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ArsTRACT, The paper considers how to caleulate the budget history of a glacier from the historieal record
of its advance and retreat. The linearized differential equations developed in previous papers are used to
compute a series of coeficients g(n). The g(n) operate directly on a record of annually spaced observations
of the position of the glacier terminus, to give the time variation of net budget. The g(n) are calculated for
South Cascade Glacier, Washington, U.S.A. and for Storglaciiren, Kebnekaise, Sweden, and are applied
to the terminus records of these two glaciers. The results indicate that the figures for the retreat during
individual years are not sufficiently reliable to deduce annual net budget changes with confidence. But the
coarser features of the terminus records give net budget figures that agree well with the g yr. or 10 yr. means
ol recent observations. The theory extends the generalized budget record of Storglaciaren back by several
decades, and shows an increase in net budget in the 1930’s that is not immediately apparent in the terminus
record.

ResumE. Méthode numérique pour déduire Uhistoive du bilan d’un glacier de son avance el retrait. Ce travail donne
la maniére de calculer Ihistoire du bilan d’un glacier 2 partir des données historiques de son avance et de
son retrait. Les équations différentielles linéarisées dans des publications antérieures sont utilisées pour
déterminer une série de cocflicients g(n). Les g(n) operent directement sur les données d’observations annuelles
de la position du front du glacier pour donner la variation de temps du bilan net. Les g(n) sont calculés pour
le South Cascade Glacier, Washington. U.S.A. et pour le Storglaciiiren, Kebnekaise, Suéde, et sont appliqués
aux observations des fronts de ces deux glaciers. Les résultats montrent que les valeurs du retrait pendant des
années individuelles ne sont pas suffisament valables pour en déduire les variations annuelles du bilan net
avee certitude. Mais des aspects plus généraux des observations des fronts donnent des valeurs du bilan qui
correspondent bien aux moyennes des données récentes de neuf ou dix années. La théorie étend Pobservation
du bilan général du Storglaciiren en arriére de plusieurs décades, et montre une augmentation du bilan net
vers 1933, ce qui n’apparait pas immédiatement des observations du front.

ZUSAMMENFASSUNG. Fine numerische Methode zur Ermittlung der Haushaltsgeschichte etnes Gletschers aus seinen
Vorstossen und Riick ziigen. Die Arbeit untersucht die Moglichkeiten zur Berechnung der Haushalisgeschichte
eines Gletschers aus den historischen Aufzeichnungen seiner Vorstésse und Riickziige. Die linearisierten
Differentialgleichungen, die in fritheren Verdffentlichungen aufgestellt wurden, werden zur Berechnung
einer Reihe von Koeflizienten g(n) herangezogen. Die g(n) ergeben in Verbindung mit einer Liste von
jahrlichen Beobachtungen der Lage des Gletscherendes unmittelbar die zeitliche Verdnderung des Netto-
Haushaltes, Die ¢(r) werden [iir den South Cascade Glacier, Washington, USA, und fir den Storglaciiren,
Kebnekaise, Schweden, berechnet und auf die Zungenbeobachtungen an diesen beiden Gletschern ange-
wandt. Die Ergebnissc zcigen, dass die Zahlenwerte [ir den Riickzug in einzelnen Jahren nicht zuverlissig
genug sind, um daraus gesicherte jahrliche Haushaltsinderungen ableiten zu kénnen. Doch liefert der
grobere Verlauf der Zungenbeobachtungen Netto-Haushaliswerte, die gut mit den Mitteln der g- bzw.
1o-jihrigen Beobachtungen iibereinstimmen. Die Theorie fithrt die allgemeinen Haushaltsaufzeichnungen
am Storglacidren um einige Jahrzehnie zuriick und weist eine Erhohung des Netto-Haushaltes in den goer
Jahren nach. diec aus den Zungenbeobachtungen nicht unmittelbar ersichtlich ist.

1. InTrRODUCTION

A theoretical treatment has been given in other papers (Nye, 1960, 1963[a], 1963[b],
1965) referred to as Nye [T], Nye [1I], Nye [11I] and Nye [TV] respectively, of the relation
between the fluctuations of accumulation and ablation on a glacier and the associated
fluctuations of the glacier itself. As a matter of history, while the variations in accumulation
and ablation on glaciers have only been systematically measured since about 1945 the records
of the changes in length go back in some cases for 500 yr. The geomorphological record of
course goes back, with less detail, into the Pleistocene. The possibility therefore presents itself
of taking the known records of changes in length of the glaciers and trying to infer the changes
of accumulation and ablation that caused them, thereby considerably extending the record

* This work was done while the author was a visitor at the Hammond Metallurgical Laboratory, Yale
University, and at the Institute of Geophysics and Planctary Physics. University of California at Los Angeles.
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of accumulation-ablation history into the past. The present paper takes the differential
equations of the theory as its starting point, and considers how to apply them numerically
to deduce the input (accumulation-ablation record) that gave a given output (advance-retreat
record). The calculation scheme thus developed is applied to the terminus records of South
Cascade Glacier, Washington, U.S.A., and Storglaciaren, Kebnekaise, Sweden, since the
functions that characterize these two glaciers are known from previous work.

The method described in Nye [111] for solving the same problem, which uses a series of
coefficients A, entails first filtering out the high frequencies in the terminus record and then
computing time derivatives. By contrast, the method to be described here works directly from
the annually spaced observations of the terminus without filtering; it is comparatively simple
to apply and is, in general, much better than the earlier method. However, the method using
the A, series is still useful in theoretical studies where the terminus record is taken as a
polynomial in the time £

2. Tue DiFFERENTIAL EQUATIONS

The notation follows that used in the previous papers. x is the distance down the glacier,
t is the time. A datum glacier (suffixes o) is considered in which the accumulation rate
(thickness of ice added per unit time) is ao(x). ao(x) is negative in the ablation area. A linear
perturbation treatment [Nye I11] leads to the two simultancous partial differential equations

8 e
x| pyx) (r—t — Bo(¥) ax(x, 1), (1)

D chy (
q: = Cu(-x) hy— u(x) E, ‘.2)

where qi(x,t) is the perturbation in discharge from the steady datum rate, hi(x, t) is the
perturbation in thickness, and ai(x, ) is the perturbation in accumulation and ablation
rate. Bo(x), €o(x) and Dy(x) are fixed functions that characterize the particular glacier. Bo(x)
is the datum-state width of the channel, eq(x)/Bo(x) is the velocity of kinematic waves of q.
down the glacier, and Do(x)/Bo(x) is their diffusion coeflicient. (1) arises from the equation
of continuity, while (2) is a consequence of the assumed nature of the flow process. If q: is
eliminated between (1) and (2) we obtain a type of diffusion equation

& N ohs
D, e '—(cn— D“) E—c“ hi+Boar = Bn—z__t‘, '3)

where the primes denote differentiation with respect to x.

