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One novel trend in reducing aero-engine noise is to utilize the silent flight mechanism
of owls by applying perforations on fan stator vanes. Consequently, the establishment of
relevant theoretical models is of particular interest. The current efforts made in this regard
are just targeting the features based on two-dimensional models without including the
three-dimensionality. In this paper, we present a three-dimensional solution for acoustic
scattering by annular perforated cascades, and the dipole source corresponding to the
unsteady pressure loading on the vanes is identified as the dominant sound source.
By the singularity method, the acoustic response is obtained with the soft boundary
condition applied on the vane surfaces. It is found that considerable noise reduction can be
achieved for rotor–stator interaction with a modest uniform porosity, and accordingly two
mechanisms are proposed to understand the effect of porosity on propagating sound. The
first is that the perforations allowing a normal velocity across the vane reduce the unsteady
loading induced by the incident disturbances. The second is that the three-dimensional
interactions among the dipole sources at different positions are also dampened by the soft
boundaries, thus the distribution of the unsteady pressure loading on the vanes will also
change significantly compared to hard-vane cases. Non-uniform distributions of porosity
are investigated further, indicating that perforations in the vane upstream area are more
effective in reducing propagating noise. Our method is fully three-dimensional and capable
of investigating non-uniform porosity, and thus is able to provide useful guidance for future
soft vane designs.
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1. Introduction

Aero-engine noise has been a critical issue for civil aviation, and a significant source for
both the tonal and broadband noise originates from the fan-stage rotor–stator interaction,
especially for modern high-bypass-ratio turbofan engines (Peake & Parry 2012; Guo et al.
2019). In contrast with the conventional ways, the current novel trends to reduce fan
noise may be categorized as two distinct methodologies: one is to fully make use of
the interactions between sound sources and their propagation in a lined duct (Wang &
Sun 2010; Zhang et al. 2019; Sun et al. 2022), offering a more real description to sound
attenuation by including the reactions of acoustic propagation on sound sources; the other
is to apply soft boundaries to stator vanes based on the application of the silent flight
mechanism of owls. It is noted that the latter aspect is receiving increasing attention for
both experimental and theoretical investigations. As a convenient way to introduce soft
boundaries, porosity was first applied to a single aerofoil and studied both numerically
(Tinetti 2001; Teruna et al. 2020, 2021) and experimentally (Geyer, Sarradj & Fritzsche
2010; Sarradj & Geyer 2014; Chaitanya et al. 2020). Such an idea was later extended to
cascade blades in order to reduce aero-engine noise (de Sousa 2011; Ocker et al. 2021).
In particular, a soft vane structure, which provides soft boundaries on fan stator vanes
with reasonably small aerodynamic loss, is proposed by NASA (Elliott, Woodward &
Podboy 2009; Jones et al. 2009; Jones & Howerton 2016) to reduce rotor–stator interaction
noise, and its experiments have shown promising results for potential applications in a
real aero-engine. However, few studies have been made to understand the underlying
mechanism of soft boundaries on cascade vanes, thus leading to little guidance for the
optimum distribution of perforations in soft vane designs.

On the other hand, by the inspiration of bionics, much work has been developed to
study the effects of porosity, particularly on aerofoil trailing edge noise reduction as a
direct application of the mechanism for an owl’s silent flight. Two-dimensional analytic
models were established for a semi-infinite poroelastic plate (Jaworski & Peake 2013) and
for a finite aerofoil with a poroelastic extension (Ayton 2016), and lately with chordwise
non-uniform porosity distributions (Ayton et al. 2021). Considerable noise reductions
were observed, and a thorough review of the investigations into the silent flight of
owls may be found in Jaworski & Peake (2020). Accordingly, with consideration of the
cascade effect and duct geometry, the porous extension design proposed for the reduction
of aerofoil broadband noise could in principle be transplanted on fan stator vanes to
reduce rotor–stator interaction noise. Recently, Baddoo & Ayton (2020) extended the
two-dimensional (2-D) cascade model of Glegg (1999) and Posson, Roger & Moreau
(2010) to first include soft boundaries corresponding to the permeable vanes. An analytic
solution was obtained and solved using the Wiener–Hopf technique with consideration
of multiple boundary conditions, and their discussions focused on the porosity-related
complex boundary condition. However, due to the limitations of the Wiener–Hopf method,
their current model could neither include non-uniform porosity distributions on vanes
nor account for the three-dimensionality in an annular cascade, which have already been
shown in hard-vane cases to be important for the generation of rotor–stator interaction
noise (Namba 1987). Therefore, it is of great interest to establish a fully three-dimensional
(3-D) model for the acoustic scattering by annular perforated cascades and to study the
effects of porosity under three-dimensionally interacting conditions. In addition, it is
expected that such a model can account for non-uniform distributions of porosity, and
that the soft boundary on vane surfaces is interchangeable with other locally reacting soft
boundary conditions.
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3-D effects of perforations on stator interaction noise

There are two major approaches to obtain the aeroacoustic response of a cascade: one is
the singularity method, which leads to an integral equation that can be solved numerically;
the other is based on the Wiener–Hopf technique, whose solution can even be expressed
as explicit results. For the singularity method, with the stators modelled as zero-thickness
rigid plates, solutions for 2-D cascades were first established in different ways for
unsteady aerodynamic and acoustic problems (Lane & Friedman 1958; Kaji & Okazaki
1970; Smith 1972). Fully 3-D lifting surface methods were then developed by Namba
(1972, 1977, 1987), Lordi & Homicz (1981) and Schulten (1984, 1997). In these 3-D
semi-analytic models, vanes are replaced by surface distributed dipole sources, namely
lifting surfaces. The effects of the swept and leaned vane design were studied further
(Schulten 1997; Zhang et al. 2017), and the vane stagger angle and camber effects could
also be included (Schulten 1984) if they are restricted to satisfy the small-perturbation
condition. These 3-D lifting surface methods were later verified by the numerical solutions
of the Euler equations (Prasad & Verdon 2002), whilst the semi-analytic models have
clear advantages in calculation speed. For the Wiener–Hopf technique (Noble 1958), it
was applied to investigate the transmission and reflection of acoustic waves in cascades
(Mani & Horvay 1970; Koch 1971, 1983) at an early stage, and now it has been developed
to analyse more physical problems related to the cascade aerodynamics and aeroacoustics
(Peake 1992; Glegg 1999; Evers & Peake 2002). The Wiener–Hopf technique is more
suitable for 2-D analysis. However, to better understand the significant 3-D effects in
annular cascades, it is necessary to adopt a fully 3-D acoustic scattering model instead
of a strip theory based on 2-D solutions. The non-uniform distributions of the incident
disturbance, the annular geometry of the cascade with duct wall reflections, and more
importantly the 3-D interactions between different radial positions on vanes, should all be
included and considered.

Additionally, a precise description of the surface impedance corresponding to the
perforated vanes is also a necessity. One convenient way is to use the analytical methods
based on the vortex-sound theory by introducing the concept of the Rayleigh conductivity,
as summarized in Howe (1998). Further numerical approaches include the application of
the discrete vortex methods (Jing & Sun 2000; Dai, Jing & Sun 2014; Hong et al. 2020) and
direct numerical simulations based on the Navier–Stokes equations (Tam et al. 2010). The
common mechanism elucidated by these models is the sound-vortex energy conversion
caused by the mean velocity through orifices under the incidence of acoustic waves, and
this conversion should also affect the acoustic scattering process of perforated cascades
under vortical disturbances. In this paper, however, we focus on the general effects of
porosity and use designated values of the Rayleigh conductivity for the soft boundary
condition on vanes for simplicity.

The present work develops a 3-D lifting surface theory for annular cascades with soft
boundary vanes. Our model provides the relationship between the inlet disturbance field
and the perforated vane unsteady loading, which is the dominant sound source. It is
discovered that the porosity not only reduces the absolute magnitude of the responding
unsteady loading on vanes, but also mitigates the interactions between different positions
on vanes. In particular, it dampens the coupling among the unsteady loading at different
radial positions. This can greatly change the resulting distribution of the unsteady pressure
loading, and one interesting phenomenon is that with a radially constant-amplitude but
phase-varying incident rotor wake, the radial phase variation of the responding unsteady
loading on the perforated vanes is more similar to that of the incident wake compared to
a hard-vane acoustic response. The amplitude distribution of the unsteady loading is also
radially more uniform. In other words, the so-called 3-D effects in a hard-vane cascade
acoustic scattering process are partly weakened by the porosity applied on the vanes. This
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Figure 1. Schematic of an annular perforated cascade.

may shed some light on the future application of porosity to utilize such characteristics to
achieve better noise reduction results. Moreover, a prediction of the turbulence–cascade
interaction broadband noise (as in Zhang, Wang & Sun 2015) using the acoustic response
function established in this paper may better exploit such effects.

The rest of the paper is organized as follows. We establish our model using the
singularity method in § 2, with discussions on source terms illustrating that the primary
sound source is the unsteady pressure loading on the vanes. The numerical solution process
of the governing integral equation is then given in § 3. In § 4, we validate our solution in
two ways, by comparing with both the previous hard-vane lifting surface theory (Namba &
Schulten 2000) and the 2-D soft-vane model based on the Wiener–Hopf method (Baddoo
& Ayton 2020). Solutions with both uniform and non-uniform porosity applied on the
vanes are presented in § 5, demonstrating the important 3-D effects in the annular cascade.
Finally, we give our conclusions in § 6. The code used for the solutions of this research is
available at https://github.com/t2206/3DporoCascade.

