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ABSTRACT. The paper considers how to calcu la te th e budge t history of a g lacier from the histo ri cal record 
of its advance and re treat. The linea ri zcd diffe renti a l equat ions d eveloped in prev ious papers are used to 
compute a seri es of coeffi cients g(n). The g (n) operate d irec tl y on a record of annually spaced o bservations 
o f the position of the g la cier term inus, to g ive the time variation of net budget. The g (n) are calculated for 

outh Cascade Glacier, W ashington, U.S.A. and for Storglaciilren, Kebnekaise, Sweden, and a re applied 
to the te rminus records of these two g lac iers . The results indicate that the figures for the retreat during 
individual years are not suflicient ly rel iab le to deduce annual net budget changes with confidence. But the 
coarser features of the te rm inus records g ive ne t budget figures that ag ree well with the 9 yr. or 10 yr. mea ns 
o f recent observations. The theory extends the genera lized budget record of Storglac iilren back by severa l 
decades, and shows an increase in net budget in the 1930's th a t is not immed iate ly apparent in th e terminus 
record . 

RESUME. M ethode nwnerique /)0111' dedllire L'histoire du bilan d'lIn glacier de son avance et retrait. Ce trava il donne 
la man iere de calculer I'h istoi re du bila n d ' un g lacier a partir des donnees histo riques de son avance e t d e 
son ren·ait. Les equations differentiell es linearisees dans des publications anterieures sont utilisees pour 
dete rmin er une se ri e d e coeffici ents g(n). L es g (n) ope rent dirce tem ent sur les donnees d 'observations annuellcs 
de la position du front du g lacier pour d onner la variation d e temps du bilan net. L es g (n) sont ca lcules pour 
le South Cascade Glaci er , vVashing ton , U.S.A . e t pour le Storglaciilren, K ebnekai se , Sued e, et sont appliques 
a ux observa tions des fronts de ces deux g lacie rs. Les resultats mo nU'ent que Ies valeurs du retrait pendant des 
annees indi"iduell es ne SOnt pas suffisament va lables pour en deduire les va riations annuell es du bilan net 
a,'ec certitude. Nlais des aspects plus generaux des observations d es fronts donnenl d es va leurs du bilan qui 
correspondent bi en a ux moyenn es des donnees recent es de neuf o u dix a nnees. La lheori e e tend I'observa t ion 
du bilan genera l du Storglaciaren en arrie re d e p lusieurs decad es, e t monlre une augmentation du bilan net 
vel'S 1933, ce qui n 'apparait pas immediatement des observa tions du front. 

Z USAMME:-iFASSUl'C. E ine I!!lIllerische 1l1ethode zur Ermittlung de,. HaushaU,geschichte eilles Cletschers ails seil/ell 
VorstOssen und R iickziigell , Di e Arbeit unte rsucht die M oglichkeitcn zur Berechnung d e l' H a usha lt sgeschichtc 
eines G letschers a us d en h istorisehen Aufzeichnungen seineI' Vorstosse und Ruckzuge. Die linea ri sie rten 
D ifferentialgleichungen, di e in I'rllheren Veroffen tli ehungen aurgestellt wurden, werden zur Berechnung 
einer R eihe ,'on K oeffiz ienten g(n) herangezogen. Die g(ll ) ergeben in Verbindung mit einer Listc von 
jilhrli chen Beobachtu ngen del' Lage des G le tscherendcs unmitlelbar die zc itliehe V erilnderu ng dcs Nelto­
H a usha ltes . Die g(n) werden flir den South Cascade Glacie r, vVashing ton , USA, und fur den Slorg lae iil ren. 
K ebnckaise, Schwcclen , berechnel und a uf die Z ungenbeobachtungcn an diesen beiden Gletschern a nge­
wand!. Die Ergebnisse zc igen, dass di e Zahl en wcrte fur den Ruekzug in einze\nen Jahren n ieht zuve rl assig 
genug sind , um daraus ges iehertc jahrli chc H a ushaltsanderungen ableiten zu konnen. Doeh li efert d el' 
grobere Verl a uf del' Zungenbeobaehtungen .'ietto-Haushaltswen e, di e gut mit d en M itteln der 9- bzw. 
lo-ja hrigen Beobaehtungen tibcrci nstim m en. Die Theori e ftihn die a llgemeinen H ausha llsaufzcichnungen 
am Storglacia rcn um e inige Jahrzchllle z urli ck und weist ei nc Erhohung des Netto-Hausha ltes in den 30er 
J a hren nach. die a us d en Z ungenbeobachtungen nieht unmillclbar crsichtli eh ist. 

