0 ≤ φ̂(ξ1, ξ2) ≤ 1

2π .

(b) For (ξ1, ξ2) ∈ (− 2π
3

, 2π
3

)2 we have φ̂(ξ1, ξ2) =
1

2π .

(c) For (ξ1, ξ2) /∈ (− 4π
3

, 4π
3

)2 we have φ̂(ξ1, ξ2) = 0.
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K(1,0)

− π
3

I(0,0,0)

I(0,1,0)I(1,1,0)

I(1,1,1)

I(1,0,1)

I(1,0,0)

− 4π
3

J(0,0)

J(0,1)

π
3

− 4π
3

− 2π
3

− π
3

2π
3

4π
3

− 2π
3

2π
3

π
3

4π
3

J(1,0)
J(1,1)

J(1,1) J(1,0)

J(0,0)

J(0,1)K(0,0)

K(0,1)

L(0,0)

L(0,1) L(1,1)

L(1,0)

I(0,0,1)

K(1,1)

I(0,1,1)

Figure 2: Border rectangles in the support of φ̂

(d) For (ξ1, ξ2) ∈ ( 2π
3

, 4π
3

)2,

∑

i, j∈{0,1}
|φ̂(ξ1 − 2πi, ξ2 − 2π j)|2 =

1

4π2
,

and the terms of this sum are nonzero.

(e) For (ξ1, ξ2) ∈ I(i, j,k) and i, j, k ∈ {0, 1},

φ̂(ξ1, ξ2)2
=

( 1

2π

) 2 θ1(ξ1, ξ2)2

θ1(ξ1, ξ2)2 + θ2(ξ1, ξ2)2
,

where

θ1(ξ1, ξ2) = φ̂(2(1−k)ξ1, 2kξ2),

θ2(ξ1, ξ2) = φ̂
(

2(1−k)ξ1 − 2π(−1)ik, 2kξ2 − 2π(−1) j(1 − k)
)
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(f) For (ξ1, ξ2) ∈ J(i, j) and i, j ∈ {0, 1},

φ̂(ξ1, ξ2) = φ̂(2(1−i)ξ1, 2iξ2).

(g) For (ξ1, ξ2) ∈ ( 2π
3

, 4π
3

)2,

φ̂(ξ1, ξ2)φ̂(ξ1 − 2π, ξ2 − 2π)2 − φ̂(ξ1 − 2π, ξ2)φ̂(ξ1, ξ2 − 2π)2
= 0.

Let V0,0 be the closed subspace spanned by {φ(ξ1 − k1, ξ2 − k2) : k1, k2 ∈ Z}, let

Vi, j = Di
AD

j
BV0,0 and let V = {Vi, j : i, j ∈ Z}. Then (φ, V) is a BMRA with respect

to the dilation pair A, B.

Proof We show that the conditions of Definition 2.3 hold. Let Vi, j be as above. Then

part (ii) of Definition 2.3 is automatically satisfied. By Lemma 7.1, parts (iii) and (iv)

of Definition 2.3 will follow from (vi). Let

S(ξ1, ξ2) =

∑

(k1,k2)∈Z2

|φ̂(ξ1 − 2πk1, ξ2 − 2πk2)|2,

then (iv) will follow from Lemma 2.6 if we show that S(ξ1, ξ2) =
1

4π2 almost ev-

erywhere. It is immediate from (b) and (c) of the theorem that this is the case

for (ξ1, ξ2) ∈ (−2π
3

, 2π
3

)2 + 2π(k1, k2). Likewise from (d) it follows for (ξ1, ξ2) ∈
( 2π

3
, 4π

3
)2 + 2π(k1, k2). For (ξ1, ξ2) ∈ I(0,0,0) = ( π

3
, 2π

3
) × ( 2π

3
, 4π

3
) we have, from (e),

S(ξ1, ξ2) = |φ̂(ξ1, ξ2)|2 + |φ̂(ξ2, ξ2 − 2π)|2

=
1

4π2

φ̂(2ξ1, ξ2)2

φ̂(2ξ1, ξ2)2 + φ̂(2ξ1, ξ2 − 2π)2

+
1

4π2

φ̂(2ξ1, ξ2 − 2π)2

φ̂(ξ1, ξ2)2 + φ̂(ξ1, ξ2 − 2π)2

=
1

4π2
,

as required. It is straightforward to carry out the preceding calculation for general

I(i, j,k), i, j, k ∈ {0, 1}, and so we obtain

S(ξ1, ξ2) =
1

4π2
for all (ξ1, ξ2) ∈

{

I(i, j,k) + 2Z
2 : i, j, k ∈ {0, 1}

}

.