2. Modelling with singularity method

Consider an annular stator cascade of V vanes inside an infinite hard-walled duct with
a uniform subsonic axial mean flow of inviscid perfect gas, as shown in figure 1. A
cylindrical coordinate is taken, and the axial coordinate is denoted as z. Coordinates with
superscript ′ represent the coordinates of the source point, and the coordinates without ′
are those of the observation point. The cascade is of hub radius Rh, tip radius Rd, and
chord length b, with a background flow of axial velocity U and no swirling flow. Porosity
is applied to create soft boundaries on the vanes, and the stator vanes are assumed to
be identical and evenly spaced zero-thickness perforated plates with zero stagger angle
and no camber. The viscosity effects near the vanes are retained with the unsteady Kutta
condition applied in the form of zero pressure jump at the trailing edge and an integrable
pressure singularity at the leading edge. Incident waves could be either acoustic or vortical,
assuming that the disturbances are small and isentropic. In this specific paper, however,
we focus on the interaction noise with incident vortical disturbances. The trailing edge
self-noise is neglected here.

The rotor–stator interaction noise can be divided into two kinds: one is the interaction
between the viscous wake of the rotor and the solid boundaries of the stator; the other is
induced by the potential field of the rotor interacting with the stator. However, the potential
field usually decays quickly in a turbofan-engine fan stage, therefore the rotor–stator
interaction noise is dominated by the interactions caused by the viscous wake (Peake &
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Figure 2. The steady component of the rotor wake velocity and its Fourier expansion over the circumferential
direction. The Fourier components then interact with the stator cascade to produce tonal rotor–stator interaction
noise.

Parry 2012). In rotor-fixed cylindrical coordinates, the viscous wake of the rotor can be
separated into a steady flow component and an unsteady component. In the steady flow
field, each rotor blade will induce a velocity deficit behind it, and an evenly distributed
rotor cascade of B identical blades will create a velocity field with periodicity 2π/B in the
circumferential direction, as illustrated in figure 2. Subsequently, the steady component of
the rotor wake can be expanded into a Fourier’s series of ϕ in the form

∞∑
s=0

Ws(r, z) exp(isBϕ), (2.1)

where Ws(r, z) are the Fourier coefficients, and ϕ is the circumferential coordinate; s is the
order of the series. If we transform the velocity field to the stator-fixed coordinate system,
then the sth-order component will become

Ws(r, z) exp(isB(ϕ −Ωt)), (2.2)

where Ω is the angular rotation speed of the rotor. This corresponds to a fluctuating
upwash velocity on vane surfaces at frequency ωs = sBΩ , which will correspondingly
induce pressure loading on vanes at the same frequency. Accordingly, the s = 0 part of the
velocity Fourier series is responsible for the steady loading on stator vanes, while the other
terms will interact with the stator cascade to create tonal noise at s times the blade passing
frequency. Hereafter, we consider the tonal interaction noise as an illustration of the noise
reduction mechanism by perforations. As for the unsteady component of the rotor wake
that is mostly related to the turbulences in the wake, it is responsible for the broadband
rotor–stator interaction noise and might be investigated in future studies.

2.1. Discussion on sound source terms
We derived our solution of the scattered field based on the generalized Lighthill’s equation
by Goldstein (1976, pp. 189–192), which extends Lighthill’s acoustic analogy (Lighthill
1952) to include the effects of solid boundaries using the generalized Green’s formula
(a generalization of the usual Green’s formula to wave equations in a uniformly moving
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medium). We choose G to be the Green’s function for the infinite rigid wall annular duct
with a uniform subsonic axial background flow, satisfying the wave equation in a medium
of uniform axial velocity U and isentropic speed of sound denoted as c0, i.e.

∇2G − 1
c2

0

D2
0

Dτ 2 G = −δ(t − τ) δ(x − y), (2.3)

and a boundary condition of zero normal derivative at duct walls,

∂G
∂n

∣∣∣∣
x at duct walls

= 0. (2.4)

It is further required that G satisfies the causality condition

G = D0

Dτ
G = 0 for t < τ. (2.5)

In our case, the material derivative is

D0

Dτ
≡ ∂

∂τ
+ U

∂

∂z′ , (2.6)

where t is the observation time, and τ is the time of source; x, y are respectively the
spatial coordinate vectors of the observation point and the source point, and z′ is the axial
coordinate in the source system.

In the cylindrical coordinate system illustrated in figure 1, the Green’s function for a
subsonic axial flow in a hard-walled annular duct can be expressed as (Sun & Wang 2021,
pp. 92–98)

G(r, ϕ, z, t | r′, ϕ′, z′, τ ) = 1
4π2

+∞∑
m=−∞

+∞∑
n=1

φm(kmnr) φm(kmnr′)
2π

exp(imϕ) exp(−imϕ′)

×
∫ +∞

−∞

∫ +∞

−∞
exp(iα(z − z′))

β2α2 + 2Mk0α − k2
0 + k2

mn
exp(−iω(t − τ)) dα dω, (2.7)

where φm(kmnr) is the normalized radial eigenfunction of the hard-walled annular duct
(see Sun & Wang 2021, pp. 95–98) satisfying the orthogonality as∫ Rd

Rh

φm(kmjr) φm(kmlr) r dr = δjl, (2.8)

and kmn is the corresponding eigenvalue of the circumferential mode m and radial mode
n (in our notation, n = 1, 2, 3, . . .). Accordingly, duct modes are denoted as (m, n). Here,
M = U/c0 is the Mach number of the background flow, and k0 = ω/c0 is the wavenumber
of sound; β is taken to be the Prandtl–Glauert transformation factor as β = √

1 − M2. By
selecting this Green’s function, the hard-walled duct modes will be included explicitly in
the expression of the scattered pressure field, thus simplifying the following aeroacoustic
analysis. The boundaries of the vanes are not included in the derivation of the Green’s
function, and will be considered later when establishing the integral equation using the
singularity method.
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Figure 3. Illustration of (a) sources on the perforated plate and (b) the Rayleigh conductivity model.

We then ignore the insignificant quadrupole volume source term (Goldstein 1976,
pp. 220–222) in the generalized Lighthill’s equation to obtain the scattered pressure field
in the form

p′(x, t) =
∫ T

−T

∫
S(τ )

∂G
∂yi

fi dS(y) dτ +
∫ T

−T

∫
S(τ )

ρ0V ′
n

D0G
Dτ

dS(y) dτ, T → ∞. (2.9)

The first integration term corresponds to the dipole sources, and the second integration
term corresponds to the monopoles, as illustrated in 3(a). Here, vector fi represents the
surface force acting on the fluid by the boundaries, and V ′

n is the normal velocity of the
boundary surfaces relative to the mean flow, with ρ0 being the density of the background
flow. Also, ±T are the upper and lower limits of the time integral, with T taken to be
infinity when Green’s formula is used. Additionally, the surface integral

∫
S(τ )( · ) dS(y)

needs to be performed only on the vane surfaces, since in a hard-walled duct, both terms
at the duct surfaces can be eliminated due to the inviscid flow assumption, the selection
of the Green’s function and the impenetrable boundary condition at duct walls (Goldstein
1976, pp. 192–195).

With the sth-order component of the rotor wake disturbance at frequency ωs as the
incident wave, the induced pressure jump across the vane can correspondingly be written
as

ΔPs exp(−iωsτ) = (P(+)s − P(−)s ) exp(−iωsτ). (2.10)

Here, we use the superscripts (±) to distinguish the two surfaces of the stator vane, and
we define the upper side (+) as the surface with the larger circumferential coordinate, and
the lower side (−) as the surface with the smaller circumferential coordinate. The only
dominant source of the surface force f (±)i is the pressure perturbation P(±)s exp(−iωsτ)
on the upper side and the lower side of the vanes, because the shear stress is ignorable
on the vane surfaces when the Reynolds numbers are high, as in practical aero-engines.
The direction of the surface force f (±)i then becomes normal to the vane surfaces. Unlike
impermeable stator vanes on which V ′

n is restricted to be zero, on porous vanes the
unsteady loading ΔPs further produces fluctuating volume fluxes through perforations.
These unsteady fluxes lead to a non-zero V ′

n on both sides of the vane that may contribute
to the monopole source term. However, under the assumption of zero-thickness vanes, the
continuity across the apertures on the plate ensures that the normal velocities on the upper
side (V ′(+)

n ) and the lower side (V ′(−)
n ) of the vanes are of the same absolute value but

with opposite signs. Consequently, if h is the thickness of the vane, then the monopoles
distributed on the two sides will form dipole-like structures with negligible dipole strength
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(|V ′(±)
n | h) of O(h), since on each side the monopole strength |V ′(±)

n | is finite, and the
distance between the two poles goes to zero as h → 0.