I. I NTROO L;CTlON 

A th eoretical treatment has been given in other papers (Nye, 1960, 1963[a], 1963[b] , 
1965) re ferred to as N ye P] , Nye [11] , N ye [Ill] and Nye [IV] respectively, of the relation 
between th e flu ctuations of accumu lation and ablation on a glacier and the associated 
fluctuations of the g lacier itself. As a matter of history, while the variations in accumu lation 
and ablation on glaciers have on ly been systematicall y measured since about 1945 the records 
of the changes in length go back in som e cases for 300 yr. The geomorphologica l record of 
course goes back, with less detai l, into the Pleistocene. The possibility therefore presents itself 
of taking the known reco rcls of changes in length of the g laciers and trying to infer the changes 
of accumulation and ab lation that caused them, thereby considerably extending the record 

* This work was done wh ile the au thor was a visitor at the H ammond Metallurgica l Laboratory, Ya le 
Uni ve rsity, and at the Institute or Geophys ics a nd Plan etary Phys ics, U ni versity of Califo rnia a t Los Angel es . 
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590 JO URNA L OF GLACIOLOGY 

of accumulation- ablation history into the past. The present paper takes the differential 
equations of the theory as its starting point, and considers how to apply them numerically 
to ded uce the input (accumulation- abla tion record ) that gave a g iven output (advance- retreat 
record ) . The calculation sch em e thus developed is applied to the terminus records of South 
Cascade G la cier, "Vashington, U .S.A., and Storglaciaren , K ebnekaise, Sweden , since the 
functions that characterize these two glaciers are known from previous work . 

The method described in N ye [Ill] for solving the sam e problem, which uses a seri es of 
coefficients An, enta ils first filtering out the high frequencies in the terminus record and then 
computing time derivatives. By contrast, the method to be d escribed here works directl y from 
the annually spaced observations of the terminus without fil tering; it is comparatively simple 
to apply and is, in general, much better than the earlier m ethod. However, the m e thod using 
the An series is still useful in theoretical studies where the terminus record is taken as a 
polynomial in the time t. 

2. THE DIFFERENTIAL EQUATIONS 

The notation follows that used in the previous papers. x is the distance down the glacier, 
t is the time. A datum glacier (suffixes 0) is considered in which the accumulation ra te 
(thickness of ice added per unit time) is ao(x). ao(x) is negative in the ablation area. A linear 
perturbation treatment [Nye Ill] leads to the two simulta neous partia l differentia l equations 

oq l ohl 

ax-+ Bo(x) Tt = Bo(x) a, (x, I) , 

where q ,(x, t ) is the perturbation in discharge from the steady datum rate, h,(x, t ) is the 
perturbation in thickness, and a, (x, t ) is the perturbation in accumulation and ablation 
rate . Bo(x), co(x) a nd Do(x) are fixed fun ctions that characterize the pa rticu lar glacier. Bo(x) 
is the datum-state wid th of the chan nel, co(x)/Bo(x) is the veloci ty of kinematic waves of q l 
down the glacier, and Do(x) /Bo(x) is their diffusion coellicient. ( I) arises from th e equa tion 
of continuity, while (2) is a consequence of the assumed nature of the flow process. If q, is 
eliminated between ( J) and (2) we obtain a type of diffusion equa tion 

'(Ph, oh, ch, 
D o--o -(co- D ') - - c ' h, + Boa, = B O--;;-t' ox- 0 ox 0 0 

where the primes denote differentiation with respec t to x. 
W e shall m os tly be concerned with the case where al (x, t ) is independent of x, so we simply 

write it as a, (t ). Thus a, (t ) is the function representing th e variation in accumulation rate 
that we are go ing to try to d educe. It represents the increase in the accumulation rate or the 
decrease in the ablat ion rate from the stead y state value ao(x) at any point on the glacier. 
Other assumptions about the x dependence of a, (x, t ) could be made, but some assumption 
must be made if the basic problem of deducing budget history from advance- retreat history 
is to have a solution. Otherwise we should be trying to d educe a function of two variables 
from a function of on ly one variable. 

