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Abstract

In this paper, we generalize the KuZera’s group-determinant formulae to obtain the real and relative class
number formulae of any subfield of cyclotomic function fields with arbitrary conductor in the form of a
product of determinants. From these formulae, we generalize the relative class number formula of Rosen
and Bae-Kang and obtain analogous results of Tsumura and Hirabayashi for an intermediate field in the
tower of cyclotomic function fields with prime power conductor.
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1. Introduction

In the classical case, Tsumura [10] and Hirabayashi [4] gave relative class number
formula for an intermediate field of the cyclotomic Z,-extension of an imaginary
abelian number field in the form of a product of determinants. Recently Kucera [6]
showed that the similar construction can be done for any extension of abelian fields
using group determinant formulae.

In this paper, we generalize the group-determinant formulae of Kucera {6, Lemma 2]
to obtain the real and relative class number formula of any subfield of cyclotomic
function fields with arbitrary conductor in the form of a product of determinants
(Theorem 3.1). As an application, we generalize the relative class number formula
of Rosen (8] and Bae-Kang [2] to any subfield of cyclotomic function fields with
arbitrary conductor (Theorem 3.2). We also give determinant formulae for the real
and relative class number of an intermediate field in the tower of cyclotomic function
fields with prime power conductor (Theorem 3.4 and Proposition 3.6).
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2. Group-determinant formulae

Let G be a finite abelian group of order  and let L2(G) denote the n-dimensional
vector space of complex-valued functions on G. Let G be the character group of G
with values in C and let x, be the trivial character of G. Then it is easy to see that G
is a basis for L2(G) over C. For a subgroup H of G, we define

LX) =(f e LX(G):f(ot)=f (o) foralloc € Gand T € H}

and GH = {x € G: x(o)=1forallo € H). Then it is easy to see that G"=Gn
L2(G)* and G* is naturally isomorphic to G/ H ([7, Lemmas 4.4-4.5]). Throughout
the paper, we fix a family {Z¢/u}n of systems of representatives of G/H for each
subgroup H of G satisfying the following two conditions; (i) 1 € Z¢u, (ii) if
H < H', then Zgy D Hc/w. For each subgroup H of G, we define a function
ry : G — gy suchthatry(o)H = o H foreacho € G. For f € L*(G), we define
sf € LY(G) by sf(0) =3, f (o7) foreach o € G. Clearly, s/ € L*(G)". Note
that if f € L?(G)¥, then s}* = |H|f.

PROPOSITION 2.1. For f € L*(G) and a subgroup H of G, we have

o)) [1 D x©)f ) =det(sf0x™h), ..

XEG" oeCG

where o, T run through Z,y. Let H' be another subgroup of G with H' > H. Then
we have

@) [T D x@)f(e)=det(s) 0t = s/ (cru(m)™),

xeGH\G¥ 0€G

where o, T run through Z6,u\ %

PROOF. Let s(H) = Y ., 0 € Z[G] and ey = s(H)/|H| for any subgroup H
of G. Let e, = (1/1G) 3,6 x (0)a~! € C[G] be the idempotent element associated
tox € G. Consider C[G}¥ = {x € C[G]: eyx = x}, which s a C-subspace of C[G].
Both X = {os(H):0 € Zgn}and X, = {e, : x € G"} are C-bases of C[G]". We
consider the linear transformation ¥ : C[G]” — C[G]" defined as multiplication by
6 =3 ,.cf (0)o. Itis easy to see that matrices of W with respect to X, and X are
(s? (Ur_l))a,regzam and a diagonal matrix diag( ", . x (0)f (o))xea,,, respectively.
By comparing determinants of these two matrices, we get (1).