We shall mostly be concerned with the case where a.(x, ¢) is independent of x, so we simply
write it as a:(¢). Thus a.(t) is the function representing the variation in accumulation rate
that we are going to try to deduce. It represents the increase in the accumulation rate or the
decrease in the ablation rate from the steady state value ao(x) at any point on the glacier.
Other assumptions about the x dependence of ai(x,t) could be made, but some assumption
must be made if the basic problem of deducing budget history from advance-retreat history
is to have a solution. Otherwise we should be trying to deduce a function of two variables
from a function of only one variable.

The given data, besides the coefficient functions Bo(x), €o(x), Do(x), could be the time
variations of thickness, that is, of & at some fixed point on the glacier. What is more commonly
observed, however, is the variation in the position of the end of the glacier. We denote this
by l:(1), measuring /; from the end of the datum glacier. /1 is geometrically related to A at
the wedge-shaped end of the datum glacier (fixed at x = L) by the equation

L(t) = hi(L, 1) cosec O, (4)
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where 6 is the angle of the wedge. The problem is then, given Li(t), to find Ai(L, t) from (4),
and then find what source function ai(t) in (3) will produce the required ha(Ly t).

3. TuE Usk oF INFLUENGE COEFFICIENTS

The record of [(t) and therefore of 4, (L, t) is not, in practice, a continuous one. Observa-
tions are commonly made at the end of the ablation season at intervals of one year. One way
of filling in the gaps in the record would be to make some assumption about the winter—
summer variation between the observed points. If we did this our final result for a;(¢) would
include the winter-summer variations. We are not usually interested in these, and in any
case they would merely reflect what was assumed for the winter summer variation of /,(¢).
To pursue the same line of thought, the true function 4(t) includes also very high-frequency
detail due to individual snowfalls, hot days and so on, and all this is faithfully reflected in the
true variation of a,(t) by the simple relation

hy
F_{ = dai.
We do not have this detailed record of hi(L, t), nor do we wish to know the corresponding
detail in a,(¢). In this situation we propose to adopt a different way of filling in the gaps in
the record.

We consider an artificial function ai(t) that is constant throughout any one (budget) vear,
It thus consists of a number of steps (Fig. 1a). The corresponding function li(t) consists of a
number of nearly straight (more accurately, exponential) segments, with discontinuities in
slope (Fig. 1h). The observations are taken to be the points ey, ps, Py, ... . The method of
deducing a:(f) that we describe is valid when the time Af = 1 yr. is sufficiently short 1o be
taken as the time interval in a certain finite difference solution of the equations. Now it could
happen that a time interval of T yr. was too long for this to be true, but in fact the time
constants of glaciers are long enough for the approximation to be a good one. (We verify this
later for the individual glaciers treated.) This is a fortunate circumstance for it means that
annual observations may be used to infer the step curve of a;(). Thus we may say that if the
real ai(t) actually followed the step curve (although we know it does not), then the resulting
Li(t) curve would pass through the observed positions, That is the precise meaning of the
ai(t) step curve that we deduce.

To a good approximation this step curve may be taken as the mean over the vear of the

| yr.
B = >

(a) (5]

Fig. 1. (a) Assumed step function ai(t). (b) Resulting response function Li(t)
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actual a:(t) function. This mean is closely connected with what is usually, but wrongly,*
called the net budget. The net budget of a glacier at the point « is, in our notation,

1+ At t+AL

J [2o(%) +ar(t)] dt = At[ao(x)+ (A | ault) dt],

t t
where Al = 1 yr. The second term in the right-hand bracket is what we deduce. When added
to ao(x) and multiplied by A it gives the net budget of the glacier at the point in question.
In short, the step function a(t) that we deduce gives the time variation in the net budget of
the glacier.

The numerical method to be described comes from a finite difference approximation to
the original differential equations. The time derivative 8/t is replaced by a centred difference
using an interval Al = 1 yr. This means that the equations contain values of the dependent
variables at one-year intervals; in particular, they contain the A: values at the instants of
observation. As we have just noted, Az = 1 yr. is short enough for this approach to be feasible.

Let the values of & at given x, at intervals A, be denoted h(x, 1), k(x, 2), ..., back into
the past, beginning at a certain instant shown as r in Figure 2. h(x, #) is thus a continuous
function of x but a discrete function of time. The values of q: are similarly denoted g(x, 1),
q(x, 2), ... . ax(t), which is now taken as constant over cach interval, has values a(1), a(2), ... .
Note in Figure 2 that these values are placed at the centres of the intervals. We now assume
plausibly that

h(x, 1) = e(x, 1) a(1) +e(x, 2) a(2) +e(x, 3) a(3) + .- (5)
hix, 2) = e(x, 1) a(2) +e(x, 2) a(3)+ - (6)
hlx, %) = e(x, 1) a(g)+ ..., €tc, (7)

where e(x, 1), e(x, 2), ..., are influence coefficients to be determined. Each a(n) in the past, but
not in the future, will have an influence on A(x, 1), and since the equations are linear their
effects will be additive. This gives equation (5). Equations (6), (7), etc., make the same
statement for A(x, 2), h(x, 3), etc., and, since the theory is concerned with small perturbations,
they use the same set of coefficients e(x, n).