The given data, besides the coefficient functions Bo(x), co(x) , Do(x), could be the time 
variations of thickness, that is, of hI at some fixed point on the glacier. What is m ore commonly 
observed, however, is the variation in the position of the end of the glacier. W e denote this 
by II (t ), measuring I, from the end of the datum glacier. I, is geometrically related to hi at 
the wedge-shaped end of the datum glacier (fixed at x = L ) by the equation 

I, (t ) = h, (L, t ) cosec e, (4) 
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METHOD OF I N FERRI N G THE B U DGET HISTORY OF A GLACIER 59 f 
where 8 is the a ngle of the wedge. The problem is then, g iven l, (I ), to find h, (L, t ) from (4), and then find what source function a, (t ) in (3) will produce the required h, (L, I ). 

3. THE USE OF I N FL UENCE COEFFIC IENTS 

The record of l, (I ) and therefore of h, (L , t ) is not, in practice, a contin uous one. Observa­tions are commonly made at the end of the ab lation season at intervals of one year. One way of filling in the gaps in th e record would be to m ake some assumption a bout the winte r-­summer varia ti on between the observed points. If we did this our fin a l result fo r ll, (I) would include the winter- summer variations. W e are not usuall y interes ted in these, a nd in a ny case they would merely refl ect what was assumed for the winter- summer var ia tion of l, (I). T o pursue the same line of thought, the true fun ction l, (I ) includes also very hig h-frequency detail due to individual snowfa ll s, hot days a nd so on, and a ll this is fa ithfull y r e fl ec ted in the true va riation of a, (I ) by the simple relation 

oh, 
21 = a,. 

We do no t have this deta il ed record of h, (L , I), nor do we wish to know the corresponding detail in ll, (I ) . In thi s situa tion we propose to a dopt a different way of filling in th e ga ps in the record . 
W e consider an a rtifi cia l fun ction a, (I) tha t is constant throughout any one (budget) yea r. r t thus consists of a number of steps (Fig. J a ) . Th e co rresponding fun cti on l, (I) consists of a number of nea rl y straight (more acc urately, exponential ) segments, with discon linuiti es in slope (Fig . I b ) . The observations a re taken to be the poin ts p" P o, P3, . . .. T he m ethod of deducing a, (I ) tha t we de cribe is valid when th e time 6.1 = I yr. is suffi cienll y short to be taken as the time interval in a ce rta in finite diffe rence solution of the equa tions. Now it could happen that a time interval of I yr. was too long for thi s to bc truc, but in fac t th e time constants of g laciers a re long enough for the approximation to be a good onc. ('We verify thi s la ter for th e individual glaciers treated. ) This is a fortunate circumstance (0 1· it means that a nnua l observations may be used to infer th e step curve of a, (I ) . Thus we m ay say that if the real a,(I ) actua ll y followed the step curve (a ltho ugh we know it does not), then the resul ting l, (I ) curve would pass through the obse rved positions. That is the precise m eaning of the a, (I ) step curve that we deduce. 
T o a good a pproximation this step curve m ay be taken as the mean over th e year of the 

I yr. 
~ 

(a) (b) 
Fig. 1. (a) Assllmed stej)jllllclion (/ ,(I) . (b) Reslllting resj)ollsejlmction 1, (1) 

https://doi.org/10.3189/S0022143000018621 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000018621


592 J OURNAL OF GLAC I OLOGY 

actual a, (t ) function. This m ean is closely connected with what is usua lly, but wrongly, * 

ca lled the net budget. The net budget of a glacier at the poin t x is, in our notation , 

I+ ~I t +~t 

J [ao(x) + a, (t)] dt = 6.t [ao (x) + (6.t )- 1 J al (t ) dt], 

I 
t 

where 6.t = r yr. T he second term in the right-hand bracket is what we d educe. When added 

to ao (x) and multiplied by 6.t it gives the net budget of the g lacier at the point in ques tion . 