For (2), we consider the subspace C[G]Y, = {x € C[G]¥ : exx = 0} of C[G]".
Both ¥; = {(o — ru(0))s(H) : 0 € Boyu\Zow}and Y, = {e, : x € GH\G"'} are
C-bases of C[G]%,. We consider the restriction of ¥ on C[G]%,, which is also denoted
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by W. Then the matrix of W with respect to ; is diag( Y., .; x (0)f (a))xeé,,\aﬂ,. To
compute the matrix of W with respect to Y, we need to consider 8(t; — ry:(11))s(H)
for T € '%G/H\*@G/H’- Then, we have

3) 6t — ry(z))s(H)
= Y > f@o)oi(m — ru(n)s(H)

01€R/y 026H

= Z Zf(UlUZ)((UITI — ry{o1t1)) — (O1rw (1) — rw(o1T1)))s (H)

UIQQG/H o€H

= > ) foo)om = rulom))s(H)

Gleﬂg/y (72€H

Y Y Feo) e (m) — rp(orra(m)))s(H),

01€Rgin 026€H

where the last equality follows from the fact that rg. (o1ry (71)) = r;{ (o171). Replac-
ing oy by ru(r] ') and ry (rg (1)) "'12) in the first and second summation of (3),
respectively, we have that

O(ty — ru(T1))s(H)

= Z (Zf (7' noy) — Zf ("H'(fl-])fzaz)) (t2 — r(12))s (H),

YZE-@G/H\-QG/H' ogreH o eH

andso (sf/(ot™") ~ s;’ (0 ru(T) ™)) o 0@\ gy 18 the matrix of W with respect to Y.
Thus we get (2). O

COROLLARY 2.2. For f € L*(G) and a subgroup H of G, we have
@) [Tppxeon Loea X (@)f (0) =det (sf' (0T7") = 5! (0)),, re@om’
(i) T eaar 2ovec X (@) (@) =det(f (0T7") = f (0ru(r)” 1))0 e’

Let H, H' be any two subgroups of G with H < H’. Let {wl, —o s Y} be a
fixed system of representatives of 6/ 6” ". Then {¥, ..., Yiu ,} NG isa system of
representatives of Gi&” Note that G/G*’ (respectlvely G" /G’y is isomorphic
to H' (respectively H’/H) by rCStI'lCU’Ilg a character of G to H'.

We assume that {71, ... , Yiu} NG = (Y1, ..., Viwim -

COROLLARY 2.3. Let H, H' and {{;}; be as above. Then for any f € L*(G), we
have

O [T det (s, (01™), .= (Lyecf (@) det (sF (01—} (0)), ., where
0, T run through g,y in the left hand side and run through #c,n\{1} in the right-
hand side.
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Q) [T e det (s5 @T™h), = det(f (oT™") — f(oru(r)™)), ,, where
o, T run through %y in the left-hand side and run through G\%c,u.

PROOF. From Proposition 2.1 (i), we have

det (s 0T™), 0@, = 1] 2_x@Vi@f @ = [] D x@)f @)

xeGH 0€G xev,GH' 9€G

Note that G (respectively G\ G") is equal to the disjoint union of cosets ¥;G*" for

i=1,...,|H'|/|H| (respectively for i = |H'|/|H| + 1, ..., |H'|). Thus we have
IH'I/|H)
[T det(sy; 0t em,, = [T 2ox@)f @
i=1 xeGH 0€G

(Zf <o)> [T Y x)f @

oeG Xo#xeGH 0€G
and
|H'|
H’ -1 —
[] det(s), (ot Dorettom = [T D_x@f@.
i={H'|/|H|+1 x€G\GH 0€G
Thus the results follow from Corollary 2.2. O

LEMMA 2.4. Let J, H be two subgroups of G with JNH = {1}. Then G = G’ G".

