A DOUBLE-CENTRALIZER THEOREM FOR SIMPLE ASSOCIATIVE ALGEBRAS

W. L. WERNER

Consider the following result.
Proposition. Let D be a finite-dimensional central division algebra over a field F, and let D_{n} be the algebra (over F) of all $n \times n$ matrices with entries in D. Let A and B be in D_{n}, and suppose that $B X=X B$ for every X in D_{n} such that $X A=A X$. Then B is a polynomial in A with coefficients in F.

The case $D=F$ is a well-known classical result. Recently, the particular case where D is the algebra of real quaternions was established by Cullen and Carlson (2). In this note, the general proposition is proved by reduction to the classical case by way of tensor products.

Proof of the proposition. Since D_{n} is a finite-dimensional central simple algebra over F, if $D_{n}{ }^{\prime}$ is an algebra anti-isomorphic to D_{n}, then the tensor product $D_{n} \otimes D_{n}{ }^{\prime}$ is isomorphic to a total matrix algebra F_{m} over the field F ($\mathbf{1}, \mathrm{p} .42$). Let us identify this tensor product with F_{m}, so that F_{m} is the product of subalgebras D_{n} and $D_{n}{ }^{\prime}$, and every element of D_{n} commutes with every element of $D_{n}{ }^{\prime}$.

For A in D_{n} let $K(A)=\left\{X \in D_{n} \mid X A=A X\right\}$ and let $K^{*}(A)=$ $\left\{Y \in F_{m} \mid Y A=A Y\right\}$. We first show that $K^{*}(A) \subseteq K(A) D_{n}{ }^{\prime}$. Indeed, let $\left\{V_{1}, V_{2}, \ldots, V_{r}\right\}$ be a basis for $D_{n}{ }^{\prime}$ and let $Y=\sum_{i=1}^{r} X_{i} V_{i}$, where X_{i} is in $D_{n}, \quad i=1, \ldots, r$, be an element of $K^{*}(A)$. Then $\left(\sum_{i=1}^{r} X_{i} V_{i}\right) A=$ $A\left(\sum_{i=1}^{r} X_{i} V_{i}\right)$. Since A commutes with each V_{i}, it follows that

$$
\sum_{i=1}^{r}\left(X_{i} A-A X_{i}\right) V_{i}=0
$$

Hence, $X_{i} A=A X_{i}$ and X_{i} is in $K(A), i=1, \ldots, r$. Thus, Y is in $K(A) D_{n}{ }^{\prime}$ and $K^{*}(A) \subseteq K(A) D_{n}{ }^{\prime}$.

Now, let A and B satisfy the hypothesis of the proposition. In other words, let B commute with every element of $K(A)$. Since B also commutes with every element of $D_{n}{ }^{\prime}$, it follows that B commutes with every element of $K(A) D_{n}{ }^{\prime}$, and hence with every element of $K^{*}(A)$. That is, B commutes with every element of F_{m} that commutes with A. Consequently, by the classical theorem for matrices over a field, B is a polynomial in A over F.

I express my appreciation to the referee for his very helpful suggestions.

Received December 13, 1967 and in revised form, May 23, 1968.

References

1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ., Vol. 24 (Amer. Math. Soc., Providence, R.I., 1939).
2. C. G. Cullen and R. Carlson, Commutativity for matrices of quaternions, Can. J. Math. 20 (1968), 21-24.

College of Southern Utah, Cedar C'ity, Utah