In short, the step function a, (t ) that we d educe gives the time variation in the net budget of 

the glacier. 
The numerical m ethod to be described comes from a finite difference approximation to 

the original differentia l equations . The time derivative a/at is replaced by a centred difference 

using an interval 6.t = T yr. T his means that the equations conta in values of the dependent 

varia bles at one-year intervals; in particula r , they conta in the h, values at the instants of 

observation. As we have just noted , 6.t = r yr. is short enough for this approach to be feasible . 

Let the values of hI at given x, at intervals 6.t, be d enoted h(x, T), h(x, 2), ... , back into 

the past, beginning at a certain instant shown as R in F igure 2 . h(x, n) is thus a continuous 

function of x but a discrete function of time. The values of q ] a re simila rly denoted q (x, I ), 

q (x, 2), . . .. a, (t ), which is now taken as constant over each interval, has va lues a ( r), a(2), . ... 

Note in F igure 2 that these values are placed at the centres of the intervals. W e now assume 

plausibly that 
h(x, r) = e(x, r) a( r)+ e(x, 2) a(2)+ e(x, 3) a(3) + ... , 

h(X, 2) = e(x, r) a(2)+ e(x, 2) a(3)+ .. . , 

h(x, 3) = e(x, r ) a(3) + ... , etc., 

where e(x, I), e(x, 2), .. . , are influence co4Jicients to be determined. Each a(n) in the past, but 

not in the future, will have an influence on h(x, J), a nd since the eq uations a re linear their 

effec ts will be add itive . This gives equation (5) . Equations (6), (7) , etc., make the sam e 

statem ent for h(x, 2), h(x, 3), etc., and, since the theory is concerned with sm all perturbations, 

they use the same set of coefficients e(x, n) . 

We shall show in a moment how the e(x, n) may be computed numerica ll y. For a parti-

.cular x, which could be x = L , we write the equations simply as 

h( r) = e( l ) a( I)+ e(2) a(2)+ e(3) a(3) + 1 
h(2) e( l ) ll (2)+e(2) a(3) + r' (8) 

h(3) e( I) a(3) + ... etc. J 
lime 

> 

q(x, 3) q(x,2) q(x,/} 

h(x, 3) h(x,2) h(x,/} 

I I 
p 

+ • 
o (3) a (2) 0 (f) R 

~ LJt > 
Fig. 2 

* In common usage the word budget means an es timate, oft en itemized , of expec ted income and expense, o r 

an item ized a llotment of funds , for a given period in lhefl/lure. 'vVhat g la ciologists call the n et budget is rea ll y the 

annua l ba lance, or the annual surpl us or deficit, and would be better so called. '''' hy use an eso teri c term when 

plain ones a re to hand ? 
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If these equa tions are now solved for a( T), a(2), .. . , in terms of h(! ), h(2), . . . , we find 

at ! ) = g(!) h( r) + g(2) h(2)+g(3) h(3)+ ... } 

a(2) = g ( T) h(2)+ g(2) h(3)+ .. . 

a(3) = g( T) h(3) + ... etc. 

(9) 

where the g(n) a re a new se t of coeffi cients which, by substitu tion in (8) , satisfy 

g(r) e( r) = I } 

g ( r ) e(2)+ g(2) e( I) = 0 . 

g ( T) e(3)+ g(2) e(2) + g(3) e( I) = 0 etc. 

( 10 ) 

Notice tha t the matrix of g's in (9) has the same form as that of the e's in (8) , each row being 
repeated but displaced by one position . 

Equations ( 10) a llow the g's for a particula r x to be found in success ion once the e's a re 
known , by a simple a lgebraic process. Equations (9) a re the result we need for ou r p rob lem , 
for th ey g ive the sequence a( I), a(2), .. . , di rectly in term s of the observed sequence h( I), 
h(2), . ... 