We shall show in a moment how the ¢(x, n) may be computed numerically. For a parti-
cular x, which could be x = L, we write the equations simply as

h(1) = e(1) a(1)+e(2) a(2)+e(3) a(3)+ ... 1

h(2) = e(1) u(2)+e(2) a(3)+ - & (8)
h(g) = e(1) a(g)+ .- ete. J
trme -
gl 5, 3/ gl(x,2) gl(x,/)
btx, 3/ atx, 2/ hix, 1)
| | [l E d
stz ¢ efed @ eil g

s ) s
Fig. »
* In common usage the word budget means an estimate, often itemized, of expected income and expense, or
an itemized allotment of funds, for a given period in the future. What glaciologists call the net budget is really the

annual balance, or the annual surplus or deficit, and would be better so called. Why use an esoteric term when
plain ones are to hand ?
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If these equations are now solved for a(1), a(2), ..., in terms of k(1), h(2), ..., we find

a(r) = g(1) k(1) +-g(2) h(2) +¢(3) A(3)+ ...

a(2) = £(1) h(2) +¢(2) A(3) + ... (9)
a(g) = g(1) A(3) + ... ete.
where the g(n) are a new set of coeflicients which, by substitution in (8), satisfy
g(r)e(1) =1
gr)e(2) tg2)e() =0 L. (10)

(1) e(3) +&(2) e(2) +g(3) ¢(1) = o ete.
Natice that the matrix of ¢’s in (g) has the same form as that of the ¢’s in (8), each row being
repeated but displaced by one position.

Equations (10) allow the ¢’s for a particular x to be found in succession once the ¢’s are
known, by a simple algebraic process. Equations (g) are the result we need for our problem,
for they give the sequence a(1), a(2), ..., directly in terms of the observed sequence h(r),
k2], oe o

The g’s are thus our ohjective, but to calculate them we must first find the ¢’s. For this
purpose first assume a set of equations for the q’s similar to (5), (6), (7), etc.:

q(x, 1) = f(x, 1) a(1) +.f(x, 2) a(2) +-f(x, 3) a(3) + ... (11)
q(x, 2) = S(x, 1) a(2)+f(x, 2) a(3)+ ... (r2)
q(x, 3) i S{x, 1) a(%)"' ... Cte. ([3)

where the f(x, n) are influence coefficients for q. Now write the original differential equation
(1) for the point ¢ in Figure 2 and replace hifet by {h(x, 1)—h(x, 2)}/ At Approximate
oq./éx at p by
é{qf(.""‘s I) qu.'(xa 2)}
= 8f'(% 1) a(1) +3{/"(x, 2) +/"(x, 1)} a(2) + ...,
where the primes denote differentiation with respect to x. If ' we now substitute into equation
(1), using (5) and (6), and equate coefficients of a(1),a(2), ..., we obtain*
T/ 1) K(x) efx, 1) — 2Ba()

Fi® 2)+-K{x)e(x,8) = —f'(z, 1)+ K e(x, 1) (14)

S'(x, 3) +K(x) e(x, 3) = —f'(x,2)+K(x) e(x,2) ete,
where K(x) = 2Bo(x)/At. (14) is thus a finite difference approximation to the original
differential equation (1).
Now write the original differential equation (2) for the point R (not p) in Figure 2,
substitute from (5) and (11), and equate coefficients of a(1), a(2), ..., to obtain

J(x, 1) = eo(x) e(x, 1) —Do(x) ¢'(x, 1)
JS(%,2) = eo(x) e(x, 2) —Do(x) ¢’ (, 2) : {15)
JF‘('T: '3} = Cu(.\‘) g(k\', 3) ~ D”("“) er("\'a 3) ete. 4

Remembering that all quantities are functions of x and dropping the x’s for brevity, the
systems of equations (14) and (15) may be written

*If we assume that, instead of a: being a funetion of ¢ only, it can be expressed as ai(x, 1) = X(x)a(1),
where X(x) is a known function. the only difference is that the right-hand side of the first of equations (14) is
2B4(x) X(x) instead of 2B4(x).
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£/()+Ee(1) = Z(1) F(1) = cae(1)—Doe'(1)
f@)tke(@) = Z2) |, fle) =eoe(z)—Dec'(®) s (16)
f'(3)+Ee(3) = K(3) ete. f(3) = coe(3)—Doe'(3) etc.
where the Z(n), which are functions of x, are given by the recurrence formulae
Z(1) = 2B,
2 } (17)
Z(n) = 2Ke(n—1)—Z(n—1) (n = 2)
More compactly we may write (16) as
f'(n) +Ke(n) = Z(n) }
(n =1). (18)
£(n) = eoe(n) —Do ¢ (1)

Eliminating f(n) gives the alternative form

Dy e”(n) — (co—D;) &' (n) —(e;+K) e(n) = —(n). (19)
Starting with n = 1 we therefore have a second-order ordinary differential equation to solve
for e(x, 1). When this has been done Z(2) may be found from (17), and then (19) with
n = 2 gives an equation to solve for e(x, 2), and so on. Thus the influence coefficients e(x, 1),
e(x, 2), ..., may be computed in succession.

The nature of the above process is made clearer if we notice the physical interpretation of
the e(x, n) coefficients. If all the a’s are zero except for a single one, say a(r), which is equal
to 1, equation (5) shows that A(x, 1) = e(x, 7). Thus e(x, r) is the h: response at time I to
a unit pulse a(r). If a unit pulse of a. occurs as shown in Figure 3, the response f:(f) at given
x will be a certain curve. The height of the curve at time 7At from the beginning of the pulse
is e(x, 7). In short, the sequence e(x, n) represents the i, response at intervals A¢ to a unit
pulse of a;. Similarly the sequence f(x, n) represents the impulse response of g..

The same interpretation follows in the continuous case (At — 0). Here, by analogy with
(5) we should write the integral equation

B, t) = J e(x, 7) ax(t—7) dr. (20)

e(x,r)

AL ——————

At

Fig. 3. Interpretation of the influence coefficients e(x, 1) as the response to a unit pulse
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If we apply a unit pulse (Dirac 8-function) of a; at time ¢—f, the only contribution to the
integral comes from 7 = ¢, and we obtain

h[(.\’:, ﬁ) — e(x, [n).

Thus e(x, to) is the response A; at time ¢ to a unit pulse that occurred at time ¢—t,. Similarly
for f.