PROOF. Since J N H = {1}, we can choose Zs;, a system of representatives
of G/J containing H. Let ¥, = ¥ or,; for any ¥ € G. Then Yy € G’ and
¥, (@) = Y (r;(0)) = ¥(o) forany o € H. Thus y¥;' € G" andso G € G’ G",
which proves the lemma. O

Let J, H be two subgroups of G with J N H = {1}. By Lemma 2.4, we can choose
{1, ..., ¥} a system of representatives of G/G" such that y; € G’ forall i. Note
that H consists of restrictions of v; to H. Taking H’ = J H in Proposition 2.1, we

have
det (s, ,(0t™") =5, (arm(t)—’)),,_,e%m\%u”
= [ YXx@werey= J[ Y xefo
xea”\a”’ oeG XE\Pi(ay\a"") oeG
Since G\G" is a disjoint union of ¥;(G\G’#) fori = 1, ..., |H|, from Corol-

lary 2.2 (ii), we have
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PROPOSITION 2.5. Let J, H and {;}; be as above. Then for any f € L*(G), we
have
|H|
[Tdet (s, @™ =5y, (orsu(x)™))
i=1

0. T€RGH\RG|IH

=det(f (ot —f(ar,(r)‘l))a‘tmcu.
3. Class number formulae

Let A = [ [T] be the polynomial ring over a finite field F, with ¢ elements and
let F,(T) be the field of rational functions over F,. For each nonzero N € A, one
uses the Carlitz module to construct a field extension Ky over F,(T), called the
N-th cyclotomic function field and its maximal real subfield K. For more details
on Carlitz module and cyclotomic theory of function field, we refer to Hayes’ paper
[3] and Rosen’s book [9, Chapter 12]. It is known [9, Theorems 12.8, 12.14] that
Gy = Gal(Ky/F,(T)) is isomorphic to (A/NA)* and Gal(Ky/Ky) is isomorphic
to F;. Forany A € A which is relatively prime to N, we denote by o4 tEe element
of Gal(Ky/F,(T)) corresponding to A mod NA. Any character y € Gy may be
viewed as a primitive Dirichlet character, and so the conductor F, of x which is a
monic polynomial is defined. For x € Gy and an irreducible polynomial P € A,
we define x (P) = x((P, K, /F (T))) if P { F, and x(P) = 0 otherwise. Here
(P, KF, /F4(T)) denotes the Artin automorphism of P in Kr . We extend x to a
function from A to C using irreducible factorization of polynomials. For a non zero
N € A, let $(N) be the order of (A/NA)*, and let My be the set of polynomials
of degree less than deg N and relatively prime to N. Let M7, be the subset of My
consisting of monic ones and My = My \M7,.

Let k be any abelian extension of F,(T) with conductor N, that is, Ky is the
smallest cyclotomic function field containing k. Let k* = kN K} be the maximal real
subfield of k. Let G = Gal(k/F,(T)), G* = Gal(k*/F,(T)) and J = Gal(k/k").
We denote G’ by G+ and G\G’ by G~. Let h(k) and h(k*) be the divisor class
number of k and k*, respectively. It is known that k(k) is divisible by h(k*). Let
h=(k) = h(k)/h(k?), called the relative divisor class number of k. For A € A,
relatively prime to N, let 04|, be the restriction of o4 to k. By ‘F | N’ we mean
that F is a monic polynomial dividing N. Assume that we are given {ar, € Q : 1 #
F | N,o € G}. We define two functions #;, t, € L*(G) as follows; for any o € G,

h©E)= Y Y areuc-¢(A/F),

FIN,F#£1 AeMy

BO)= D D @reue-1Zr(0, A),

FIN,F#1 AcMy
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where 9(A/F) = (g—1)(deg F—1—deg A)—1withA = A mod F,degA < deg F
and Zg(s, A) is the partial zeta function associated to the class of A in CI(A). Let
r = [k* : F,(T)] — 1. Define

o= Y bey[[—x(P) with bp, = (PWN)/PF) D ar.x(0).

FIN,F#1 P|F oeG

Then we have from [1, Theorems 3.1, 3.6] that

—1 (CI - 1)2r +
4) det (n(o1™") — 1(0)), toetoy = h(k™) ]"[

|J|’ xo#xeG*
5)  det(n@t™) =607 @), e, =E® [] o

xeG-

Let ko be a subfield of k with Gy = Gal(ke/F,(T)) and Gy = Gal(k; /F, (T)). Let
H = Gal(k/ko) Choose {{; : 1 <i<|JH|}a system of representatives of G/G’”
such that w, e G+ forl <i<|JH|/|J|and ¥; € G~ otherwise. Since t € LX(G),
we have sX,l |J|xt, € L*(G)’ for any x € G+. By combining (4) and (5) with
Corollary 2.3, we have the following.