The g 's a re thus ou r o~ ective, bu t to calculate them we must first find the e's . For th is 
pu rpose fi rs t assume a se t of equations for the q 's simila r to (S), (6), (7) , e te.: 

q (x, I) = f (x, I) a( I) +f (x, 2) a(2)+f (x, 3) a(3) + . . . } ( I I) 

q (x, 2) = f (x, I) a(2)+f (x, 2) a(3)+ . .. (12) 

q (x, 3) = f (x, I) a(3) + .. . e tc . ( 13) 
where the f (x, n) are influence coeffi cien ts fOI" q . Now write the origina l di fferentia l eq uation 
( I) for the point p in F igure 2 and rep lace chl/ct by {h(x, I)-h(x, 2)} /6. t. Approximate 
oq l/ox at p by 

H q ' (x, I) + q'(x, 2)} 

= tf' (x, I) a( I )+ H1' (x, 2)+]' (X, [)} a(2)+ ... , 

where the primes denote differentia tion w ith respect to x . If we now su bsti tu le into equa tion 
( I), using (S) and (6) , a nd eq uate coeffi c ien ls ofa( I), a(2), .. . , we obta in * 

]' (x, I) + A~(x) e(x, I) = 2Bo(x) } 

.I' (x, 2) + K(x) e(x, 2) = - ]' (x, [) + K (x) e(x, [) 

.I' (x, 3) + K(x) e(x, 3) = - 1' (x, 2) + K (x) e(x, 2) etc . 

where K (x) = 2Bo(x) /6.t. ( [4) is th us a fi n ite di fference app roxima tio n to the orig ina l 
d ifferentia l eq ua tion ( I ) . 

N ow write the orig ina l d ifferentia l eq ua tion (2) fo r the poin t R (no t p) in F igure 2, 
substitute from (S) a nd ( I I), a nd eq ua te coe ffi cients of a( I ), a(2), ... , to obta in 

f (x, I) = Co (x) e(x, I) - Do(x) e' (x, 1) } 

f (x, 2) = Co(x) e(x, 2) - Do(x) e' (x, 2) . 

f (x, 3) = co(x) e(x, 3) - Do(x) e' (x, 3) etc. 

( I S) 

R emem ber ing tha t a ll q ua ntities a re fun c tions of x a nd d ropping the x's for brevi tv, t he 
systems of eq uations ( 14) a nd ( IS) may be written 

• H wc assume tha t. instead o r {[, being a funclion or t only, it can be ex pressed as {[, (x, I) = X (x){/(t ), 
where X (x) is a known func tion, thl" onl y d ifference is Iha t the right~ha nd side of' th e fi rs t o f' cqua tions ( 14) is 
28 ,,(x)X (x) instca cl of' 28 0 (.\") . 
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1'( I)+Ke( l ) = Z ( I ) 1 
1' ('2 )+Ke('2 ) = Z ('2 ) , 

l' (3) + Ke(3) = Z (3) etc . 

] (1) = coe(r) - Doe' ( I) 

] ('2 ) = coe('2 )-Doe' ('2 ) 

] (3) = Co e(3) - D o e' (3) 

where the Z (n), which are functions of x, are g iven by the recurrence formu lae 

Z ( I ) = '2Bo } 
( 17) 

Z (n) = '2Ke(n- r) - Z (n- I) (n ~ '2 ) . 

More compactly we may write (16) as 

1' (n) + Ke(n) = Z (n) } 
(n ~ I). 

f (n) = Co e(n) - D o e'(n) 

Eliminating](n) gives the alternative form 

Doe" (n)-(co-D~) e' (n)-(c~ +K) e(n) = - Z (n). ( 19) 
Starting with n = 1 we therefore have a second-order ordinary differential equa tion to solve 
for e(x, I) . When this has been done Z ('2 ) m ay be found from ( 17), and then (19) with 
n = '2 gives an equa tion to solve for e(x, '2 ), and so on. Thus the influence coefficients e(x, r ) , 
e(x, '2 ), ... , may be computed in succession. 

The nature of the above process is made clearer if we notice the physical interpretation of 
the e(x, n) coefficients. If all the a's are zero except for a single one, say a(r), which is equal 
to r, equation (5) shows that h(x , r) = e(x, r). Thus e(x, r) is the h, response at time r to 
a unit pulse a(r ). Ifa unit pulse of aJ occurs as shown in Figure 3, the response h, (t ) at given 
.x will be a certain curve. The height of the curve at time r8.l from the beginning of the pulse 
is e(x, r ) . In short, the sequence e(x, n) represents the hI response at intervals 8.t to a unit 
pulse of a,. Simila rly the sequence](x, n) represents the impulse response of q,. 