Accordingly, if we wished to find the continuous function e(x, r) we should try to solve
cquations (1) and (2) for an impulse of a, occurring at time ¢ — o, say. Hence we should
wish to solve the equations

] oe
-.;‘i_-Bu = = By a:
ox ot
ce
f: cae—DoT
oxX

for initial condition ¢ — f = o0, where we have simply put ¢ for A, and ffor g; in (1) and (2).

Now our equations (18) are merely a finite difference form of this pair of equations. If a
rectangular pulse of unit height is placed in the first interval (Fig. 3) and if 2f/ax is
approximated by 3{/’(n) 4 f'(n—1)} and @e/et by {e(n)—e(n—1)}/At, equations (18) are
readily derived. What we are doing therefore is nothing more than solving the diffusion
cquation (3) in finite difference form, with time interval At, for a rectangular pulse of a, of
unit height and duration At

So far only t has been put in discrete steps, not x. If, however, we write the simplest type
of central difference for the x derivatives in (18) we find we have precisely the Crank-
Nicholson scheme for integration of the diffusion equation (Crank and Nicholson, 1947;
Richtmyer, 1957, p. 93). This is in fact the scheme we have used.

4. Bounpary Conprrions

It was shown [Nye II, TII] that the functions Ba(x), €o(x), Do(x) that characterize the
glacier may be taken to have the following behaviour at x — 0 and x — L, the end points
of the datum glacier: near x = o, B, non-zero, €, ~ x, Dy ~ x*; near x — L, B, non-zero,
€, non-zero, Dy ~ L —x. The simultaneous equations (18) for a given # then have the same
form as those studied in appendix I of Nye [IV], with ¢ and f substituted for H and (). From
this previous work we know that a unique solution is determined if we require as boundary
conditions that ¢ be not infinite at either x = o0 or x = L. This condition at x — o is equivalent
to the condition /= 0. The boundary condition at x — o gives a one-parameter set of
solutions which all have the same leading term, namely

(n)
c,+K

e(o,n) — (% = 0), (21)
Z(n), e, and A all being evaluated at x = o, (If the first two terms in (19) are set equal to
zero this form is obtained at once.) At x = L the boundary condition also determines a one-
parameter set of solutions, but here the leading term is an arbitrary constant. For all members
of this one-parameter family

(co—Dy) e'(Lyn) +(eo+K) e(L,n) = Z(n) (x= L), (22)

<o, Dg, ¢;, K and Z(n) all being evaluated at ¥ — L. (This form is obtained by setting the
first term of (19) equal to zero.) The justification for these assertions about the behaviour at
the end points is given in appendix 1 of Nye [TV].

To summarize, at x = 0 we have a simple condition on e, namely (21); while at x = I,
we have a condition involving a linear combination of ¢ and ¢/, namely (22).

3
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5. SorvinG THE Finite DIFFERENCE EQuaTION

Points on the x axis are numbered backwards from j =1 (x = L) to j = J (x = 0) at
intervals Ax. In finite difference form equation (19) at any given n is then
—Asest-Bjeg—Cyegr = —Z5 (j=28...J—1) (23)
where 4; = —a;—y;, a; = (Do);/(Ax)%,
B; = —20;—Nj, y; = VileAx,
L= —mp-p Nj = (e 1K)y,

Vi = (eo—Dg);.

Thus the coefficients 4;, B; and C; in (23) may be computed once and for all; they do not
depend on n.
The boundary conditions give, from (21),

N
ey = (C;)J—Fﬁ.‘]’ (24')
and from (22) 3 55
1 1 AX
= V[JFNI Ax ¢ V[+.N: Ax (25)

To solve the second-order difference equation (23) directly we should need to know two
starting values at one end. Instead we have one condition at each end. This boundary value
problem is easily dealt with by the method described by Richtmyer (1957, p. 103-04).

We discuss the one-parameter family of solutions ' satisfying the boundary condition at
x = L (j = 1). They will satisfy a certain first-order difference equation, say

e =Ejej +F;, j=12..]-1 (26)

and our problem is to find E; and Fj so that (26) is true for any member of §. Since both
(25) and (26) are true for all members of S, it follows that

Vr le Ax
E=yivar " TVNA (=7)
By substituting E;_; ¢;+F;_ for e; 1 in (23) and comparing with (26) we find
A; CyFia—Z5 .
E =565 (J=23..J—1).

= B0 By

Since E; and F, are now known from (27) these equations allow E:, Ej, ... and Fy, F, ...
to be computed in succession.

Equation (26) may now be used to compute the ¢; in succession, starting with j = f—1
and using the value of ¢ given by (24). The method is very efficient.

Accordingly, the numerical procedure is to solve equation (19) by the above method
for n = 1. Z(2) is then found from (17) and equation (19) is solved for n = 2, and so on.
This determines the e(x, n).

Some methods of this sort for solving the diffusion equation by forward integration in time
suffer from instability when the time step is too long in comparison with Ax (Richtmyer,
1957, p- 9). However, the Crank-Nicholson method, which we are using, is unconditionally
stable. This important result was secured essentially by taking central differences at p in
Figure 2 rather than, say, one-sided time differences at r.

We have now described how, from the functions Bo(x), €o(x), Do(x), the influence co-
efficients (ex, n) in equations (5), (6), (7), etc., may be obtained numerically—essentially
by forward integration of the diffusion equation in time steps of 1 yr. The next step is to
invert the ¢ array by equations (10) and thus obtain the g’s. This need only be done for the
point x that is of interest, normally x = L, the end of the datum glacier. Having found
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£(1), g(2), ..., they may be applied directly to a record of the changes in terminus position
to deduce the time variation of the net budget.

A check on the values obtained for the e(n) and g(n) may be made by considering the
case of a perturbation steady in time. Thus if ai(t) = A say, h: will come to the steady state
H(x) say. In the notation of Nye [111] we have

H(x) = IILQ(J'.') A and A = I\o(.x) H(x) (f\u = ,U'-u_l)-
In the notation of this paper, we put
a(1) = a(2) = ... =A and h(1,2) = h(2,x) = ... = H(x)

in equations (8) and (g) to obtain

H(x) = 4 Ze(n, x) and 4= H(x) > gln,x).
‘Thus

Z e(n, x) = po(x) and ? g(n, x) = do(x). (28)

n=1 n=1
If po(x) and Ao(x) are known by some other method (for example by integration of equations
(1) and (2) with /0t = o, or from the frequency response at zero frequency) these formulae
give a check on the values of ¢(n, x) and g(n, x).
Interpretations may also be given of the other coefficients pu., Hay voe and Ap Az, ...
introduced in Nye [III]. For example, take the series

ax(t) = Ao hu() +-Ac ha(8) F X ba(8) + ...

and let h: — pt, where p is a constant. Then, at ¢ — o,

ay = A p.
But by (9) we find for a; the expression
g(1) .o—g(2) . pAt—g(3) . 2pAt— ... —g(n) . (n—1) pAI— ... .
Hence
Ay = —Atr/§‘2 (n—1) g(n).