THEOREM 3.1. Let kg be a subfield of k, G = Gal(k/F,(T)), Gy = Gal(ko/ﬂ: (T))
and H = Gal(k/ ko). With {; : 1 < i < |JH|} a system of representatives of G/G'H
as above, we have

() TV det (s3% (7)), . = £(g — D¥ ;) (e 1) T, 4yee o
@) TT00 e det (s (‘”_1))“ =2 h"®) [1yea- oo

where o, T run through %c;;u.

REMARK. From Corollary 2.3, (4) and (5), we see that 1, (respectively %) in The-
orem 3.1 can be replaced by any function f € L*(G) of the form f = # + ¢
(respectively f = t, + ¢), where ¢ € C s a constant.

3.1. Relative class number In this subsection we give a determinant formula
for A~ (k), which is a generalization of Rosen {8, Theorem 1] and Bae-Kang [2,
Theorem 2]. We apply Theorem 3.1 (ii) with & = k;. Recall that k is an abelian
extension of F,(7T) with conductor N. For any A € A, relatively prime to N, let
A € My be the unique element such that A = A mod N and A’ € My be the unique
element such that AA’ =1 mod N. We also let sgn, (A) be the leading coefficient
of A and deg, (A) be the degree of A. We define (A)y = 1 if sgny(A) = land O
otherwise. From [5, Lemma 3.1], we know that Z, (0, A) = (A)y — 1/(q — 1). Take
ar, = 1if F = N,o = 1and 0 otherwise. Then (0) = 3, iy om0 Zn(0, A),
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and bry, = 1. We define f (0) = 3, cm, o, ,=0 (A)~ for any o € G. Then

f@)=n(o)—[Ky:k]/(g—1)

forallo € G. Let {; : 1 < i < |J|} be any set of representatives of 6/ G* such that
Y, € GT and Y; € G~ for2 < i < |J|. Then by Theorem 3.1 (ii) and Remark 3, we
have

171

(6) H det (s\f,,_f (Ut_l))O,re.éla/, =+h™ (k) Q\”,

i=2

where 0y = [],.5- [1pn(1 — X(P)). Now we consider s ; (o) for o € G. From
its definition, we have

;@)= Y WOf @ = Y, %il®) Y (A

teG 1eG AeMy

Tle+ =0 [+ Tl =0+ oale=1

= Y wilonA= Y. vilow.
AeMy AeM},

Taler =0 it OAlp+ =0+

Here we also view y; as a character of Gy under the canonical inclusion map G <
Gy. Choose a subset Z of M7 such that Gt = {04 i+ : A € #Z} with |Z| = |G*| and
asubset A of My such that Gal(Ky /k) = {0, : A € A} with|A] = | Gal(Ky/k)|. Let
At =ANMY. Clearly {0, : A € FAY={oua:Ac€ FoA*) = Gal(Ky/k*) and so,
forany A € A, we have {B € My : o3|+ = oulir} = {A(@D) 1 a € [F;, D e At}
Thus {B € M}, : 0pl+ = o4lir} = {ADsgny(AD)™' : D € A*}. From this, for
O = 04k, T = 0glx € G, we have

SyrloT™h) = Z V(AB'Dsgny(AB'D)™")

DeA+

= Y:(A)Vi(B) ) Vi(sgny(AB'D)),

Dea*

because {0, : A € A} = Gal(Ky/k). Here we view y; as a primitive Dirichlet
character. Thus

det (s, (Ur—l))a.reﬂg/,, = det ( Z Yi(sgny (A B’D))) )
A,Be#

DeA+

It is easy to see that restrictions of ¥, ..., Yy to {F; are all non-trivial characters
of J. Thus we have the following theorem.
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THEOREM 3.2. Let k be a finite abelian extension of F,(T) with conductor N. Let
A*, R be subsets of M}, as above. Then we have

1—[ det ( Z Asgn, (A BID))) = xh™ (k) Qi—),
A ,BeZ

A#ho DeA+

where X runs over all non-trivial characters of J.