Now let (ξ1, ξ2) ∈ (0, π
3

)× ( 2π
3

, 4π
3

). Then there exists r ∈ N such that π
3
≤ 2rξ1 ≤

2π
3

, and

S(ξ1, ξ2) = φ̂(2rξ1, ξ2)2 + φ̂(2rξ1, ξ2 − 2π)2
=

1

4π2
.

Again, this calculation may be repeated to show that S(ξ1, ξ2) =
1

4π2 for all (ξ1, ξ2) ∈
{ J(i, j) + 2πZ

2 : i, j ∈ Z}.
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Hence we have shown that S(ξ1, ξ2) =
1

4π2 almost everywhere, and so (φ, V) sat-

isfies (iii), (iv), and (vi) of Definition 2.3.

Next we show the BMRA inclusion property (i). From the definition of Vi, j it suf-

fices to show V−1,0 ⊂ V0,0 and V0,−1 ⊂ V0,0. We show the former. By Proposition 2.4

this is equivalent to the equation

φ̂(2ξ1, ξ2) = g(ξ1, ξ2)φ̂(ξ1, ξ2)

for some 2πZ
2 periodic function g with square summable restriction to 2πT

2. We

show such a function exists. The equality holds trivially regardless of the value taken

by g for (ξ1, ξ2) /∈ (−4π
3

, 4π
3

)2, hence if g may be constructed to be 2πZ
2 periodic on

this square then its periodic extension will satisfy the equation everywhere.

For (ξ1, ξ2) such that 2π
3

< |ξ1| < 4π
3

, we have φ̂(2ξ1, ξ2) = 0 but φ̂(ξ1, ξ2) 6= 0, so

that we must take g(ξ1, ξ2) = 0; also g(ξ1, ξ2) = g(ξ1 − 2π, ξ2) = 0 for (ξ1, ξ2) such

that 2π
3

< ξ1 < 4π
3

, so periodicity is preserved. For (ξ1, ξ2) ∈ (− 2π
3

, 2π
3

)2 we have

φ̂(ξ1, ξ2) =
1

2π , so we set g(ξ1, ξ2) = φ̂(2ξ1, ξ2). As

(

(

−2π

3
,

2π

3

) 2

+ 2π(k1, k2)

)

∩
(

−4π

3
,

4π

3

) 2

= ∅

if (k1, k2) 6= (0, 0), periodicity is maintained.

For the remaining (ξ1, ξ2) ∈ (−4π
3

, 4π
3

)2, both φ̂(ξ1, ξ2), and φ̂(2ξ1, ξ2) are nonzero

and we may define, as in the rank 1 case described earlier,

g(ξ1, ξ2) =
φ̂(2ξ1, ξ2)

φ̂(ξ1, ξ2)
.

Then for (ξ1, ξ2) ∈ I(0,0,0) we have

g(ξ1, ξ2) = φ̂(2ξ1, ξ2)

√

φ̂(2ξ1, ξ2)2 + φ̂(2ξ1, ξ2 − 2π)2

φ̂(2ξ1, ξ2)2

=

√

φ̂(2ξ1, ξ2)2 + φ̂(2ξ1, ξ2 − 2π)2

= φ̂(2ξ1, ξ2 − 2π)

√

√

√

√

√

(

φ̂
(

2ξ1, (ξ2 − 2π) + 2π
)

) 2

+
(

φ̂(2ξ1, ξ2 − 2π)
) 2

(

φ̂(2ξ1, ξ2 − 2π)
) 2

=
φ̂(2ξ1, ξ2 − 2π)

φ̂(ξ1, ξ2 − 2π)
= g(ξ1, ξ2 − 2π)

so that g is periodic on I(0,0,0) ∪ I(0,1,0). Again repeating a variation of this calculation,

or by appealing to symmetry, we obtain periodicity for points in all I(i, j,k).

