A. Katsuda Nagoya Math. J. Vol. 114 (1989), 173-174

CORRECTION TO "GROMOV'S CONVERGENCE THEOREM AND ITS APPLICATION" (NAGOYA MATH. J. VOL. 100 (1985), 11–48)

ATSUSHI KATSUDA

In the proof of Lemma 12.2, the following inequality (p. 43, line 11) is incorrect.

(A)
$$|Y_k(s)| \le |Y'_k(0)| s_{-d}(s) \le |Y_k(s_1)| \cdot \frac{s_{-d}(s)}{s_d(s_1)} = \frac{s_{-d}(s)}{s_d(s_1)} \le \frac{s_{-d}(\pi)}{s_d(\delta_3)}$$

This should be corrected as follows.

In the last of the sentence "Let $U_i(t)$ (resp. $\overline{U}_i(t)$)..." (p. 41, line 8), we add the phrase "so that $U_i(0)$ and $\overline{U}_i(0)$ are orthonormal basis of $T_m M$ and $T_p S^d$ respectively".

In p. 41, line $3\uparrow$, "..., so we may assume that $\{Y_i(s_i)\}$ and $\{\overline{Y}_i(s_i)\}$ are orthonormal." must be changed to "..., so we can replace the Jacobi fields Y_i , \overline{Y}_i by the other Jacobi fields \mathscr{Y}_i , $\overline{\mathscr{Y}}_i$ such that $\{\mathscr{Y}_i(s_1)\}$, $\{\overline{\mathscr{Y}}_i(s_1)\}$ are orthonormal basis of $T_m M$ and $T_p S^a$ respectively.". Moreover, after this sentence, Y_i , \overline{Y}_i must be changed to \mathscr{Y}_i , $\overline{\mathscr{Y}}_i$.

By p. 33, line 8, we have

(B)
$$|Y_i(s)| \le L = \frac{s_{-d}(\pi - \delta_3)}{\sin(\pi - \delta_3)}$$

Let \overline{p} be the antipodal point of p. Instead of the wrong inequality (A), we show that the following Claim (C).

CLAIM (C). If
$$\exp_p s_1 v \in D' - \overline{B}[\delta_4] - B_{\delta_3}(p) - B_{\delta_3}(\overline{p})$$
, then
 $|\mathscr{Y}_k(s)| \leq \frac{L^{d-1}}{(1-\delta_4)(\sin(\delta_3))} := L_1 \quad \text{for } \delta_3 \leq s \leq s_1.$

Proof of Claim (C). Under the assumption of Claim (C), we have

Received March 14, 1988.

ATSUSHI KATSUDA

$$egin{aligned} & \prod_{i=1}^{d-1} | \ Y_i(s_1) | \geq | \ Y_1(s_1) \wedge \ \cdots \ \wedge \ Y_{d-1}(s_1) | \ & \geq (1 - \delta_4) | \ \overline{Y}_1(s_1) \wedge \ \cdots \ \wedge \ \overline{Y}_{d-1}(s_1) | \ & \geq (1 - \delta_4) (\sin (\delta_3))^{d-1} \,. \end{aligned}$$

Combining with (B), we get

$$|Y_k(s_1)| \ge rac{(1-\delta_4)(\sin{(\delta_3)})^{d-1}}{\prod\limits_{i \ne k} |Y_i(s_1)|} \ge rac{(1-\delta_4)(\sin{(\delta_3)})^{d-1}}{L^{d-2}} := L_2 \,.$$

Thus, we conclude

$$|\mathscr{Y}_{k}(s)| \leq \frac{|Y_{k}(s)|}{|Y_{k}(s_{1})|} \leq \frac{L}{L_{2}} = \frac{L^{d-1}}{(1-\delta_{4})(\sin{(\delta_{3})})^{d-1}}$$
 q.e.d.

To correct the proof, it is enough to change the constant $(s_{-4}(\pi)/s_4(\delta_3))$ by L_1 after this inequality (A).

The author would like to thank K. Shiohama and Y. Otsu for pointing out the above error.

Department of Mathematics Okayama University Okayama 700, Japan

174