
CORRESPONDENCE 

To the Editor, The Mathematical Oazette 
WHEN IS A DIBECT PROOF INDIRECT? 

DEAR SIR.—I should like to comment on A. R. Pargeter's " direct " 
proof of the Steiner-Lehmus Theorem* which appeared in the February 
1971 issue of the Oazette. 

Let me first remark that both his proof as well as my own contribution 
which appeared in the December 1969 issue of the Oazette are redis
coveries of proofs which had already appeared in A. Henderson's paper 
in 1937 [1]. However a genuine rediscovery is made in good faith and 
there is nothing more to it than the unpleasant sensation it gives the 
rediscoverer. 

I t is rather the directness of the proof which I feel the obligation to 
challenge. 

In order that a proof be direct, not only has the last stage to be proved 
directly but every single step has to be screened cautiously from the 
very beginning so as not to allow any indirect argument to slip through. 

The theorem upon which Pargeter's proof is based depends very 
heavily on Euclid I 32, which states that the outer angle in a triangle 
equals the sum of the two non-adjacent inner angles; and this theorem 
in turn depends on Euclid I 29, stating that corresponding angles 
between parallels are equal. Now this last crucial theorem has no direct 
proof yet since Euclid's days. 

We then have " . . . u = v and the result follows . . . ". How does the 
result follow? Apparently since the two triangles with sides a', I, u and 
a, I, v respectively are equal, so that the original triangle has equal 
angles. Now it is true that equality of angles implies equality of sides 
but this is Euclid I 6, which again is proved indirectly. 

So dropping the introduction as well as the conclusion of the proof 
turns out to be crucial in this case as far as directness is concerned. 
Apart from that it is another nice indirect proof. 

I t might interest readers that it was Cambridge where the directness-
requirement was first introduced in about 1850, the time when the prob
lem first sneaked in from the Continent. Since then many " direct" 
proofs have been published, so far none of them correct. Henderson alone 
supplied in [1] as many as seven (!) " direct" proofs (among them the one 
we have discussed here) all of them faulty as far as directness is concerned. 

I t should be quite useful for anyone about to attempt a direct proof 
of the Steiner-Lehmus Theorem to previously consult a paper by 
McBride which appeared in 1943 [2] and which concludes, quite justly 
as it appears, with the following highly suggestive observation: " . . . If 
it is held, as I hold, that Euclid I 14, Euclid I 29, Euclid I 32, and the 
Theorem of Pythagoras have no direct proof, then the Bisectors Theorem 
has not been proved directly, nor is it likely to be." 

Yours sincerely, 
Department of Mathematics, M. LEWIN 
Israel Institute of Technology, Haifa 

* " If two angle bisectors in a triangle are equal, the triangle is isosceles." 
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To the Editor, The Mathematical Gazette 

THE SUM OF THREE CONSECUTIVE SQUARES 

DEAR SIR.—Those who were stimulated to supply proofs of my 
conjecture that 

(m + l)2 + (m + 2)2 + (»re+3)2 when m > 0 
can be expressed as the sum of three other squares by use of the formulae 

(3re - l)2 + (3n)2 + (3re +1)2 = (5re)2 + (re + l)2 + (re - l)2, 
(3re)2 + (3re±l)2 + (3ra±2)2 = (5re±2)2 + (nT l ) 2+n2 , 

may be interested to know of another set of formulae that provides 
alternative sets of three squares when m > 4: 

( 9 n - l ) 2 + (9n)2 + (9re + l)2 = (lire + l)2 + (llre - l ) 2 +n 2 , 
(9n)2 + (9n ±1)2 + (9n ±2)2 = (13re ±1)2 + (7n ±2)2 + (5n)2, 

(9n±1)2 + (9re±2)2 + (9re±3)2 = (lire±3)2 + (lire±2)2 + (nT l)2, 
(9re ±2)2 + (9re ±3)2 + (9re ±4)2 = (13re ±4)2 + (7re ±2)2 + (5n ±3)2, 
(9re ±3)2 + (9re ±4)2 + (9re ±5)2 = (13n ±5)2 + (7re ±4)2 + (5re ±3)2. 

There are also incomplete sets of formulae that sometimes provide 
alternative sets: 

(5re)2 + (5re±l)2 + (5re±2)2 = (7re±2)2+ (5re)2+ (re±l)2, 
(5n±l ) 2 + (5re±2)2 + (5n±3)2 = (7re±3)2 + (5re±2)2 + (re=F l)2 

= (7w±2)2 + (5re±3)2 + (re±l)2. 

(7re)2 + (7w±1)2 + (7re ±2)2 = ( l ln ±2)2 + (5re)2 + (nT l)2, 
(7re±l)2 + (7re±2)2+(7re±3)2 = (llre±3)2 + (5w±2)2 + (nT l)2. 

From these formulae we find that 
2 2 +3 2 + 42 = 02 + 22 + 52, 
32 + 42 + 52 = 02 + l2 + 72 = 02 + 52 + 52, 
42 + 52 + 62 = 2 2 + 32 + 82, 
52 + 62 + 72 = l 2 + 3 2 + 102 = 2 2 + 52 + 92, 
62 + 72 + 82 = l2 + 22+122 = 2 2 + 8 2 + 92 = 0 2 + 72 + 102, 
72 + 82 + 92 = 3 2 + 4 2 + 1 3 2 = 3 2 + 82 + l l 2 = l2 + 72 + 122 

= 02 + 52 + 132 = 52 + 52 + 122, 
8 2 +9 2 +10 2 = 2 2 + 4 2 + 152 = 12 + 102 + 122 = 0 2 + 72+142, 

9 2 + 1 0 2 + l l 2 = 2 2 + 32 + 172 = 5 2 + 92 + 142, 
etc., there being always at least two different alternative sets for three 
consecutive squares for m > 4. 

Yours faithfully, 
8 Puckle Lane, DONALD B. EPERSON 
Canterbury 
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