It remains to consider (ξ1, ξ2) ∈ J(0,0) ∪ J(0,1). Periodicity of g for such (ξ1, ξ2)

follows from the recursive definition of φ̂(ξ1, ξ2) on this interval and the periodicity
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of g on Ii, j,k. Hence g is periodic and V−1,0 ⊂ V0,0. By symmetry it follows that

V0,−1 ⊂ V0,0, and the other inclusions in Definition 2.3 (i) are satisfied.

Finally we must show that the spaces Vi, j form a commuting lattice. It is sufficient

to show that (V0,1 ⊖ V0,0) ⊥ (V1,0 ⊖ V0,0). As we have discussed in Section 5.1, we

require

(34) e−i(ξ1+ξ2) f (ξ1, ξ2) = 0,

for almost every (ξ1, ξ2) ∈ R̂
2, where

f (ξ1, ξ2) = A
π,0
1,2 B

0,0
1,1B

0,π
2,1 A

0,0
1,1 − A

0,0
1,2B

π,0
1,1 B

0,π
2,1 A

π,0
1,1

+ A
π,0
1,2 B

0,π
1,1 B

0,0
2,1A

0,π
1,1 + A

0,0
1,2B

π,π
1,1 B

0,0
2,1A

π,π
1,1 .

The factors here arise from the filters mA
φ, mB

φ of φ. Note that we have determined

these filters as ratios, for example, mA
φ is given explicitly by the function g(ξ1, ξ2)

above.

Our aim is to show that the unwieldy expression above is equivalent to condi-

tion (g) for a function φ satisfying conditions (a)–(f). To that end we first observe

that if on some rectangle at least one term in each of the products present in f van-

ishes, then f vanishes identically in that rectangle.

For (ξ1, ξ2) ∈ {Ki, j}i, j∈{0,1}, A
π,0
1,2 = A

0,0
1,2 = B

0,π
2,1 = B

0,0
2,1 = 0, hence at least one

term in each of the products in f (ξ1, ξ2) is zero and so f (ξ1, ξ2) = 0 for almost every

(ξ1, ξ2) ∈ {Ki, j}i, j=0,1. For (ξ1, ξ2) such that 2π
3

< |ξ2| < 4π
3

, A
π,0
1,2 = A

0,0
1,2 = 0, and

so again for almost all such (ξ1, ξ2) we have f (ξ1, ξ2) = 0. Likewise, for (ξ1, ξ2) such

that 2π
3

< |ξ1| < 4π
3

, B
0,π
2,1 = B

0,0
2,1 = 0 and so f (ξ1, ξ2) = 0 for such (ξ1, ξ2). Hence we

may restrict our attention to (ξ1, ξ2) ∈ (− 2π
3

, 2π
3

)2. For (ξ1, ξ2) in the central square

(− π
3
, π

3
)2, A

π,0
1,1 = A

π,π
1,1 = B

0,π
1,1 = B

π,π
1,1 = A

π,0
1,2 = B

0,π
2,1 = 0, and hence f (ξ1, ξ2) = 0.

For (ξ1, ξ2) such that π
3

< |ξ2| < 2π
3

and |ξ1| < π
3

, A
π,0
1,2 = A

π,0
1,1 = A

π,π
1,1 = 0. Likewise

for (ξ1, ξ2) with π
3

< |ξ1| < 2π
3

and |ξ2| < π
3

, B
0,π
1,1 = B

π,π
1,1 = B

0,π
2,1 = 0. Hence f

vanishes for almost every (ξ1, ξ2) outside Li, j∈{0,1}.