This indicates that for a thin-vane perforated cascade model with which we are
concerned, the monopole source terms from the two sides of the vane are in opposite
phase with the same magnitude, and will cancel each other out, with only the
dipole-source-induced pressure fluctuations left in the far-field areas. Therefore, we can
neglect the second term in (2.9) and deal with only the first term, i.e. the dipole source
term. This is the same as in a hard-vane cascade fluid–structure interaction problem, and
it greatly simplifies the expression for the scattered pressure field p′(x, t). The stator vanes
can correspondingly be modelled as dipole distributions using the acoustic analogy, and
be replaced by lifting surfaces similar to a hard-vane situation (Namba 1987; Zhang et al.
2017), only with different boundary conditions on vanes. Again with the zero-thickness
assumption, the integration of fi on the two sides leaves only the pressure difference ΔPs
(Zhang et al. 2017). Consequently, the induced pressure field reduces to

p′(x, t) =
∫ T

−T

∫
S(τ )

∂G
∂n′ ΔPs(y) exp(−iωsτ) dS(y) dτ, T → ∞, (2.11)

where ∂/∂n′ represents the derivative normal to the vane surfaces, and the integration
domain of the surface integral

∫
S(τ )( · ) dS(y) reduces to one plane at each vane’s position

instead of two planes at both the upper and lower sides. Additionally, in our model, where
radially placed straight vanes are considered in a cylindrical coordinate system, the normal
derivative ∂/∂n′ is replaced by ∂/(r′ ∂ϕ′).

2.2. Boundary conditions
We have inherently applied a solid boundary condition on duct walls in the selection
of the Green’s function and a non-reflecting boundary condition on the upstream and
downstream cross-sections by studying cascades in an infinite duct, as mentioned before.
For the soft boundary vanes, we consider perforated plates with a rigid structure and evenly
spaced circular apertures, which are modelled with the Rayleigh conductivity KR. The
porosity on the plates allows fluctuating volume fluxes across the apertures, resulting in a
space-averaged normal velocity vR = ṽR exp(−iωsτ) at the cascade vane surfaces, which
is the physical velocity permitted by the soft boundary condition. The induced perturbation
velocity normal to the vane surfaces is its circumferential component v′

ϕ = ṽ′
ϕ exp(−iωsτ)

for the radially placed straight vanes that we studied. Let vd = ṽd exp(−iωsτ) denote the
normal disturbance velocity of the incident waves. Then on the vane surfaces, the porous
plate boundary condition should be satisfied in the form

vR = v′
ϕ + vd, (2.12)

or, after dropping the time factor, as

ṽR = ṽ′
ϕ + ṽd. (2.13)

This boundary condition, along with the simplified generalized Lighthill’s equation (2.11),
is in principle sufficient to solve the problem with a given incident disturbance velocity vd
if vR and v′

ϕ are both related to the unknown dipole source on vanes, namely the unsteady
pressure loading ΔPs. The detailed expression of v′

ϕ will be derived in § 2.3, and the
relation of vR to ΔPs is discussed as follows. Note that (2.13) reduces to the impermeable
boundary condition of a hard vane when ṽR = 0.
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3-D effects of perforations on stator interaction noise

For the rigid perforated vanes that we discussed, we first drop the fluctuating time factor
exp(−iωsτ). Then the relation between the induced volume flux Q through a single orifice
from the lower (−) to the upper (+) side, and the fluctuating pressure difference ΔPs
across the vane, may be described with the definition of the Rayleigh conductivity (Howe
1998, § 5.3.1)

KR = iωsρ0Q

P(+)s − P(−)s
= iωsρ0Q

ΔPs
, (2.14)

as illustrated in figure 3(b). The Rayleigh conductivity is KR = 2R for an ideal inviscid
flow through circular apertures of radius R on a zero-thickness plate, with no tangential
or bias mean flow. In more general situations such as that with a mean background flow,
however, KR is usually complex, and it is convenient to use its non-dimensionalized form

KR = 2R(ΓR(ω)− iΔR(ω)), (2.15)

where ΓR(ω) andΔR(ω) are real-valued functions of the frequencyω, andΔR(ω) is related
to the dissipation of the acoustic energy. Explicit expressions for KR are unattainable for
porous plates with tangential background flow (Howe 1998, pp. 371–375), therefore we use
designated values of conductivity to study the effects of soft-vane cascades for simplicity
and to focus on the essential mechanisms of the noise reduction by porosity.

On the other hand, in order to extend the concept of the Rayleigh conductivity to
the entire perforated vane with multiple apertures, the short-range interactions between
orifices should be negligible, and this could be achieved by setting the distance d between
orifices much larger than the aperture radius R. For evenly spaced perforations, this is
usually ensured by restricting the fractional open area αH to be less than 0.04 (Bendali
et al. 2013). Another requirement to ensure a local reaction of the pressure jump is that the
spacing d should be less than half the sound wavelength λ (Bendali et al. 2013), which is
achievable with a small-radius aperture design. Additionally, the orifice radius R should be
small compared to the wavelength λ such that the pressure difference ΔPs can be regarded
as constant over the aperture. Note that in our case, where incident vortical disturbances are
considered, the wavelength should be regarded as that of the scattered acoustic waves, i.e.
λ = 2πc0/ωs. With all the conditions satisfied, we may further average the volume fluxes
Q in (2.14) using the fractional open area αH to smear them over the entire perforated plate
surface, as was done in Hughes & Dowling (1990) and Baddoo & Ayton (2020), and then
obtain the fluctuating flow velocity normal to the vane surfaces as

ṽR = αH

πR2 Q = αH

πR2
−iKR

ωsρ0
ΔPs, (2.16)

since by continuity, vR should be equal to the averaged flux velocity induced by the
unsteady pressure difference.

By referring to the definition of the acoustic impedance p/v = zρ0c0, we may further
define an equivalent normalized impedance for the Rayleigh conductivity boundary
condition with the fluctuation angular frequency ωs, expressed as

zeqv = ΔPs

−ṽR

1
ρ0c0

= −iπRωs

2αH(ΓR(ωs)− iΔR(ωs))c0
. (2.17)

2.3. Implementation of the lifting surface method
Hereafter, we assume that the incident disturbance has a circumferential periodicity and
that its sth-order component wave has σ periods over one circle. (For the steady rotor
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wakes introduced before, we have σ = sB.) The resulting pressure loading on a cascade of
V identical evenly spaced vanes should consequently be in similar forms with a constant
inter-blade phase angle difference 2πσ/V between the vanes. Label the vanes from 1 to V
as ϕ′ increases, and set ΔPs(r′, z′, ϕ′) exp(−iωsτ) to be the unsteady loading distribution
over the first vane. If the rotor is rotating in the positive direction of the circumferential
coordinate, then the pressure jump on the kth stator vane would be

ΔPs(r′, z′, ϕ′) exp
(

i(k − 1)
2πσ

V

)
exp(−iωsτ), (2.18)

and the corresponding circumferential coordinate on the kth vane is ϕ′ + 2π(k − 1)/V .
Substituting the Green’s function (2.7) into (2.11), and using the above periodicity of the
unsteady loading on different vanes, we then have

p′(x, t) = −i
8π3

+∞∑
m=−∞

+∞∑
n=1

φm(kmnr) exp(imϕ)
∫

S1(τ )

V∑
k=1

m
r′ φm(kmnr′) exp(−imϕ′)

× exp
(

i
2π

V
(k − 1)(σ − m)

)

× ΔPs(r′, z′, ϕ′)
∫ +∞

−∞
exp(−iωt)

∫ +∞

−∞
exp(−iα(z − z′))

β2 + 2Mk0α − k2
0 + k2

mn

×
∫ T

−T
exp(−iωsτ) exp(iωτ) dτ dα dω dS(y), T → ∞, (2.19)

where the surface integral domain reduces to that of the first vane, S1(τ ). From the
relations

V∑
k=1

exp
[

i
2π

V
(k − 1)(σ − m)

]
=

{
V, m = σ − qV,
0, m /= σ − qV, q = 0,±1,±2, . . . ,

lim
T→∞

∫ T

−T
exp(−i(ωs − ω)τ) dτ = 2πδ(ωs − ω),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(2.20)

and using the residue theorem for the infinite integration of the axial wave number α with
the causality condition applied, the scattered sound field is related to the unsteady loading
ΔPs on the first (k = 1) vane by

p′(x, t) = V exp(−iωst)
4π

+∞∑
q=−∞

+∞∑
n=1

φm(kmnr)

× exp(imϕ)
∫

S1(τ )

m
κnmr′ φm(kmnr′) exp(−imϕ′)ΔPs(r′, z′, ϕ′)

× {
H(z − z′) exp(iα1(z − z′))

+ H(z′ − z) exp(iα2(z − z′))
}

dS(y), m = σ − qV. (2.21)

Here, δ( · ) represents the Dirac delta function, and H( · ) denotes the Heaviside function.
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3-D effects of perforations on stator interaction noise

In addition, the linearized circumferential inviscid momentum equation can be
expressed as

∂v′
ϕ

∂t
+ U

∂v′
ϕ

∂z
= − 1

ρ0

∂p′

r ∂ϕ
, (2.22)

where the circumferential perturbation velocity v′
ϕ induced by the lifting surfaces also has

a time dependence exp(−iωst) such that ∂v′
ϕ/∂t = −iωsv

′
ϕ . We first substitute (2.19) into

(2.22), then (2.22) reduces to a first-order ordinary differential equation that can be solved
to obtain the induced upwash velocity

v′
ϕ(x, t) = −V exp(−iωst)

2πρ0U

+∞∑
q=−∞

+∞∑
n=1

m
r
φm(kmnr) exp(imϕ)

×
∫

S1(τ )

m
r′ φm(kmnr′) exp(−imϕ′)ΔPs(r′, z′, ϕ′)

× {
Q1 exp(iα1(z − z′))+ Q2 exp(iα2(z − z′))

+ Q3 exp(iα3(z − z′))
}

dS(y), m = σ − qV, (2.23)

following procedures similar to those in the derivation of (2.21). The integration constant
that occurs when solving (2.22) is taken to be zero, assuming that there is no disturbance
velocity at positions far upstream (Namba 1972). Here and above,

Q1 = H(z − z′)Mβ2

2κnm(Mκnm − k0)
, Q2 = − H(z′ − z)Mβ2

2κnm(Mκnm + k0)
, Q3 = H(z − z′)M2

k2
0 + M2k2

mn
,

(2.24a–c)

α1 = −Mk0 + κnm

β2 , α2 = −Mk0 − κnm

β2 , α3 = ωs

U
= k0

M
, (2.25a–c)

and

κnm =

⎧⎪⎨
⎪⎩

√
k2

0 − β2k2
mn, if k2

0 > β2k2
mn,

i
√
β2k2

mn − k2
0, if k2

0 < β2k2
mn.