In general, by putting & — pt™ we find

o

(igt)m
w = e > = ma)

n=2

A similar equation relates j,, with the e(n).

A remark about the convergence of the two series (8) and (9) is in place before we proceed
to the numerical work. Experience with the response of the special model [Nye I1] leads us
to expect that the impulse response of a glacier will persist for several hundred years. Thus
several hundred ¢(n, x) will be needed if (8) is to be used. On the other hand, we found [Nye IT]
that only a much shorter past history of &; was needed in calculating a:. So we expect that the
g series in (9) will converge much more rapidly than the ¢ series in (8). To calculate, say, the
first 50 g’s we do not have to calculate more than the first 50 €’s. Even though at n = 50
the ¢’s are still very appreciable, we expect that the g’s will be quite small,

Let us now see how these procedures work out in practice.
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6. AppLICATION TO SoUuTH CASCADE GLACIER
(1) Computing the influence coefficients

The above method for finding the e(n, x) and g(n, x) was programmed for an L.LB.M. 709
digital computer. The functions Bo(x), €o(x), Da(x) could be read in in tabular form and the
programme made linear interpolation as necessary. The range of x was divided into 500
intervals and Af was taken as 1 yr. The Bo(x), €o(x), Do(x) functions for South Cascade
Glacier, Washington, U.S.A. have been derived [Nye I11] from the field observations of Meier
and Tangborn (1965). They gave the values of the ¢(n) and g(n) at x = L shown in Table 1

TasLE I. VALUES OF e(n) AND g(n) FOR SOUTH CASCADE GLACIER AND STORGLACIAREN

South Cascade Glacier Storglacidren South Cascade Glacier Storglacidren
n e(n) g(n) e(n) a(n) n e(n) g(n) e(n) g(n)
yr. yr.
1 1084 0-g2241  1-066 0:93815 51 3044 0-00000  7-085 0-00003
2 1-275 —1-08522 1-205 —1-06046 52 2.962 0:00000  7-070 —0-00002
3 1:517 —0-01425 1-359 000296 53 2-881 0-00000  7-050 —0-00006
4 1:808 —o0.00235 1-528 000343 54 2-8o1 0-00000  7:025 —0:00010
5 2:129 002079 1-714 0-00434 55 2-722 000000 6:994 —0-00014
6 2:459 0-04118  1-915 0- 00604 56 2-645 0-00000 6-959 —0-00017
7 2-781 0:04997  2-130 0-00852 57 2-569 0:00000 6-91g —0-00020
8 3-084 004558 2-356 0-01133 58 2-495 0-00000 6-874 —o0-00022
9 3-364 0-03360  2-589 0-01379 59 2-422 0-o0000 6-823 —o0-00024
10 3-b19 0-0198g 2-826 0:01539 6o 2-350 o-o0000 6-768 —o0-00024
11 3-849 0-00758  3-063 0-01588 61 2281 0-00000 6-708 —0-00025
12 4-054 —0-00168  3.299 0-01531 62 2-212 o-00000 6:644 —0-00025
13 4234 —0-00723  3-531 0-01387 63 2145 0-00000 6:574 — 0-00024
14 4-391 —0-00044 3-757 o-01182 64 2.080 o-00000 6:501 —0-00023
15 4-526 —o-00g912  3-977 0+00G41 65 2016 0-00000  6-423 000022
16 4-641 0-00725  4-189 0-00689 66 1954 0-00000 6:341 —0:00020
17 4735 —0:00475 4-393 0-00445 67 1-894 0-00000 6-256 —o0:00018
18 4-812  —o0-00230 4-589 0-00224 68 1-834 0-o0000 6-166 —o0-00016
19 4-872 —0:00034 4-777 000035 69 1777 0-00000 6-074 —0.00014
20 4:016 0:00097 4-955 —0-00116 70 1-721 0-00000 5-978 — 000011
21 4-946 0-00161  5-125 —0-00228 71 1-666 0-00000  5-879 —o0-00009
22 4-963 0-00179 5-286 —o0-00302 72 1:613 0-00000 5-778 —o0-00007
23 4-967 0-00148  5-439 —0-00341 73 1-561 0:00000 5-674 —0-00006
24 4961 0-00106 5:583 —0-00351 74 1-511 0:00000 5-569 —0-00004
25 4944 0-00059  5-719 0-00337 75 1-462 0:00000  5-461 —0-0000%
26 4:919 0-00019  5-847 0-00305 76 1-415 000000 §5-352 —0-00002
o8 4885 —o-00010  5:967 0-00261 i 1369 0-00000  5:241 —0-00001
28 4843 0-00027  6-079 0:00211 78 1324 0:00000  5-129 0- 00000
20 4-795 —0-00033 6:184 —0-00158 79 1-281 0-00000 5017 000000
30 4-741 —o0-00030 6.282 —o0-00107 8o 1-230 0-00000 4903 0-00000
31 4-681 —o-00024 6-373 —o0-00060 81 1-198 0:00000 4790 0-00000
32 4-617 —o-00015 6-458 —o0-00019 82 1-158 0-00000  4-676 0-00001
33 4:548 —o-00007  6-537 0-00014 83 1120 0-00000 4562 0-00001
34 4-476 —o-00001  6-610 0-00041 84 1-082 000000 4448 0- 00000
35 4-400 o-00003 6-677 0- 00060 85 1-046 0-00000  4-335 0-00000
36 4322 o-cooo5  6:738 0-0007% 86 1-011 0-00000  4-222 0+ 00000
37 4242 0-00005  6-795 0-00080 87 0-977 0-00000  4-110 0+ 00000
38 4+159 o-co004  6.846 0-00083 88 0-944 0-00000  3-999 0-00001
39 4:075 a-o00003  6-892 0-00081 89 0-912 o-00000  3-888 0-00001
40 3:990 0-00002  6-934 000077 Go 0-881 000000  3-779 0+ 00001
41 3-004 0-00000  6:971 0-00071 g1 0-852 o-00000  §-672 0-0000T
42 3-817 —o0-00001  7-003 000064 92 0-823 0-00000  3-565 0:00002
43 3730 0-0eo0r  7-031 0-0c056 93 e-795 000000 3-461 0-00002
44 3-643 0-00001  7-054 0-00048 94 0-768 0-00000  3-357 000002
45 3-556 0-00001  7-072 000041 05 0-741 0-00000  4-256 0-0000%
46 3-460 —o0-00001 7-086 0+00033 96 0-716 0-00000  3-156 0-00003
47 3-383 000000 7-096 0-00020 97 o-6gr1 000000 3-058 0-0000%
48 3297 0-00000  7-100 0-00020 98 0668 0-00000  2-962 0-00004
49 g.212 0-00000 7100 0-00014 99 0645 0-00000 2868 0-00004
50 3-127 000000  7-095 a-00008 100 0-622 0-00000  2:776 0-00004
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and plotted in Figures 4a and b. The impulse response e(n) behaves as expected (Fig. 4a).
We recall that e(n) is the response of i, to a pulse of 2, of unit amplitude, say 1 m./yr., lasting
for 1 yr. from n = 0 to n = 1. One year after the start of the pulse &y = 1-084 m. The pulse
now ends. After a further year Ay = 1-275 m., and so on down the table. The fact that 4,
grows at first, rather than decays, is the instability phenomenon treated in Nye [I]. The
annual increment in hy also grows at first, becomes a maximum between n — 6 and 7, and then
diminishes. A itself reaches a flat maximum of 4967 m. at n = 23—the maximum of the
flood wave—and then slowly diminishes. Its fastest rate of fall is at n — 43 to 44. After 100
years, hy is still quite appreciable, 0622 m. This, remember, is the result of 2 mere 1 m. of ice
added to the glacier 100 yr. previously.