Before proceeding, we observe that, for almost every (ξ1, ξ2) ∈ R
2

f (ξ1 + π, ξ2) = A
2π,0
1,2 B

π,0
1,1 B

π,π
2,1 A

π,0
1,1 − A

π,0
1,2 B

2π,0
1,1 B

π,π
2,1 A

2π,0
1,1

+ A
2π,0
1,2 B

π,π
1,1 B

π,0
2,1 A

π,π
1,1 + A

π,0
1,2 B

2π,π
1,1 B

π,0
2,1 A

2π,π
1,1

= A
0,0
1,2B

π,0
1,1 B

0,π
2,1 A

π,0
1,1 − A

π,0
1,2 B

0,0
1,1B

0,π
2,1 A

0,0
1,1

+ A
0,0
1,2B

π,π
1,1 B

0,0
2,1A

π,π
1,1 + A

π,0
1,2 B

0,π
1,1 B

0,0
2,1A

0,π
1,1

= − f (ξ1, ξ2),

where we have used the 2πZ
2 periodicity of the filters (implicitly in A

0,π
1,2 = A

0,0
1,2 and

B
π,0
2,1 = B

0,0
2,1). Similar calculations show that f (ξ1, ξ2 + π) = − f (ξ − π, ξ2) and

f (ξ1, ξ2) = f (ξ1 +π, ξ2 +π), that is, e−(ξ1+ξ2) f (ξ1, ξ2) is a πZ
2-periodic function, and

so it suffices to check that equation (34) holds on L0,0 for it to hold on all of the Li, j .
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For (ξ1, ξ2) ∈ L0,0, we have, by the definition of A
0,0
1,1;

A
0,0
1,1 =

φ̂(2ξ1, ξ2)

φ̂(ξ1, ξ2)
= 2πφ̂(2ξ1, ξ2)(35)

=
φ̂(2ξ1, 2ξ2)

√

φ̂(2ξ1, 2ξ2)2 + φ̂(2ξ1 + 2π, 2ξ2)2

.(36)

At this point we introduce the notation

(37) Φ
a,b

= φ̂(2ξ1 + a, 2ξ2 + b)2,

for a, b = 0, 2π so that

(38) A
0,0
1,1 =

√

Φ0,0

Φ0,0 + Φ2π,0
.

The other scaled filters also simplify. For example

A
π,0
1,2 = mA(ξ1 + π, 2ξ2) =

φ̂(2ξ1 + 2π, 2ξ2)

φ̂(ξ1 + π, 2ξ2)
=

√
Φ2π,0

√

Φ2π,0 + Φ2π,2π

Φ2π,0

=

√
Φ0,0 + Φ2π,2π.

In fact on L0,0 all the scaled filters in the formula for f (ξ1, ξ2) are expressible in terms

of φ̂ evaluated at the four points (2ξ1, 2ξ2) + (i2π, j2π), i, j ∈ {0, 1}. With the other

filters similarly expressed this leads to the equality

f (ξ1, ξ2) = Φ
0,0

√

(Φ2π,0 + Φ2π,2π)(Φ0,2π + Φ2π,2π)

(Φ0,0 + Φ2π,0)(Φ0,0 + Φ0,2π)

− Φ
2π,0

√

(Φ0,0 + Φ0,2π)(Φ0,2π + Φ2π,2π)

(Φ0,0 + Φ2π,0)(Φ2π,0 + Φ2π,2π)

− Φ
0,2π

√

(Φ2π,0 + Φ2π,2π)(Φ0,0 + Φ2π,0)

(Φ0,2π + Φ2π,2π)(Φ0,0 + Φ0,2π)

+ Φ
2π,2π

√

(Φ0,0 + Φ0,2π)(Φ0,0 + Φ2π,0)

(Φ0,2π + Φ2π,2π)(Φ2π,0 + Φ2π,2π)
.

