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A DECOMPOSITION FORMULA FOR REPRESENTATIONS*
GEORGE KEMPF

Let H be the Levi subgroup of a parabolic subgroup of a split reduc-
tive group G. In characteristic zero, an irreducible representation V of
G decomposes when restricted to H into a sum V = ®m, W, where the
W.s are distinct irreducible representations of H. We will give a formula
for the multiplicities m,. When H is the maximal torus, this formula is
Weyl’s character formula. In theory one may deduce the general formula
from Weyl’s result but I do not know how to do this.

My formula will also be valid in a Grothendieck group in positive
characteristic. The proof uses a modification of Demazure’s character
formula [1] but I think that my formulation is more useful for calculations.

§1. The fundamentals

Let TC BC G be a maximal torus contained in a Borel subgroup of
G. The characters (or weights) of 7" are identified with characters of B.
The Grothendieck group of finite dimensional B-modules is the free abelian
group generated by the weights, which we will call the group ring.

We have G-linearized coherent sheaves on the homogeneous space
G/B [5,38]. The G-linearized invertible sheaves correspond to characters
of B. For each weight +,, we have an invertible sheaf 0; (). If ¢ is
dominant, then @; (1) has non-zero sections. A general G-linearized
coherent sheaf #” has a composition series with invertible factors 0 (1.)
for 0 <i <rank # = n. Then we write

[1//] = Z Py

1<ign

Thus the class [#7] determines the image of ¥ in the Grothendieck group
of G-linearized coherent sheaves. This symbol is contained in the group
ring of the characters.
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We will need some linear operators on the group ring. Let « be a
root. We will define a linear operator L, by the rules:

Yot if (p,a’y >0

0<i<{Yya?)
Ly)=4 0 if{y,a)=—1
- 2 Yyar i (p,aty < -2
1<nL~{Y,at)—1
Let « be a basic root. Let P = P(«x) be the parabolic subgroup con-

taining B with exactly one negative root —a«. Consider the projection
r: G/IB— G/P. If ¥ is a G-linearized coherent sheaf on G/B, then n*r,#~
and 7*R'zm.#  are G-linearized coherent sheaves on G/B. The difference
[r*zy ] — [#*R'z,#’] is additive in #~ because R'n,#" = 0 for i > 1 and
r is flat. Thus we have a linear operation n*r, on the group ring such
that w*n. (V) = [t*1,.05,5(0)] — [7*R'ny0g,5(4)]. The principal result is

TaeEOREM 1. L.(V) = n*m (V).

Proof. Now r is a P/B = P'-bundle and {y, a*) is the fiber degree
of Oz 5(v). By Serre’s theorem, 7,0s/5(1) = 0 if {y, «*> < 0 and R'r O/ 5(¥)
= 0if (Y, a*> > —2. Thus if {J, a*> = —1, 7*r(¥) = 0 and the formula
is true. If (¥, a*) >0, then n40,5(y) is locally free of rank 1 + {, a®).
Then z*r,0. () a G-equivariant filtration with factors

1!’3 '\!’a—ly ) "I/‘a_ﬂhav) .

This can be checked on a fiber where it is rather trivial property of P
and rank 1 groups. Hence the formula is true. For the case {(y, a*) <
—2, note that O (e™") is the relative dualizing sheaf for z. Hence
R'ny0p5(a™) is trivial as a G-sheaf. By duality we have a G-equivariant
perfect pairing R'z.0g () ® n40g,5(¢'a™") — Ug,». 1t follows that n*R'zm,
0g,5(}) has composition factors , - - -, ¥, where %, - .-, ;' are composi-
tion factors of #*m.0g (v 'a™) but (v 'a',a’y >2 —2=0. Hence the
last set of characters is v 'a™, - -+, Yo O+ 0e=D Thus {y, - - -, ¥} 18
e, + -, pa"t 722k In other words the formula is true in this case.

Q.E.D.

The above duality gives a symmetry in the formula for L. In fact
L(y) = —L,(yra” =7+, Recall the twisted action s*y» = s(yp)™" of the
Weyl group on weights where p is the square root of the product of the
positive roots. Here sfy = Jra™*?*) where s, is the symmetry about «.
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Thus L,(4) = —L.(s¥y).

Given a G-linearized sheaf ¥ on G/B, the cohomology groups
HYG/B, #") are G-modules. Thus we may regard the Euler charactreistic
X#) = > (—1)'H(G|B, #°) as an element of the Grothendieck group of
G-modules. When %" = 0;,5(v) we will denote its Euler characteristic by
Xe,5(). Also we extend X;,; to all of the group ring additively.

A useful identity due to Hirzebruch and Borel is

THEOREM 2. For any s in the Weyl group

XG/B(‘P) = (— 1)leng‘h(s)xG/B(S ) .

Proof. As s is the product of symmetries s, about basic roots, we
may assume that s = s,. This theorem will follow from the symmetry of
L if we prove

LEMMA 3. Xg5(V) = Lg,s(L(¥)).

Proof. By the Leray spectral sequence for z and the additivity of
Euler characteristics we have

XG/B(‘!’) = X(W*@G/B(‘I’)) - X(Rlﬁ*@a/a(‘l’)) .