The behaviour of g(n) is more complicated (Fig. 4b). g(1) = 0-922 and g(2) = — 1 -085.
After this the variation settles down to an oscillation of decreasing amplitude. The ¢’s diminish
much faster than the ¢’s, as forecast; after n — 46, |g(n)| < 0-00001. The values of g(1) and
£(2) may be understood by considering the artificial situation where the glacier was a perfect
integrator. Then all the e(n) would be simply At(=1). a: would then be &hi/ét, or
a(1) = {h(1)—h(2)}/At. Comparing with equations (g) we see that

g(1) = (M) =1,  g(&) = —(A)F =—1, g(3) —g(4) = ... =o.
Thus the departures of g(1) and g(2) from the values 1 and — 1, and the subsequent oscilla-
tions of g(n), measure the extent to which the glacier is not a perfect integrator.

It is also illuminating to notice that after a pulse of unit height and length A7 the thickness
of new material added to the glacier is At. Hence as At —» 0, ¢(1) and e(2) both approach At.
It then follows from the first two equations of (10) that g(1) — (At) ' and g(2) > —(An
(In the continuum limit the ¢’s in fact involve the first derivative of a d-function.)

The physical meaning of the g(n) sequence is found by regarding the g(n) as a series of
values moving forward in time. The g(n) sequence represents that time sequence of a, which
would be necessary to produce a time sequence of A, in which the first value was 1 and all
others were zero.

As a check on the numbers obtained for the two sequences we find

102 IUli
D) =275, > gln) = 0-00343,
n=1 n 1

compared with

o = 202, Ao = 000342,
[Nye IV, table I, col. (2)]. The first 100 terms thus give excellent agreement with equation
(28) for the ¢’s; but, as is clear from their slow rate of decay, more than 100 ¢’s would be needed
before their sum attained the limiting value p, to g figures.

As a check to see whether Az = 1 yr. was small enough the time interval was halved, but
the pulse length was kept the same, now running from n = o to n — 2. This showed that
the e(n) computed with At — 1 yr. do indeed represent the true response to a unit rectangular
pulse of duration 1 yr. to an accuracy of 0-3 per cent. We conclude that the basic premise,
that we can work solely with annual values, is justified.

(ii) Application of the g(n) lo the terminus record

"The record of the position of the terminus of South Cascade Glacier (Meier and Tanghorn,
1965) (Fig. 5a) consists of observations in 1928,* 1953, and annually from 1955-63. The total
length is thus 35 yr. The record of ai(t) (shown shaded in Figure 5b)t+ extends from 1952 to

* This is a photograph only recently discovered by Dr. Meier.

ais deduced from the mean specific net budget of Meier and Tangborn (1965. table 1T). The mean specific
net budget is the specific net budget averaged over the current glacier surface, while a, is the specific net budget
averaged over the datum glacier surface. Thus a, is cqual to the mean specific net budget, with a small correction
1o take account of the changing arca of the glacier.
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1963 with a gap for 1953/54. It is not unreasonable to apply the foregoing theory and see to
what extent the theoretical a:(t) agrees with that observed. (Some comparison has already
been made in Nye [I1I].)

We must first fill in the gaps in the terminus record /i(£) ; this was done arbitrarily by linear
interpolation for the years 1929-52 and for 1954. The record was also extrapolated back
linearly before 1928. The angle f in equation (4) was taken as the current value of 6- 7 degrees.
Then the g(n) gave the record of a: by equations (9); it is shown in Figure 5b (unshaded).
There is some correspondence with the observed a: record but it is not at all good ; peaks occur
in the right places, but they are all accentuated. The best agreement would be expected for
the most recent points; detailed agreement ought to fall off into the past as the amount of
information in the terminus record diminishes. On this basis the 1962/63 value is discordant.