We simplify the expression by taking out the factor

g(ξ1, ξ2) :=
(

√

(Φ0,0 + Φ0,2π)(Φ0,0 + Φ2π,0)(Φ0,2π + Φ2π,2π)(Φ2π,0 + Φ2π,2π)
)−1

.
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By the definition of φ, the function g is nonvanishing almost every on L0,0 and so

condition (34) holds if and only if

0 = Φ
0,0(Φ2π,0 + Φ

2π,2π)(Φ0,2π + Φ
2π,2π) − Φ

2π,0(Φ0,0 + Φ
0,2π)(Φ0,2π + Φ

2π,2π)

− Φ
0,2π(Φ2π,0 + Φ

2π,2π)(Φ0,0 + Φ
2π,0) + Φ

2π,2π(Φ0,0 + Φ
0,2π)(Φ0,0 + Φ

2π,0),

which, after some routine algebra, simplifies to

(Φ0,0
Φ

2π,2π − Φ
2π,0

Φ
0,2π)(Φ0,0 + Φ

2π,0 + Φ
0,2π + Φ

2π,2π) = 0.

We observe that

(Φ0,0 + Φ
2π,0 + Φ

0,2π + Φ
2π,2π) =

1

4π2
,

since on rewriting in terms of φ it coincides with condition (d). Thus (34) holds

almost everywhere if and only if, for almost every (ξ1, ξ2) ∈ K0,0,

(

φ̂(ξ1, ξ2)φ̂(ξ1 − 2π, ξ2 − 2π)
) 2 −

(

φ̂(ξ1 − 2π, ξ2)φ̂(ξ1, ξ2 − 2π)
) 2

= 0,

as required.

In summary, we have the following theorem.

Theorem 7.3 Let A =
[

2 0
0 1

]

, B =
[

1 0
0 2

]

. Then, with respect to dilation by (A, B),

there exists a nonseparable real valued wavelet ψ, associated with a nonseparable BMRA

(φ, V) in L2(R
2), for which ψ̂ has compact support.

Example 7.4 We finish with some further examples. Let {Ξi}i∈{0,1} be a partition

of {Ki, j}i, j∈{0,1} such that

(i) {Ξi}i∈{0,1} is invariant under the group G of translation by elements of 2πZ
2,

when {Ki, j}i, j∈{0,1} is viewed as a subset of R
2/4πZ

2,

(ii) if (ξ1, ξ2) ∈ Ξ0, then (−ξ1,−ξ2) ∈ Ξ1.

Observe that if φ̂ is chosen to satisfy conditions (d) and (g) of Theorem 6.2 on Ξ0,

then the function defined by φ̂(ξ1, ξ2) = φ̂(−ξ1,−ξ2) for (ξ1, ξ2) ∈ Ξ1 satisfies (d)

and (g) on the whole of K0,0. Consider the simplest case, with φ̂ constant on each

set Ki, j ∩ Ξ0 for i, j ∈ {0, 1}. Thus, set φ̂(ξ1, ξ2) = α for (ξ1, ξ2) ∈ (K0,0 ∩ Ξ0),

and φ̂(ξ1, ξ2) = δ for (ξ1, ξ2) ∈ (K1,1 ∩ Ξ0) for some constants α, δ > 0 satisfying

α2 + δ2 < 1
8π2 . Define φ̂(ξ1, ξ2) = β for (ξ1, ξ2) ∈ (K1,0 ∩ Ξ0), where

β =
1

2

( 1

4π2
− α2 − δ2

)

+
1

2

√

( 1

4π2
− α − δ

) 2

− 4αδ,

and φ̂(ξ1, ξ2) = γ for (ξ1, ξ2) ∈ (K0,1 ∩ Ξ0), where

γ =
1

4π2
− α − β − δ.
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We have now defined φ̂ on Ξ0 and we define φ̂(ξ1, ξ2) = φ̂(−ξ1,−ξ2) for (ξ1, ξ2) ∈
Ξ1, as suggested above. Thus we have defined φ̂ to satisfy (d), (a) and (g) of Theo-

rem 7.2, and so, as before, φ̂, and φ, are determined and yield a BMRA. Note that we

have φ̂(ξ1, ξ2) = φ̂(−ξ1,−ξ2), and so the scaling function is real valued.

Notice that φ̂ takes at most 4 values on each set I(i, j,k) and these values, together

with the values α, β, γ, δ and 1
2π are the only values taken by φ̂. In particular, φ̂ is a

finite linear combination of characteristic functions.
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