The point is that last quantity equals Xg/x(z*7. ) which equals Z[L,()]
by Theorem 1. The point is a direct consequence of Lemma 4 where
f=7r and ¥ = Rin,Os ().

LEmMA 4. Let f: X— Y be a morphism such that [0y = Oy and
Rif.0y =0 if i>0. For any locally free sheaf # on Y, we have natural
isomorphisms

HX, f*7) = H(Y, W)

Proof. By the projection formula, Rf.f*# =~ Rf.0x® #". Thus
W = 0y ® W is the only non-zero direct image of f*%". The isomorphism
follows by a degenerate Leray spectral sequence. Q.E.D.

To use Theorem 2 one should note that s(yp) = s*()p. We may
always find an element of the Weyl group such that (s*y)p is contained
in the positive Weyl chamber. Here are two possibilities. If  is singu-
lar; i.e. {yp, B7) = 0 for some root g, then {(s*y)p, «”) = 0 for some basic
root «, i.e., {s*y, a®> = —1. Thus by Lemma 3, Xgz(s*}) = 0 and hence
by Theorem 2, Xg,5(v") = 0. If Xp is non-singular, Xg,5() = (— L)'= [V (s*\r)]
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where V(o) is the induced G-module I'(G/B, 0 (c)) for a dominant
weight ¢. This equality follows from the Borel-Weil vanishing theorem;
H{(G|B, 04,5()) = 0 for i >0 [2, 4].

§2. A variation

Let @ be a parabolic subgroup of G which contains B. We want to
decompose as a @-module the induced representation Vi (y) for a positive
weight . As we have just seen X% p(v) = [Vi(¥)]l. Thus we will decom-
pose Euler characteristic for arbitrary @. For any G-module M we have
the restricted @-module M = res, M. The operation res, extends to an
operator res, from the Grothendieck group of G to that of Q.

Recall that Schubert variety in G/B is the closure of a B-orbits.
We will be working with two @-invariant Schubert varieties X &Y such
that there is a basic root « such that X and Y have the same image in
G/P(«) under the projection n. In [2] X is called a moving divisor in Y.
The geometry of this situation is very simple. Let o, and oy be « re-
stricted to Y and X. Then o,: Y— 7Y is a P!fibration and o¢;: X —7Y
is birational.

Let #° be @-linearized coherent sheaf on Y which is induced by a
G-linearized sheaf on G/B. The Grothendieck group of such sheaves is
the group ring again. We will also consider the analogous sheaves on
X. Consider o¥oy 47" = [0y — [0ER'0y4+#"] in the Grothendieck group
for X. The operation s¥o,, is additive because the direct images Rioy . #~
commute with base extension by o.

Thus we may regard o%¥oy, as a transformation of the group ring
into itself. Let o%0y40y(V) = ooy (V).

THEOREM 5. o¥oy(V) = L(¥).

Proof. This theorem follows from Theorem 1. Explicitly by base exten-

sion R'ny0s5(V)|.y = Rloy40r(y). Hence 6iR'oy,0r(V) = ¥Ry Os/5(V) |x-
Thus o¥oy () = n*m.(y)|x which equals L,(y) by Theorem 1. Q.E.D.

We may regard the Euler characteristics Xy (#") = >, (—1)'H Y, #")
and 2;(#") = > (—1)H(X, #") in the Grothendieck group of @-modules
for any Q-linearized coherent sheaf %" on Y or X. These operations
extend additively to the corresponding Grothendieck groups. For any
weight 4, let 2 () = Xx(Ox(y)) and similarly for Y.

THEOREM 6. X, () = Xx(L. ().
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Proof. This is a variation of Lemma 3. By the Leray spectral se-
quence for gy, Xy(V) = XoyxO0y(V)) — U(R'oyx0y(¥)). Now the point is that
the last difference is X(oxx0y({)) as o satisfies the hypothesis for Lemma
4 by [6]. Thus we get Xy(y») = X3(L.(y)) by Theorem 5. Q.E.D.

Next we start with a chain G/B = Y,DY,D---DY, = Q/QNB of Q-
invariant Schubert varieties such that Y, is a moving divisor in Y,_,
with the root «;. For the most interesting case where @ approximates
G most closely the geometry of the @Q-invariant Schubert varieties is
worked out in detail in [2]. In this case we get by induction

COROLLARY 7.

a) XQ/QOB(Lan' : 'Lai‘p) = XYi_l(‘!’) and
b)  Xos(¥) = Xerean(Lian” + * Layih)-

By the vanishing theorems in [4, 6], if  is dominant, H(Y,, 0y (1))
=0 for i >0. Thus %y, (V) = [[(Y,, Oy (y))] and we get

THEOREM 8. If 4 is dominant,

a) [I'(Y, @yi(w))] = XQ/QOB(La,,' <L, ) and
b) [res, Vo) = Xorans(Lay + * Layr).

The only thing remaining is to replace @ by its Levi subgroup H.
Let B = BNH. Then we have

[reSH VG(‘I/‘)] = XH/B’(Lan .t 'Ltn\l’)

where the last Euler characteristics can be expressed in terms of the
induced representations V(). This gives the decomposition formula.

In case @ = B, Xg/¢n5s is the identity and one gets formulas analogous
to Demazure’s character formula. Also in characteristic zero it should
be recalled that the induced representation V(i) are irreducible.
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