REMARK. Let P € A be a monic irreducible polynomial. When k = Kp-, we have

,(:) =1 ([1, Lemma 3.7]), Z = Mp. and A* = {1} and so Theorem 3.2 gives the
determinant class number formula of Rosen and Bae-Kang for A~ (K p.). We also note
that J = (A@=Y/V1y for any generator A of [f;.

Since Qi_) is zero in some cases (see [1, Lemma 3.7]), it will be interesting to give

a non-vanishing version of the above determinant class number formula. This can be
done as in [1, Section 3]. Let N = [],_, P/ be the factorization of N into monic
irreducible polynomials. Let § = {1,...,s}and N; =[], P for I C S. Define
f € L3(G) by f(o) = Z,gs(—l)'”CI)(N,)‘1 2 aeMy.onlimo (A)wyn, for any o € G.
With this choice of f, using [1, Proposition 3.11] and Theorem 3.1, we have

171

J -1 -
[Tdet(sy, @), cq,, = £h ().

i=2

By choice of Z, {o4lx : A € %} is a system of representatives of G/J. It is easy to
see that

s} (017" = x(00)X(08) Y _(=DV'®N)™' Y R(sgny,y, (AB'D)),

1gs Dea+

forany x € G- ando = Oalk, T = ol with A, B € Z. Thus we have

PROPOSITION 3.3.

[Tdet| D (—D"@WD™ " x(sgny,w, (AB' D)) = +h™(k),

T
Ak e Dea A BeR

where A runs over all non-trivial characters of J.
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3.2. Tower of cyclotomic function fields In this subsection we give real and relative
class number formulae for an intermediate field in the tower of cyclotomic function
fields with prime power conductor Kp C Kp2 C --- C Kpani C --- as a product of
determinants of matrices of the fixed degree ® (P)/(g—1). We apply Theorem 3.1 with
k = Kpniand kg = Kp. In this case G = Gal(Kpn1)/F (T)), H = Gal(Kpr+1/Kp)
and J = {0, : a € IF;}. Let d = deg(P). For convenience we assume that
deg(0) = —o0. Define

=[] < Y x(1+DP)degpi(AB'(1+ DP)))
A,BeM}

xef \degD<nd

and

me = I] ( > x(1+ DP)A(sgnpea (AB'(1+ DP)))) :
A,BeM}

A#do yeH \degD<nd
where A runs over all non-trivial characters of IF;.

THEOREM 3.4. For a monic irreducible polynomial P of A, let N = p™*! with
n > 0 integer. Let My and My be defined as above. Then we have

() detAy = ﬂ:h(K;)(ZMW degA);

(i) det A, = xh™ (Ky).

PROOF. Note that H = {o1,pp € Gal(Ky/F,(T)) : D € A withdeg D < deg P"}
and {0, : A € M}} forms a system of representatives of G/JH. Since J N H =
{1}, from Lemma 2.4, we can choose {Ag, ..., A -1} a system of representatives
of 6/6’ with A, € G¥ and {x1,--., xym} a system of representatives of 6/6*’
with x; € G’. ltis easy to see that {X;|;}; = 7, {xilu}; = H and {Aix;}ij is a
system of representatives of G/G’#. We write {41, ... , Yy} = hix; 10<ic<
[JI—1,1 <j < |H|}. We may assume that ) is the trivial character of G and so
W ¥t =, - xm} € G

Take ar, = 1 if F = N, o = 1 and O otherwise. Then we have f(c4) = ¢(A/N)
and ,(0,) = Zy(0, A) forany A € My. Thus for A, B € My, we have

1(0405) — 1(04) = —(q — 1)(degy (AB) — deg, (4)).