8 T T T T
Il L &l
‘u ..
. *. Storglaciaren A
6 i
e (n)
5 e " =
a .,
'.
.
x .‘- .-

3 - South Cascade )

. * Glacier :

.
2~ =
.
iiee M S e R T T N S S ._.._"._
| 1 1 1
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n (years)

Fig. ga. Influence coefficients e(n) for the termini of South Cascade Glacier and Storglacidren. The curves also represent the
response to a unit pulse

(The theoretical values for 1953/54 and 1954/55 are replaced by their mean because separately
they depend heavily on the missing /x value for 1954.) The computed a.(t) before 1953 is
linear and reflects the assumed linear retreat.

We have given the direct comparison between theory and observation. Now we must look
a little more closely at possible sources of difficulty. To begin the discussion let us take note of
the following well-known relation which must hold at the terminus of a glacier ending on
land:

I\ = a; cosec 8-+uy, (29)

where [, is the rate of advance measured along the bed, —a; is the rate of ablation measured
perpendicular to the ice surface, ug is the ice velocity parallel to the bed, and @ is the angle
between the upper surface of the ice and the bed. (If ablation occurs at the bottom surface
of the ice an extra term will appear.) This relation is a geometrical requirement and is quite
independent of any theory of the sort we have been dealing with. The reason this simple
formula cannot be used to relate the changing ablation-rate to the retreat of the glacier is that
changes higher up the glacier will continually be propagated down and will change the values
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Fig. gb. Cogfficients g(n) for South Cascade Glacier. The coefficients are shown as a step curve lo emphasize their interpretation
as a sertes of a(n). Scale at left refers lo filled-in curve. The unfilled-in curve (scale at right) shows the same data with scale

enlarged 20 limes
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Fig. yc. Same as Figure 4b, but for Storglaciiren. Scale at left refers lo filled-in curve. The unfilled-in curve (scale at right)

shows the same data with scale enlarged 4o times
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of 8 and . Tt could be said that our purpose in formulating the theory with kinematic waves
and diffusion is precisely to deal with this difficulty. Nevertheless, over short enough periods
6 and u, will stay relatively constant, and then I will simply be linearly related by (29) to a;.
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Fig. 5a. Record of terminus position of South Cascade Glacier. @ observed positions (Meier and Tangborn, 1965), O inler-
polated positions

Fig. 5b. South Cascade Glacier. Time variation of net budgel. Shaded step curve: observed, inferred from data of Meier and
Tangborn (1965). Unshaded step curve : computed from unsmoothed terminus record

Fig. 5c. South Cascade Glacier. Time variation of net budget. Dols show 10 yr. running means of values compuled from terminus
record; open circle, observed g yr. mean

Detailed consideration shows that over a short period like 6 yr. on South Cascade Glacier it
is reasonable to take u; and f as constant. Let us then do so and plot I, against a; for the various
years (Fig. 6). The points show a good deal of scatter. The straight line shown corresponds
to the measured values 8 = 6-7 degrees and u; = 31 -4 ft./yr. (9-6 m.[yr.). The errors shown
for I, are obtained from the errors in the individual [, values given by Meier and Tangborn.
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The average error in the ablation at the snout is perhaps -+ 1 ft./yr. (03 m.[yr.), so one sees
at once that it is the error in measuring /; that is the source of the trouble. The ablation is
measured with ample precision in most years, but the retreat rate is not.

Now South Cascade Glacier ends in a small lake, and it may be that this is the main cause
of the scatter. For, in the first place, the occasional calving of the glacier into the lake causes
abrupt changes in the terminus position; secondly, the geometry of the terminus does not
strictly fulfil the conditions assumed in the derivation of equation (29). In these circumstances
the proper comparison to make would be with the changing height of the ice surface at a

m. (ice)/yr.
-8 -6 -4 <2
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a; fhlice)/yr

Fig. 6. South Cascade Glacier. Showing the poor correlation between —1,, the measured annual retreat of the lerminus, and — ay,
the measured annual ablation at the lerminus

transverse section near the terminus, rather than with the changing terminus position, if these
data were available for a sufficient number of years. Unfortunately they are not. Thus, the
relevance of the theory to the existing data on year-to-year changes of this particular terminus
is questionable. The calculation of a; with the g coefficients depends heavily on the current
retreat rate; it is therefore not surprising that the correspondence in Figure 5b is rather poor.

Although it is evident that the details of the retreat curve cannot be used with much
confidence, the average retreat rate over say 10 yr. is surely still significant. With this thought
we have taken 10 yr. running means of the computed a; values. They are plotted on Figure 5c.
For comparison we show the measured g yr. mean for 1954/55-1962/63. The agreement is
very good. With the short terminus record of South Cascade Glacier we cannot go much
further than this, except to deduce that on average the net budget was only very slightly
negative in the 1930’s and 1940’s. It seems that for year-to-year fluctuations the geometry of
the terminus and calving prevent eflective use of the theory. But for longer-period trends the
comparison between observation and calculation is favourable for the theory.
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7. APPLICATION TO STORGLACIAREN
(i) Computation of the influence coefficients

In Nye [I1V] the observations of Dr. V. Schytt and Dr. E. Woxnerud on Storglacidren,
Kebnekaise, Sweden, were used to deduce Bo(x), €o(x) and Do(x) for this glacier. These
tabulated functions were then used to find the e(r) and g(n) at the snout of Storglacidren
shown in Table I and in Figures 4a and c. The general behaviour of ¢(n) is the same as we have
already seen but the time scale is about twice as long. The maximum of ¢(n), the peak of the
flood wave, is reached at n = 48 (n(48) = 7-100) instead of n = 23 for South Cascade
Glacier. The check whether At = 1 yr. was small enough for e(n) to be a true representation
of the impulse response showed that the maximum error was 0-08 per cent; the figure for
South Cascade Glacier was o-3 per cent; the smaller value for Storglaciéren again reflects
its longer time-scale.

The ¢’s (Fig. 4¢) do not fall off as fast as one would wish:

100 m;)\

Z g(n) = 0-0014 compared with Z g(n) = o = 0-0017.
The error incurred by not using enough g’s depends, of course, on the record of /i ; but if the
record were steady we should obtain 0-0014 A instead of 0-0017 ki as the value of a:, an
error of 18 per cent.

(ii) Application to the terminus record

The terminus record of Storglacidren (Fig. 7a) goes back to 1897 with annual observations
since 1944 (personal communication from V. Schytt; [Ahlmann and others], [1950]. The record
of annual net budget obtained by Dr. Schytt and Dr. Woxnerud (personal communication
from V. Schytt) extends from 1945 onwards.