(2.26)

The exp(iα1(z − z′)) and exp(iα2(z − z′)) terms correspond to the upstream and
downstream propagating pressure waves, and the exp(iα3(z − z′)) term corresponds to the
vortical waves convected downstream. The expressions for the scattered pressure field of
the perforated cascade and its induced velocity, (2.21) and (2.23), are the same as in a
hard-vane cascade lifting surface method (Zhang et al. 2017). This is because the source
characteristics of a perforated cascade and a hard-vane cascade are also the same, with
only dipoles distributed on the vane surfaces, as we have proved in § 2.1.

So far we have obtained the expressions for both vR and v′
ϕ with an unknown unsteady

loading ΔPs exp(−iωst). However, to solve numerically for ΔPs, truncation of the infinite
series for m and n in (2.23) is unavoidable, and the error of truncating m is difficult
to control due to the non-uniform convergence of the Fourier series (Namba 1972). To
better restrict the truncation errors and evaluate the singularities in the original equation,
we apply the finite radial mode expansion method proposed by Namba (1972, 1987) to
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approximate the original radial eigenfunctions with a limited set of L functions ψ(∞)
k (r):

φm(kmnr) ≈
L∑

k=1

BBm
n,k ψ

(∞)
k (r). (2.27)

Detailed definitions and the corresponding applications of ψ(∞)
k (r) and the expansion

coefficients BBm
n,k are shown in Appendix A, and the accuracy of this approximation

can be improved to any level by simply increasing L (Namba 1972). Accordingly, after
representing all the radial eigenfunctions with ψ(∞)

k (r) and further separating the singular
parts from the regular parts of the kernel function, (2.23) can be rewritten as

ṽ′
ϕ =

∫
S1(τ )

ΔPs(r′, z′, ϕ′)K(r, r′, z, z′, ϕ, ϕ′) dS(y), (2.28)

where the final expression for the kernel function K is described in (A7)–(A10).
Substituting (2.28) and (2.16) into the boundary condition (2.13), we obtain one integration
equation that describes the relation between the unknown ΔPs and the input ṽd. With a
given distribution of the normal velocity induced by the incident wave, we are able to solve
the unsteady pressure loading ΔPs, and then obtain the scattered sound field p′(x, t) using
(2.21).

According to Morfey’s definition of acoustic intensity in an irrotational uniform-entropy
flow (Morfey 1971), the axial sound energy flux inside a background flow of axial velocity
U could be formulated as

Iz = 〈p′uz〉 + U

ρ0c2
0

〈p′2〉 + U2

c2
0

〈p′uz〉 + ρ0 U〈u2
z 〉, (2.29)

where uz is the axial component of the perturbation velocity, which can be solved by
resorting to the momentum equation along with (2.21), and 〈 · 〉 denotes the time average
over one period. Integrating Iz over the annular-duct cross-section, we obtain the sound
energy power propagating downstream (W+) and upstream (W−) for a cut-on mode (m, n)
as

W± = π |P±
mn|2

ρ0c0

(1 − M2)2k0κnm

(∓k0 + Mκnm)2
. (2.30)

For cut-off modes, there is no axial acoustic energy flux. With the solution of the unsteady
loading ΔPs, the cut-on sound mode coefficients P±

mn can be calculated from (2.21) for
observation points at axial positions downstream and upstream of the cascade. Further
averaging the sound power over the cross-section, we obtain the mean acoustic intensity
Ī± = W±/π(R2

d − R2
h) and the corresponding sound power level (SPL) as

LI,± = 10 log(Ī±/I0), I0 = 10−12 W m−2. (2.31a,b)

3. Numerical solution with soft boundary conditions

With all the analytic expressions above, the integral equation (2.13) still needs to be solved
numerically to obtain practical solutions. For radially placed straight vanes with zero swept
or leaned angle, we may simply set the circumferential coordinate on the first vane as
ϕ′ = 0, and the unsteady loading distribution will degenerate to a function of just radial
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3-D effects of perforations on stator interaction noise

and axial coordinates, denoted as ΔPs(r′, z′). We then expand ΔPs using the finite radial
basis functions ψ(∞)

l (r) as

ΔPs(r′, z′) =
J∑

j′=1

ψ
(∞)

j′ (r′)

[
A1j′ cot

(
ξ ′

2

)
+

I∑
i′=2

Ai′j′ sin((i′ − 1)ξ ′)

]
, (3.1)

with I axial terms and J radial terms. As is usual, J is taken to be the same as L, and the
infinite series for n in the kernel function is also truncated at L terms. The Kutta condition
is applied inherently here, with Glauert’s transformation made to the axial coordinates for
both the source position z′ and the observation location z, as is usual in a thin aerofoil
theory, i.e.

z′ = b
2
(1 − cos ξ ′), z = b

2
(1 − cos ξ), z′, z ∈ [0, b], ξ ′, ξ ∈ [0,π]. (3.2a,b)

Substituting (3.1) into (2.28), the integration with respect to the radial coordinate r′ could
be performed analytically using the orthogonality of ψ(∞)

l (r) (Namba 1987), with only the
axial coordinate left in the surface integration to be integrated numerically.

Applying a collocation method to solve for the integral equation (2.13), we choose I × J
evenly spaced control points on the vane at coordinates (ξi, rj), i = 1, . . . , I, j = 1, . . . , J,
and the incident wave disturbance velocities at these positions are denoted as vd,ij. With
axial evenly spaced discrete source points similar to those in Whitehead (1962), we could
then perform numerical integration in the ξ ′ domain using the trapezoidal rule to finally
obtain the discrete form of (2.28) as

M ij,i′j′Ai′j′ = ṽ′
ϕ,ij. (3.3)

Note that to calculate the Cauchy principal value of the integration of the singular kernel
function K, the control points must be placed at the middle of two source points. Therefore,
the axial coordinates for the control points ξ and the source points ξ ′ are selected as

ξi = (2i − 1)π
2I

, ξ ′
i = (i′ − 1)π

I′ , i = 1, . . . , I, i′ = 1, . . . , I′ + 1, (3.4a,b)

where I′ = (2η + 1)I, and η = 3. Here, η is an adjustable integer coefficient. With an η
greater than 1, the source points are denser than the control points such that the surface
integration can be calculated with higher accuracy without increasing the number of
control points.

We then replace ΔPs in (2.16) with the expansion (3.1). Due to the local reaction of the
pressure fluctuations, it is simple to express the soft-wall averaged fluctuating velocity ṽR
at the discrete control points (ξi, rj) in a matrix form as

MR
ij,i′j′Ai′j′ = ṽR,ij, (3.5)

where the coefficient matrix MR
ij,i′j′ is related to the local perforation properties αH , R and

KR. This additional matrix MR
ij,i′j′ is the key difference between the solution of a perforated

cascade and a hard-vane cascade. In our case, where the soft boundary on vanes is reacting
locally to the pressure fluctuations, the expansion (3.1) turns out to be very convenient for
the construction of this coefficient matrix.
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Finally, we substitute (3.3) and (3.5) into (2.13) and rearrange to construct a system
of linear equations with the coefficient vector Ai′j′ as the unknown and the incident
disturbance velocity vector ṽd,ij as the right-hand side, in the form

(M ij,i′j′ − MR
ij,i′j′)Ai′j′ = −ṽd,ij. (3.6)

By solving this linear system, we can obtain the unsteady loading distribution on vanes for
any given incident wave, and from ΔPs(r′, z′), we can further estimate the scattered sound
field and its propagating acoustic energy.

It should be noted that in the above procedures, the boundary condition of the soft-vane
cascade could be replaced by different kinds of conditions with minimum effort, such
as those discussed in Baddoo & Ayton (2020), provided that the pressure fluctuation is
reacting locally with the soft vanes and that an explicit form of the relation ṽR = f (ΔPs)
is obtainable. Additionally, our method is not limited to uniform boundary conditions
over the entire plate, as we can take the locally averaged value of the porosity parameter
αHKR/(πR2) (also used in Ayton et al. 2021) at each control point. That enables us to
investigate the effects of partially perforated plates or uneven distributions of porosity on
vanes, as long as all vanes in the cascade are of identical porosity distribution.