We note that [], . ca+ ¢x = [l,ea- ¢&x = 1 (see [1, Lemmas 3.2, 3.7]). Define
f (o4) = degy(A) forany A € My. Then from Theorem 3.1 (i) and (4), we have

|H|

M [Tdet (537 ©@a05), pews = £(g = D'R(KF) 3 degy(A),

i=1 AeMy
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where r = [K} : F,(T)] — 1. For 1 <i < |H|and A, B € M}, we have

s\ljflfi (0a05") = Z Viloa0;'0)f (0a05'0)

geJH
=(q—1) Y V(0405 01.0p)degy(AB'(1+ DP))
deg D<nd
= (¢~ Dxi(@)Xi(05) Y Xi(o1.0p)degy(AB'(1+ DP)),

deg D<nd

because {Y1,..., Vi) ={x1,.--» xim} C G*and f € L*(G)’. Since

Y degy(A)=(g— 1) ) degy(A)

AeMy AEM;
and r = |H||M7}| — 1, (i) follows from (7).
For (ii), we define f (04) = (A)n for any A € My. Then from Theorem 3.1 (ii)

and Remark 3, we have

IJH|

) [T det(sy©@a0a"M), prss = £h™ (K.

i=|H|+1

For|[H|+1<i<|J/H|and A, B € M}, we have

s;g("AU;l) = Z Vi(oaoy'0)f (0a05'0)
oceJH

=Y Y ¥i(0405'91:0r0)(AB'(1+ DP)a)y

aely deg D<nd

= VionVi0s) Y, Viorop)Vilsgny(AB'(1+ DP))).

deg D<nd

Since {¢; : [HI+1 <i<|JH|} ={hx; : 1 =i <|J|-11=<j < |H|}
(ii) follows from (8). O

For any integer m > 1 and any ring R, let Mat(m, R) denote the ring of m x m
matrices with entries in R. As [10, Lemma 2.6], we have

LEMMA 3.5. For any integer n > 0 and monic irreducible polynomial P, we have
that M., € Mat(®(P)/(q — 1), Z) and M., € Mat(®(P)/(q — 1), ZIZ,1)).

PROOF. Let d = deg P, N = P"! and H = Gal(Ky/Kp) as before. For any
C = (cy) € May(®(P)/(g—1), Q(¢pe)) and 0 € Gal(Q(§n)/Q), welet C7 = ().
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Write

My, = ( > x(1+ DP)degy(AB'(1+ DP)))
A,BeM}

deg D<nd

so that A} = Hx //{J)l. Since |H| = g™, for any 0 € Gal(Q({)/Q), we
have {x° : x € H) = H. Thus for any 0 € Gal(Q(,)/Q), we have (A)° =
[1, Ay . = Ay Therefore Ay € Mat(®(P)/(q — 1), 2).

By considering the extension of o to Gal(Q(&gmg-1))/Q(54-1)), we show that
M i € Mat(®(P)/(q — 1), Z[4-1])- O

Let f (04) = (A)p+ for any A € Mp.a. Let {1, ..., ¥yu} be a system of
representatives of G/G™ such that ¥; € G* for all i. For any A, B € Mp, we have

H -1 - -1
sw.f(UAUB )= Z Wi(UAUBIUHDP)f (UAUB O14+DP)
deg D<nd

= Yi(@)Vi(05) D Yi(01pp){AB'(1+ DP))pus.

deg D<nd

Define D = [1e ( Zaegpena X(1 + DPY{AB'(1 + DP)),,M)A_BeM;. By similar
argument in the proof of Lemma 3.5, we see that Z,,,., € Mat((q—2)/(g—1)P(P), Z).
Note that M, corresponds to Z¢, 4\ %, 1 bijectively under the map A +— o0,. Thus
from Proposition 2.5, we have the following.

PROPOSITION 3.6. Let P be a monic irreducible polynomial and n > 0 integer.
Then we have det(2,,..) = £h™ (K pwi) with D, € Mat((g —2)/(qg — )P (P), 2).
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