The correlation between a; and [, implied by equation (29) is again poor (Fig. 8). As with
South Cascade Glacier the scatter is presumably due to difficulties with I, rather than with
ag; but there is no lake to blame in this case. The difficulty seems to be one of sampling and
averaging. Schytt points out (personal communication) that the retreat varies appreciably
across the ice front and that the terminus shows relief in the transverse direction—that is, a
variation both in position and in angle 8. During some summers parts of the front may stay
snow-covered, and again during other summers moraine-covered. Nevertheless, in spite of
these complications, if all quantities in equation (29) are measured at strictly the same point
on the terminus, the equation should hold precisely—apart from bottom melting. It should
also hold precisely if all quantities are averaged, in an appropriate way, across the terminus.
It is presumably the difficulty of finding precise averages from a limited number of points that
prevents a better year-to-year correlation between a; and [., interpreted as averages across
the glacier. A further reason for discrepancy is that the survey of the front is very seldom
simultaneous with the end of the budget year; the error in [; from this source could be about
2 m. (personal communication from V. Schytt).

In this situation it is plain that we must be very cautious in attaching significance to the
observed annual fluctuations in Ji. Bearing this clearly in mind, let us nevertheless see what
happens if, just for the moment, we take the observed /; values literally and fill in gaps by linear
interpolation and extrapolation (not shown in Figure 7a). The result for a; (using 0 = 18-2
degrees) is shown in Figure 7b by the unshaded step curve. The sharp changes at 1908 and
1922 merely reflect the arbitrary assumption made to fill in the /i record.

We now wish to compare this theoretical a:(t) curve with observation. As illustrated in
Nye [IV], the observed a.(x, t) shows some dependence on x from year to year on Storglaciiren,
although when averaged over several years the approximation ax(x, ) = a:(t) is roughly
obeyed. The question arises therefore of how best to interpret the ai(t) of the theory in this
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Fig. 7a. Record of lerminus position of Storglacidren. Dots show observed positions (personal communication from V. Schyit,
| Ahlmann and others,) | 1950]). Curve shows smoothed position used for computation

Fig. 7b. Storglacidren. Time variation of net budget. Shaded step curve : observed, inferred from dala of Schytt and Woxnerud
(personal communication from V. Schytt). Unshaded step curve : compuled from unsmoothed lerminus record

Fig. ye. Storglaciaren. Time variation of net budget. Step curve is compuled from the smoothed terminus record. Open civeles show
10 yr. running means of observed values
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case. One way is to take it as an average down the glacier. However, it seems better to take
it as the a;(t) measured at the terminus. By doing this we preserve the theoretical correlation
between rate of retreat and ablation rate at the terminus for short-period changes—and for
long-term changes it does not matter what point on the glacier is chosen for measuring a.(?).
In this way we may hope to make use of the short-period information in the computed a.—
which we should otherwise have to discard as not meaningful. Accordingly, the a; values shown
in Figure 7b as observed (shaded step curve) are in fact a, at the current glacier terminus.
There is some relation between observed and calculated values. That the relation is not closer
we believe to be due primarily to the difficulty of measuring I; (averaged across the terminus),
as evidenced by Figure 8.*
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Fig. 8. Storglacidren. Showing the poor corvelation between —li, the measured annual vetreat, and —ay, the measured annual
ablation at the lerminus

Again, as with South Cascade Glacier, it scems we must attach little weight to the annual
fluctuations of {,, but we should be entitled to trust the general trend. Therefore we have
drawn a smooth curve (Fig. 7a) through the points for 1897, 1908, 1922 and 1929, and passing
evenly among the 194462 points. The a: step curve calculated from this smooth curve is
shown in Figure 7c. We believe the trends to be significant, but of course the values must
become less reliable as they go into the past, and as the information in the /; record diminishes,
For example, the lincar trend before 1908 is purely the result of the linear interpolation
between 1908 and 1897 and the quite arbitrary linear extrapolation before 1897. The sharp
down-turn in the /; record about 1920 is reflected in the sharp decrease of a, at this time (note,
no time lag). But, interestingly, even though a; returned to zero about 1930 the retreat still
continued, hecause of effects from the early 1920’s propagated down the glacier. Looked at
in another way, if 4, had not risen in the 1930’s the retreat caused by the pulse in the 1920’s
would have accelerated, by the instability effect—for the e(n) show that the greatest rate of
retreat after a negative pulse occurs 10 yr. after the pulse. However, a reduction in a; in the

* The points in Figure 8 fall into two groups, before and after 1954. This is clearly related to the sharp change
in observed recession rate in 1954 seen in Figure 7a. Note also in Figure 7b that all the calculated a: are less
than the observed values before 1954 and are greater than the observed values afier 1954 (1961/62 is an exception).
There is nothing in the observed a: values to account for such a change in recession rate in 1954. We therefore
believe that it is either spurious or due to some effeet outside the present theory,
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late 1930’s was needed to sustain the retreat. The theory finds that a; has been fairly constant
between —o-3 and —o0-7 m, of ice/yr. since 1940. The 10 yr. running mean of the observed
a: (at the terminus) is also shown in Figure 7¢. It agrees quite well. By taking other smooth
curves through the /; data the agreement could probably be made even better.

One complication should be mentioned (personal communication from V. Schytt). Our
theory assumes that the slope of the bed is much the same at the successive positions of the
terminus. Before about 1935-40 the slope of the bed was in fact opposite in sign to the slope
of the ice surface; subsequently it was the same. The main effect, presumably, will be to make
8 larger for the earlier years than the value we have taken. Thus, for these years, we have
underestimated the absolute magnitude of a;.

Our conclusion is that, just as for South Cascade Glacier, the observed year-to-year
fluctuations of the terminus cannot be used with any certainty to obtain the annual budget:
but the general trend of advance and retreat over longer periods gives a mean a, that agrees
well with recent observation. We therefore think that the curve in Figure 7c, with its maximum
in the 1930%, has genuine significance, and extends the budget record back into the period
before it was measured. In saying this we must repeat the proviso that the curve necessarily
becomes less trustworthy as it goes into the past.
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