4. Validations

To validate our method, we compare our solutions with the results from two special cases:
the 3-D hard-vane lifting surface model and the 2-D perforated cascade model.

4.1. Comparison with the 3-D hard-vane model
First, we set the Rayleigh conductivity KR to be zero, and our model degenerates to a
hard-vane annular cascade. Comparison is made between our solutions and the results
from the benchmark problem of the third computational aeroacoustics workshop (Namba
& Schulten 2000). The duct geometry parameters are Rh = 0.5 m, Rd = 1.0 m and b =
2πRd/V in our dimensional model, with the rotor blade number B = 16 and the stator vane
number V = 24. As shown at the beginning of § 2, this corresponds to a circumferential
periodicity number σ = sB and a disturbance frequency ωs = sBΩ on the stator for the
sth-order component of the rotor wake, where Ω is the angular velocity of rotor rotation.

Accordingly, the incident vortical wave is defined as

vd(r, ϕ, z, t) = ws exp
(

isB
[
Ωz
U

+ ϕ − θ(r)−Ωt
])
, θ(r) = −2πq

B

[
r − Rh

Rd − Rh

]
,

(4.1a,b)
where θ(r) is the radial dependence function with an arbitrary real-valued
wake-periodicity or wake-obliquity parameter q, and the wake velocity amplitude is given
as a constant along the radial direction with ws = 0.1U. A positive q represents that
the wake at the stator root is ahead of that at the tip, as in typical fan designs. Results
are obtained for the first-order vortical wave (s = 1), and the spanwise non-dimensional
unsteady loading distributions ΔCp = ΔPs(r′)/(0.5ρ0U2) at different chord positions z′/b
are compared, as illustrated in figure 4. Radial wake periodicity parameter q is set to
be q = 3, which corresponds to an average of 3 wakes intersecting each stator vane at
the leading edge. The background flow Mach number is M = 0.5, the sound speed is
c0 = 340.0 m s−1, the flow density is ρ0 = 1.225 kg m−3, and the rotor tip Mach number
is set to be Mt = ΩRd/c0 = 0.783, which correspondingly decides the shaft speed Ω .
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Figure 4. Comparison of the unsteady loading at different axial positions for the q = 3 case with the results
in the benchmark problem (Namba & Schulten 2000). The non-dimensional loading is taken as ΔCp =
ΔPs(r′)/(0.5ρ0U2), and the leading edge position of the vane is set to be z′ = 0.

For axial positions close to the leading edge, our results agree well with both hard-vane
lifting surface methods. At the positions further downstream, minor differences arise as
the absolute value of the unsteady loading decreases, but overall our method matches well
with the benchmark results.

We then solved for a porous 3-D annular cascade to demonstrate the convergence of
our collocation method, and the results are shown in figure 5. As the number of the
collocation control points I × J increases, the propagating sound power approaches a
final value, and the variation between each case decreases rapidly. By increasing the
number of the collocation points, our result should converge to the physical solution of the
problem.

4.2. Comparison with the 2-D soft-vane model
Now we compare our results with the 2-D perforated cascade model of uniform porosity
exploiting the Wiener–Hopf method (Baddoo & Ayton 2020). Using zero stager angle as
input, we calculate 2-D results with Baddoo’s code published online at https://github.com/
baddoo/complex-cascade-scattering, and with the hub–tip ratio set to be 0.99, our annular
cascade model approximates a quasi-2-D situation. The non-dimensional parameter CII of
the case II boundary condition in the 2-D model (Baddoo & Ayton 2020) corresponds to
−2iUαHKR/πR2ωs in our 3-D method. Results with different porosity parameters CII are
compared in figures 6 and figure 7. With an inter-vane phase difference angle 3π/4 in the
2-D model, we correspondingly choose the blade numbers to be B = 18 and V = 48 in our
3-D solution, and solve for the first-order vortical wave incidence as in (4.1a,b) with s = 1
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Figure 5. Convergence of the calculated propagating sound power W± with increasing control points for a
perforated cascade.
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Figure 6. Comparison of the unsteady lift coefficient CL = ∫ b
0 ΔPs(z′) dz′/(πbρ0Uw1) with varying porosity

and frequency. Solutions of the 2-D model (Baddoo & Ayton 2020) are illustrated by the dashed lines, and
results of the present 3-D model are represented by the solid lines.

and q = 0, where other input parameters are

Rh = 0.99 m, Rd = 1.0 m, b = 0.21708 m, M = 0.3,

c0 = 340.0 m s−1 and ρ0 = 1.225 kg m−3.

}
(4.2a–f )

The disturbance frequency is ωsb/2U ∈ (0, 30], and the incident vortical wave amplitude
is w1 = 0.1U for both cases. Solutions from the 2-D model and our 3-D method show good
agreement, with only slight differences in the magnitudes of the downstream propagating
acoustic energy.

5. Results

In the following subsections, we investigate the solutions of a pressure-free gust impinging
on a porous cascade, which corresponds to a rotor–stator interaction set-up, and evaluate
the resulting propagating noise. We restrict our study to the first-order incident vortical
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Figure 7. Comparison of the non-dimensionalised sound power propagating downstream for (a) the first and
(b) the second acoustic mode with varying porosity and frequency, which corresponds to figure 11 in Baddoo
& Ayton (2020). In the 3-D model, the acoustic modes correspond to annular duct modes (18, 1) and (−30, 1),
and the acoustic power defined in (2.30) is non-dimensionalized by dividing ρ0w2

1Uπ(R2
d − R2

h)/2.

wave as defined in (4.1a,b) with s = 1, and choose the same geometry set-ups as in § 4.1,
with hub–tip ratio 0.5, blade numbers B = 16, V = 24, and other input parameters

M = 0.5, c0 = 340.0 m s−1, ρ0 = 1.225 kg m−3,

Mt = 0.783 and w1 = 0.1U.

}
(5.1a–e)

5.1. Cascade response with uniform porosity on vanes
In this subsection, we study stator vanes with uniform perforations. To illustrate the effects
of porosity, we select the aperture parameters common in practice as R = 0.001 m and
αH = 0.02, and set the real part of the conductivity ΓR to be zero. The imaginary part of
the Rayleigh conductivityΔR corresponds to both the permeability and the acoustic energy
dissipation effect of the small apertures on plates (Howe 1998, pp. 360–361), thus being
able to provide a general view of porosity’s influence over a hard-vane situation. Porosity
here is assumed to be uniform over the entire vane, and the total sound power levels of
the upstream and downstream cut-on modes are calculated with varying ΔR or q. For the
first-order wake as s = 1 and ωs = BΩ , there are two cut-on modes, being (−8, 1) and
(−8, 2), respectively, and sound energy is summed for the two modes before calculating
LI,±. As shown in figure 8, for all three situations with different wake obliquity parameter
q, both the upstream and downstream noise levels decrease as porosity increases, and
a considerable noise reduction above 6 dB is achieved with a modest porosity at ΔR =
1.0. This conductivity value corresponds to a non-dimensional coefficient (see Baddoo &
Ayton 2020)

CII = −2iUαHKR

πR2ωs
≈ 0.1016, (5.2)

or the equivalent normalized impedance that we defined earlier in (2.17) as

zeqv = ΔPs

−ṽR

1
ρ0c0

≈ 0.9839, (5.3)

which should be a rather achievable porosity in practical usage.
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Figure 8. Propagating sound power levels for tilted (q = 3, q = 1.5) and radially uniform (q = 0) incident
wakes at different Rayleigh conductivities ΔR, with constant ΓR = 0. We choose the first-order vortical wake
incidence and the Mt = 0.783 set-up as in the benchmark problem (Namba & Schulten 2000).
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Figure 9. Comparison of sound power levels propagating upstream and downstream at different wake obliquity
parameters q. The hard-vane situation and the ΔR = 1.0 case are shown, with the first-order vortical wake
incidence and the Mt = 0.783 set-up as in the benchmark problem (Namba & Schulten 2000).

Further illustration of the sound power level for varying wake obliquity with and without
porosity is shown in figure 9. It is shown that the tilted incident wake leads to lower
rotor–stator interaction noise for porous cascades in a way similar to a hard-vane cascade
case, or it may be equally interpreted as porosity being effective in noise reduction for all
obliquity parameter q. Moreover, an interesting result occurs in the upstream noise power
level where local minima exist. Whilst reducing propagating noise, the soft boundary
condition seems to rescale the curves towards q = 0 such that the positions of the local
minima of the sound power level move to a smaller |q|.

With the discussions on the source terms in § 2.1, we have clearly identified that for thin
perforated vanes, the dipole source is still the dominant term in rotor–stator interaction
noise. In our method, where porous vanes are modelled as lifting surfaces distributed
with dipole sources, it is a direct deduction that porosity affects the scattered sound
wave by altering the pressure jump over the vane surfaces, and that the acoustic modes
in hard-walled duct sections are not influenced by the complex boundary conditions on
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O

ṽ′
ϕ –ṽR

–ṽd

arg(KR) + 90°

Figure 10. Sketch of the effect of porosity on the resulting pressure loading in a simplified locally reacting
model. Both the amplitude and phase of the unsteady loading ΔPs are changed from the hard-vane situation
depending on the argument and magnitude of the Rayleigh conductivity KR, as ṽR ∝ −iKR ΔPs.

the cascade vanes. This agrees with the conclusions in the 2-D model by Baddoo & Ayton
(2020), and the key factor of noise generation turns out to be the unsteady pressure loading
on the vanes in both the 2-D and 3-D models.

Here, we may propose two principal mechanisms by which porosity affects the unsteady
loading distribution on vanes and ultimately the propagating noise in a 3-D annular
cascade. The first mechanism is that the permeability allowing normal velocity vR across
vane directly dampens the resulting unsteady loading ΔPs induced by the incident
disturbance velocity vd. The second mechanism is that the porosity also reduces the
interactions among the unsteady loading at different positions and on different vanes, thus
attenuating the 3-D coupling among the dipole sources ΔPs across the entire vane. These
interactions among dipole sources are transmitted by the acoustic and vortical waves as
shown by the kernel function in (A7), with the pressure wave part K2 influencing v′

ϕ in
the upstream areas, and the pressure wave part K1 along with the vortical wave part K3
influencing v′

ϕ in the downstream areas. Consequently, no place on the vanes is reacting
locally to the incident perturbation velocity vd, and the final distribution of the unsteady
loading is strongly coupled.

5.1.1. Attenuation of pressure loading reacting to incident disturbances
Considering a simplified situation where both v′

ϕ and ṽR are dependent on the local
pressure jump ΔPs, a brief interpretation of the first mechanism can be obtained using the
soft boundary normal velocity relation (2.13) as illustrated in figure 10. For hard vanes,
the incident velocity ṽd must be fully offset by the dipole-source acoustic velocity ṽ′

ϕ

to maintain the no-flux boundary condition, inducing a pressure jump ΔPs across the
plate. For perforated vanes, however, the permeability of the perforations described by the
Rayleigh conductivity KR allows the existence of a normal velocity ṽR that is proportional
to ΔPs. The argument difference between the complex velocity values ṽ′

ϕ and −ṽR, which
is caused by the time lag described in the Rayleigh conductivity, is less than 90◦ with a
positive ΔR. Under such a case, the magnitude of ṽ′

ϕ and consequently the amplitude of
ΔPs is lessened by the existence of porosity-related velocity −ṽR.

For the previous results where ΔR > 0 and ΓR = 0, arg(KR) equals −π/2 and the
soft-vane boundary condition further becomes |ṽd| = |ṽR| + |ṽ′

ϕ| since −ṽR and ṽ′
ϕ are

in the same orientation, as illustrated in figure 3(a). Consequently, with porosity on
vanes, the incident normal velocity could be balanced by an unsteady loading of much
smaller magnitude, which produces a lower noise level. If we assume further that v′

ϕ is
also in linear proportion to ΔPs, then we may obtain a relation between the resulting
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Figure 11. Spanwise distribution of the unsteady lift coefficient |CL(r′)|, where the lift coefficient for the 3-D
cascade vane is defined as CL(r′) = ∫ b

0 ΔPs(r′, z′) dz′/(πbρ0Uw1). Solid lines illustrate CL distributions for
hard-vane cases, whilst dashed lines represent the results for porous soft-vane cascades.

pressure jump amplitude and the porosity strength as ΔPs ∝ 1/(KR + c) with a constant
c. This leads to a −log(KR + c) kind of decrease of SPL with increasing ΔR, and a
similar trend is observed in figure 8, showing that as ΔR increases, less noise power
level reduction is achieved with the same ΔR increment. In a real 3-D annular cascade
situation, however, complex interactions exist among the unsteady loading at different
radial positions. In addition, the restriction of the Kutta condition will further complicate
the relations between the resulting pressure jump distribution ΔPs and the conductivity
of the porosity. Therefore, the above discussions could be treated only as a qualitative
analysis. As illustrated in figure 11, on a 3-D annular cascade, the porosity dampens
the absolute magnitude as well as the spanwise variation of the lift coefficient for both
radially tilted (q = 1.5, q = 3.0) and uniform (q = 0) wakes. The most profound effect
is in the q = 1.5 case, where both the absolute value and the spanwise variation of the
lift coefficient are the largest. This indicates that porosity does reduce the amplitude of
the unsteady loading ΔPs, and shows that the soft boundary can further affect the radial
distribution of ΔPs.

5.1.2. Attenuation of 3-D interactions among different positions
The second mechanism that attenuates the 3-D interactions is accomplished by
permeability in a way similar to the previous mechanism, since the excessive pressure
jump reacting to the normal velocity induced by the dipole sources elsewhere should
be dampened simultaneously by the porosity. With conductivity ΔR = 1.0, ΓR = 0 and
incident wake q = 3, the unsteady loading distributions ΔPs(r′, z′) for hard-vane and fully
perforated cascades are compared in figure 12 for further insight into this mechanism.

With the implementation of the unsteady Kutta condition, there is usually a
large-amplitude area for the unsteady loading near the leading edge. The unsteady pressure
loading �Ps in this area is a major source for propagating noise, and it also significantly
influences the downstream loading distribution through the pressure and vortical waves
corresponding to the K1 and K3 parts of the kernel function in (2.28), due to its
dominant magnitude. Another consequence of its large amplitude is that there exist strong
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Figure 12. Comparison of the amplitude distribution of the unsteady loading ΔPs on (a) the hard vane and
(b) the fully perforated vane; and the phase distribution of the unsteady loading ΔPs on (c) the hard vane and
(d) the fully perforated vane, for q = 3. Here, ΔPs is non-dimensionalized by ρ0U2/2, and the phase angle is
restricted to (−π,π].

interactions within this area. As we may see in figures 12(a,c), for an incident wake with a
radially uniform amplitude but a varying phase, the phase pattern of the reacting pressure
loading ΔPs on the hard vanes almost immediately deviates from that of the incident
wake velocity, which is illustrated in figure 13(a). Besides, the pressure amplitudes at
different radial positions also decrease with various gradients from the leading edge to
further downstream, forming a highly non-uniform radial distribution that can also be seen
in figure 11. This is incompatible with a radially local reaction pressure pattern that can be
calculated by a strip theory, as the strength of the incident wake is radially identical. All
these phenomena should be greatly attributed to the interactions between different radial
positions, which are fully 3-D.

However, with the porosity dampening these interactions, we observe a dramatic change
in the phase and amplitude pattern of the unsteady loading in figures 12(b) and 12(d).
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Figure 13. Phase distributions of (a) the incident wake normal velocity ṽd and (b) the unsteady loading ΔPs,
on a fully perforated vane with αH = 0.1 in the q = 3 case. The phase angle is restricted to (−π,π].

The pressure phase is more organized, with a distribution similar to that of the incident
wake over the entire leading half-plane. The phase distribution result of a more perforated
case with αH = 0.1 (i.e. five times the original fractional open area) is given in
figure 13(b), and the distribution is almost identical to that of the incident velocity in
figure 13(a). Besides, the pressure amplitude is also more uniform in the radial orientation
with porosity applied, and forms a more comparable axial decrease, eliminating the
two amplitude minima near the leading edge in the hard-vane case. Accordingly, we
may conclude that one major consequence of the second mechanism, which reduces
the 3-D interactions between the dipole sources at different radial positions, is that the
final distribution of ΔPs will be more dominated by a pressure loading reacting locally
to the incident disturbance. A rather uniform amplitude distribution of ΔPs caused by
a constant-amplitude incident wake, combined with a phase variation along the radial
direction introduced by a wake obliquity having q nodes from hub to tip, can greatly reduce
the propagating noise induced by the entire cascade because the spanwise phase variation
of the unsteady loading scatters sound energy into high-order radial modes that are cut-off,
leading to less propagating acoustic energy (Namba 1977). In other words, it creates more
intervention between dipole sources at different radial positions, which diminishes the
propagating acoustic energy by the cut-off mechanism. Not only could this effect directly
decrease the propagating noise power by reducing the sound energy radiation from the
large-amplitude area near the leading edge, it also attenuates the influence from this area
to the downstream areas, and further reduces the excessive unsteady pressure loading at
the trailing half-plane caused by its coupling with the leading edge large-amplitude area.
An obvious result, which is shown in figure 12, is that the amplitude peak around the
mid-chord and mid-span position is considerably attenuated by the implementation of
porosity. In a modern turbofan aero-engine fan stage, the rotor wake is usually highly
skewed such that the radial phase variation of the incident vortical wave is large. From
what we have observed, with porosity applied, the 3-D interactions between different
radial positions can be dampened to create a stronger phase variation in the unsteady
loading on the stator vanes. This may further help with the rotor–stator interaction noise
reduction.
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3-D effects of perforations on stator interaction noise

We should emphasize that the two mechanisms discussed above are inherently coupled,
as the porosity dampens the unsteady loading responding to the incident disturbance and to
the interactions among the dipole sources at the same time. During the solution process,
the two mechanisms are inseparable, and it is for the convenience of analysis that we
discuss these two mechanisms separately. It is also noted that although the coupling of
the unsteady loading response across the vanes is dampened by the porosity, the 3-D
interactions among the perforated cascade still exist, such that our model is not equal
to a quasi-3-D strip theory description.

Similar mechanisms are discovered in the study of permeable surfaces on an aerofoil
(Teruna et al. 2020) created by the porous material insertion, where the reduced source
intensity and the destructive interference between sound sources at different positions
induced by permeability are proposed to be responsible for the noise reduction of
broadband trailing edge noise. On the other hand, as illustrated in figure 12, the amplitude
reduction of the unsteady loading ΔPs for a perforated cascade is basically non-uniform in
the radial direction, even though the porosity is distributed uniformly. This indicates that
for tilted incident wakes, the decrease of the unsteady pressure loading on a perforated
vane, and ultimately the alteration of the propagating rotor–stator interaction noise, can
be more attributed to the reduction of the interactions across different radial positions in a
3-D annular cascade.

5.2. Cascade response with non-uniform porosity on vanes
The fully porous design may induce a significant aerodynamic penalty for a stator cascade
with great loss in efficiency, and a partially porous design could be the solution by which
the impact of the porosity on the steady aerodynamic performance can be alleviated. In
addition, there may also be structural limitations that restrict the application of porosity
over the entire vane in practical situations. Therefore, as illustrated in figure 14, here
we investigate two sets of porosity distribution, and only half of the vane is applied
with the same porosity as previously discussed, which is R = 0.001 m, αH = 0.02 with
conductivity ΔR = 1.0 and ΓR = 0. The first set varies the perforations along the axial
position, where the porosity distributed at the upstream half plane is defined as case
C, at the mid-chord half-plane as case D, and at the downstream half-plane as case E.
Two additional cases with linear varying porosity (αH) along axial positions are further
investigated, in which the largest αH is set to be 0.02 such that the averaged fractional open
area is the same as other partially perforated cases. Correspondingly, the porosity is axially
decreasing in case F and increasing in case G. The second set varies the porous part along
the radial position, where the porosity distributed at the tip half-span is defined as case F,
at the mid-span half-plane as case G, and at the hub half-span as case H. For comparison,
cases A and B correspond to a hard-vane cascade and a fully porous situation, respectively.
The noise reduction effects of these cases are calculated for two different wake obliquity
parameters q = 0 and q = 3, and the propagating noise power level results are summarized
in tables 1 and 2. These serve as a preliminary qualitative discussion on the potential
effects of non-uniform application of perforations, and more practical results concerning
the authentic flow field in a real aero-engine may be discovered in future studies.

In general, noise reduction can be achieved with partially perforated designs, but their
SPL decrease is not as prominent as a fully porous design. For different axial distributions,
porosity is most effective in the upstream half-plane as there exists a previously discussed
large-amplitude area for the unsteady loading, and dampening the pressure jump in this
area can further affect the downstream loading through 3-D interactions. For case C,
both upstream and downstream propagating noise is greatly attenuated, and the pressure
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Figure 14. Illustration of the porosity distribution set-up from case C to case H.

Case A Case B Case H Case I Case J

q = 0 Hard vane Fully perforated Tip half Mid-span half Hub half
Upstream SPL (dB) 154.46 146.27 153.00 149.76 149.59
Difference from case A (dB) — −8.19 −1.46 −4.70 −4.87
Downstream SPL (dB) 160.22 153.15 157.97 157.10 157.95
Difference from case A (dB) — −7.07 −2.25 −3.12 −2.27
q = 3
Upstream SPL (dB) 135.70 129.71 135.21 138.70 134.34
Difference from case A (dB) — −5.99 −0.49 3.00 −1.36
Downstream SPL (dB) 144.96 134.31 140.85 142.05 142.17
Difference from case A (dB) — −10.65 −4.11 −2.91 −2.79

Table 1. Noise reduction for different radially non-uniform porosity distributions.

Case C Case D Case E Case F Case G

q = 0 Leading Mid-chord Trailing Linear Linear
half half half decreasing increasing

Upstream SPL (dB) 148.85 154.04 151.28 148.05 151.02
Difference from case A (dB) −5.61 −0.42 −3.18 −6.41 −3.44
Downstream SPL (dB) 155.81 156.53 159.39 155.26 158.09
Difference from case A (dB) −4.41 −3.69 −0.83 −4.96 −2.13
q = 3
Upstream SPL (dB) 132.47 137.82 135.28 131.40 134.27
Difference from case A (dB) −3.23 2.12 −0.42 −4.29 −1.46
Downstream SPL (dB) 137.76 139.07 142.71 137.04 140.45
Difference from case A (dB) −7.20 −5.89 −2.25 −7.92 −4.51

Table 2. Noise reduction for different axially non-uniform porosity distributions.

jump distribution results with a tilted incident wake (q = 3) are shown in figure 15. On
the upstream half-vane, the amplitude of the unsteady loading is radially more uniform
compared to the hard-vane result of case A in figure 12(a), and the phase distribution is
also similar to that of the incident wake, as we might expect from the two aforementioned
mechanisms. The porosity is not applied on the downstream half-vane, thus the pressure
amplitude is less attenuated there. However, for case C, the discontinuity of porosity at
the axial soft–hard junction may cause additional scattering of sound, which might be
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Figure 15. Amplitude (a) and phase (b) distribution of the unsteady loading ΔPs for q = 3, case C. Here,
ΔPs is non-dimensionalized by ρ0U2/2, and the phase angle is restricted to (−π,π].

attributed to the abnormal increase of the amplitude of the unsteady loading in figure 15(a)
near the junction. A continuous porosity distribution should eliminate such effects, and
accordingly case F does achieve a slightly better noise reduction, although the averaged
αH is the same as in case C, and its open area on the leading half vane is actually
smaller.

In the second set, where porosity is radially varying, the noise reduction depends largely
on the unsteady loading distribution in the hard-vane case. For an incident wake with
q = 0, there is an amplitude bump near the trailing edge in the hub and mid-span radial
ranges, as illustrated in figure 16(a), and an obvious reduction in the propagating noise
level is observed in cases G and H since the unsteady loading is dampened by the two
mechanisms that we discussed before. However, for a tilted wake as with q = 3, the radial
wake periodicity itself is a major contributor to the intervention of the dipole sources
at different radial positions, and will lead to the reduction of the far-field sound energy in
hard-vane cases. A radially non-uniform porosity or impedance may undermine this effect,
and the noise reduction results are unfavourable, with a mid-span distribution of porosity
even increasing the upstream SPL.

One of the differences between the partially perforated and the fully porous vane is
that the intense influence from the porous part to the unperforated area is unattenuated.
Therefore, the final distribution of the unsteady loading is still strongly coupled, and a
partially applied porosity can change the pressure loading over the entire vane. The effects
of the porosity could not be taken simply as reducing the pressure jump locally, thus
there is no obvious trend to describe the final influences of a non-uniform porosity on
the propagating sound energy. As shown in figures 16(a) and 16(b), a case H configuration
not only reduces the pressure jump on the hub half-plane, but also changes the distribution
of the unsteady loading on the tip half-plane, and this effect is more obvious for the q = 3
case if we compare figures 16(c) and 12(a).

From what we have obtained above, if the porosity is required to be most effective for
wake–stator interaction noise reduction, then it must be applied to the leading edge area,
where the steady pressure loading is also large and a bias flow may cause great loss in
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Figure 16. Amplitude distribution of the unsteady loading ΔPs for (a) q = 0, case A, (b) q = 0, case J, and
(c) q = 3, case J. Here, ΔPs is non-dimensionalized by ρ0U2/2.

aerodynamic performance. This conflict is unavoidable for perforated vanes, and may be
dealt with by a surface impedance structure with no steady bias flow across vane, as with
the soft stator designs in Jones & Howerton (2016). That would lead to a non-continuous
unsteady normal velocity V ′

n across the vane, such that the monopole source term in the
generalized Lighthill’s equation (2.9) needs to be considered explicitly. It is beyond the
scope of this current paper, but our study still indicates that a soft boundary can greatly
influence the unsteady pressure loading distribution on the vanes such that the optimum
design for a soft stator is more than a pure acoustic dissipation problem.

5.3. Effect of conductivity ΓR

Another concern for applying porosity is how will ΓR, the real part of the Rayleigh
conductivity, affect the propagating noise. From the locally reacting point of view as
discussed in § 5.1.1, a non-zero ΓR will result in a phase difference between ṽ′

ϕ and −ṽR,
as illustrated in figure 10, where ΔR is restricted to be positive to prevent any potential
instability. Since both ṽ′

ϕ and ṽR depend on ΔPs, with the phase difference arg(KR)+ π/2
further varying with ΓR, the relation between ṽd and the amplitude of the fluctuating
pressure jump ΔPs is complicated even in this simplified local reaction model. If we
further consider the effects of the Kutta condition and the 3-D interactions across the
vanes transmitted by the acoustic and vortical waves, it is impossible to obtain explicit
relations between ΔPs and KR.

However, as shown in figure 17, a non-zero ΓR will not diminish the noise reduction
effect of porosity for both the tilted and radially uniform wakes, provided that a positive
ΔR exists to ensure an in-phase part of ṽR relative to ṽ′

ϕ such that both the mechanisms
that we discussed above could still take effect. Only a slight increase in the noise level is
observed within a limited range of ΓR compared to the ΓR = 0 case, whilst a considerable
noise reduction has already been achieved byΔR with a modest porosity as shown in § 5.1.
With a large ΓR, the propagating noise could be reduced further. This should be the result
of an increased magnitude of the seepage velocity ṽR that leads to a smaller overall induced
velocity ṽ′

ϕ .
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Figure 17. Propagating sound power level for a fully-porous cascade with a conductivity of varying ΓR and
constant ΔR = 1.0. Other porosity parameters are identical to the previously used ones as αH = 0.02 and
R = 0.001 m.

6. Conclusions

We have derived a 3-D semi-analytic model for the acoustic scattering of an unsteady
disturbance on an annular cascade with porous vanes. The incident perturbation could
be either acoustic or vortical, though we have focused on the rotor–wake disturbance to
offer insight into the effects of porosity on the responding unsteady pressure loading on
stator vanes and the reduction of the rotor–stator interaction noise. For thin vanes, we have
identified that the only dominant source in the acoustic scattering of a perforated cascade
is the dipole term related to the induced unsteady pressure loading, therefore the effect of
the porosity is to reduce the radiated noise by altering the unsteady loading distribution on
the vanes. Two mechanisms have been proposed to explain this effect. The first mechanism
is that the permeability allows a normal seepage velocity across the vane, thus dampening
the resulting unsteady loading. The second mechanism is that the porosity also reduces
the 3-D coupling among the dipole sources across the entire vane, thus altering the final
distribution of the unsteady loading.

Results for both uniform and non-uniform distributed porosity are discussed, and the
porous-plate soft boundary has a significant impact on both the phase and the amplitude
distribution of the unsteady loading on perforated vanes. One profound effect is that with
the porosity implemented, the phase distribution of the pressure loading approaches that
of the incident wake velocity. This effect could enhance the noise reduction caused by the
phase variation of the incident perturbations. For fully perforated vanes, a modest porosity
could obtain a significant reduction for rotor–stator interaction noise. For non-uniform
distributions of porosity, a moderate noise reduction could still be achieved, and the
porosity applied on the forward areas of the vanes leads to more reduction in the
propagating noise. This can be attributed to the large-amplitude area of the unsteady
loading near the leading edge, such that the porosity implemented in this area could
most alter the distribution of the unsteady pressure jump across the vane. However, for
porous-plate designs, a steady bias flow through the perforations may inevitably decrease
the aerodynamic efficiency. This problem may be solved by a soft-vane design with no
direct channel connecting the two sides of the vane, and our work could be the first step
towards a more generalized model representing such novel structures. Another problem is
the potential counter-effect due to the increased viscous drag induced by the perforations.
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This should also be considered carefully in the practical application of porosity on cascade
vanes.

The present method is capable of capturing the 3-D acoustic scattering effects in annular
porous cascades, which are important in small to moderate hub–tip ratio scenarios. It
should be noted that our solutions are precise only in a zero-stagger or small stagger angle
situation, whilst a 2-D model based on the Wiener–Hopf method could better handle the
effects of vane stagger and swirling mean flow. Therefore, these two methods may be
complementary in practical usage for the prediction of the noise reduction by porosity.
Future work may further investigate the effects of the soft-vane cascade in corporation
with traditional duct wall liners or other noise reduction structures in turbofan engines.
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Appendix A. Application of finite radial mode expansion

To better deal with the truncation errors of the infinite summations in (2.23), we use
the finite radial mode expansion method proposed by Namba (1987) to expand the radial
eigenfunctions φm(kmnr) in terms of a limited set of L functions ψ(∞)

l (r), l = 1, 2, . . . , L,
as the new basis function system. Accordingly, we take K2

mn and Bm
n,l to be the eigenvalues

and eigenvectors of the matrix [(k2
0l/m

2)δlk + Rlk], where Rlk is defined as

Rlk =
∫ Rd

Rh

φ0(k0lr) φ0(k0kr)
r

dr. (A1)

To apply the finite radial mode expansion, we employ an approximation to the infinite
radial eigenfunctions φm(kmnr) and their eigenvalues kmn in the expression of the induced
velocity (2.23). The precise eigenvalues are replaced by

√
K2

mnm2 such that kmn = Kmn|m|,
and correspondingly the radial eigenfunctions φm(kmnr) with kmn replaced are denoted
as ψm(kmnr). This replacement should be precise enough with sufficiently large L, and
by increasing L we can improve the accuracy of this approximation to any level (Namba
1972). Accordingly, the finite radial mode expansion can be expressed as

φm(kmnr) ≈ ψm(kmnr) =
L∑

k=1

BBm
n,k ψ

(∞)
k (r), (A2)

with the expansion coefficients BBm
n,k being

BBm
n,k =

L∑
l=1

Bm
n,lB

∞
k,l (A3)

and

B∞
k,l = lim

m→∞ Bm
k,l, K∞k = lim

m→∞ Kmk, ψ
(∞)
k (r) = lim

m→∞ψm(kmkr). (A4a–c)
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Additionally, we may derive the properties

BB∞
n,k = lim

m→∞ BBm
n,k = δnk, lim

m→∞ κnm = lim
m→∞ i

√
β2k2

mn − k2
0 = iβK∞n |m|, (A5a,b)

and as m → ∞, the errors of the above asymptotic representations are of O(m−2) (Namba
1987).

Consequently, (2.23) could be rewritten as (after dropping the time dependence factor
in v′

ϕ)

ṽ′
ϕ =

∫
S1(τ )

ΔPs(r′, z′, ϕ′)K(r, r′, z, z′, ϕ, ϕ′) dS(y), (A6)

and the kernel function is separated into regular and singular parts as

K = KRp
1 + KSp

1 + KRp
2 + KSp

2 + KRv
3 . (A7)

The pressure wave regular parts are

KRp
1,2 = −V

2πρ0U

L∑
l=1

ψ
(∞)
l (r)

r

L∑
l′=1

ψ
(∞)

l′ (r′)
r′ exp

(
− iMk0

β2 (z − z′)
)

×
+∞∑

q=−∞

+∞∑
n=1

exp(im(ϕ − ϕ′))H(±z ∓ z′)

×

⎧⎪⎪⎨
⎪⎪⎩

BBm
n,lBBm

n,l′m
2Mβ2 exp

(
±i
κnm

β2 (z − z′)
)

2κnm(Mκnm sgn(z − z′)− k0)
− δnlδnl′ exp

(
∓K∞n |m|

β
(z − z′)

)

×
[−sgn(z − z′)

2K2∞n
+ 1

|m|
ik0

2MβK3∞n

]⎫⎪⎪⎬
⎪⎪⎭ , m = σ − qV, (A8)

and the pressure wave singular parts are

KSp
1,2 = −V

2πρ0U

L∑
l=1

ψ
(∞)
l (r)

r

L∑
l′=1

ψ
(∞)

l′ (r′)
r′ exp

(
− iMk0

β2 (z − z′)
)

×
+∞∑

q=−∞

+∞∑
n=1

exp(im(ϕ − ϕ′)) exp
(

∓K∞n |m|
β

(z − z′)
)

× δnlδnl′ H(±z ∓ z′)
[−sgn(z − z′)

2K2∞n
+ 1

|m|
ik0

2MβK3∞n

]
, m = σ − qV. (A9)
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The vortical wave regular part is

KRv
3 = −V

2πρ0U

L∑
l=1

ψ
(∞)
l (r)

r

L∑
l′=1

ψ
(∞)

l′ (r′)
r′

+∞∑
q=−∞

+∞∑
n=1

exp(im(ϕ − ϕ′))H(z − z′)

×
{

BBm
n,lBBm

n,l′
m2M2 exp(iα3(z − z′))

k2
0 + M2k2

mn
− δnlδnl′

exp(iα3(z − z′))
K2∞n

}
, m = σ − qV,

(A10)

and the singular part of the vortical wave kernel is zero in the fluid domain since it just
represents the jump of the velocity potential across the dipole surfaces (Namba 1972).
Here and above, H( · ) represents the Heaviside function.

The above expressions are equivalent to those in Zhang et al. (2017), where they further
consider the effects of vane sweep and lean. However, in this paper, we calculate the
singular parts of the kernel function in a way different to that of Namba (1987) and
Zhang et al. (2017). In Namba’s original scripts, he further applies an approximation to
the singular parts under the assumption that |z − z′| is small (Namba 1977, 1987) such
that the infinite series of m can be calculated analytically without truncation, but this
approximation includes an error of O(1). Notice that in the singular parts KSp

1,2, the infinite
series of the exp(∓(K∞n |m|/β)(z − z′))(−sgn(z − z′)/2K2∞n) term itself can be estimated
analytically without approximation since it is essentially a geometric series. As for the
second term relating to exp(∓(K∞n |m|/β)(z − z′))/|m| in KSp

1,2, the infinite series of m
still converges for any given non-zero |z − z′| when calculating the kernel function in the
collocation method. This convergence is acceptably fast due to the |m| in the denominator.
Therefore, we are able to calculate the singular parts of the kernel function KSp

1,2 using
the analytic expression for the first term and a truncation of the second infinite series at
adequately high |m∗|, such that exp(∓(K∞n |m∗|/β)(z − z′))/|m∗| are less than a preset
error bound. By doing so, we are able to achieve better precision in the calculation of the
kernel function at the cost of more computational resources. This is acceptable because
the available computing power has greatly improved since Namba first proposed his lifting
surface method.
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