The sam e interpretation follows in the continuous case ( 8.t -7 0). Here, by analogy with 
(5) we should write the integral equation 

00 

h, (x, t ) = f e(x, T) al(t - T) dT. 
o 

e(x , r) 

t 

Fig. 3. I nterpretation of the influence coqJicients e(x, r ) as the response to a ullit pulse 
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If we a pply a unit pulse (Dirac 8-function) of a , at time 1- 10, the on ly contribution to the 
in tegra l comes from T = 10 , and we obta in 

h, (x, l ) = e(x,lo). 

T hu e(x, 10) is the response h, at time I to a unit pulse that occurred at time I - to. Similarly 
for J. 

Accordingly, if we wished to find the continuous fun c tion e(x, T) we sho uld try to solve 
equations ( I) and (2) for an impulse of a, occurring at t im e 1 = 0, say. H ence we should 
wish to so lve the equations 

~~ + Bo ~: = Boa, 1 
oe 

J = coe-Do ox 

for initial condition e =J = 0, where we have simply put e for h, andJfor q , in ( I) and (2). 
Now our equations (18) a re merely a finite difference form of this pair of equations. If a 

rectangular pulse of unit height is placed in the first interval (Fig. 3) and if aJ/ox is 
a pproxima ted by Hj' (n) + j' (n- I )} and ae/ot by {e (n) - e(n- I)} /6t, eq uations (18) are 
read ily d erived. What we are doing therefore is nothing more than solving the diffusion 
equa tion (3) in finite difference form, with time interva l 6t, for a rectangu la r pulse of a, of 
unit heigh t a nd duration 6t. 

So far only t has been put in discrete steps, not x. If, however, we write the simplest type 
of cen tral difference for the x derivatives in ( 18) we find we have precise ly the Crank­
Nicholson scheme for in tegration of the diffusion equation (Crank and N icholson, 1947; 
Richtmyer , 1957, p. 93) . This is in fact the scheme we have used . 

4. BO UN DARY CONDITIONS 

It was shown [Nye 11 , Ill] that the fun ctions Bo(x), co(x), Do(x) that cha racterize the 
glacier m ay be taken to have the following behav iour at x = 0 and x = L , the end points 
of the datum glacier : near x = 0, Bo non -zero, Co C"'-' x, D o C"'-' x'; near x = L, Bo non-zero, 
Co non-zero, Do C"'-' L - x. The simul taneous equations ( 18) for a given n then have the sam e 
form as those studied in appendix I ofNye [IV] , with e andJsubstituted for H a nd Q. From 
this previous work we know that a unique solution is determined if we requ ire as bounda ry 
cond itions that e be not infinite at either x = 0 or x = L. T his condition at x = 0 is equi va lent 
to the condition f = o. T he boundary condition at x = 0 gives a one-pa rameter set of 
so lutions which a ll have the same leading term , namely 

«n) 
e(o, n) = ------r; (x = 0), (21 ) 

C o + ll 

«Il), c~ and K a ll being evalua ted at x = o. (H the first two terms in ( 19) a re set eq ual to 
zero th is form is obtained at once. ) At x = L the boundary condition a lso d etermines a one­
param ete r set of so lu tions, but here the leading term is an arbitrary constan t. For a ll members 
of this one-pa l-ameter fam il y 

(co- D;J e' (L, n) +(c~ +K) e(L, n) = «n) (x = L), (22 ) 

C O, D~, c~, K and «n) a ll being evaluated at x = L. (T his form is obtained by setting the 
first term of ( 19) eq ua l to zero .) T he j ustification for these assertions about the behaviour a t 
the end points is given in append ix I of Nye [IV]. 

To summa rize, at x = 0 we have a simple condition on e, namely (2 1) ; while at x = L 
we have a condition invo lv ing a linear combina tion of e a nd e', namely (22 ) . 
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5. SOLVI NG THE FINITE DIFFERENCE EQUATION 

Points on the x axis are numbered backwards from j = I (x = L ) to j = .1 (x = 0 ) at 
intervals 6.x. In finite difference form equation ( 19) at any given n is then 

- A j ej+I+ B j ej - Cj ej- I = -Zj (j = 2,3 ... J - I) (23) 

where Aj = - aj - Yj, 
B j = - 2aj - Nj, 
Cj = - ad -Yh 

aj = (D o) j/( 6.x) \ 
Yj = Vi /26.x, 

Nj = ( c~ +K) j, 
Vi = (co-D~) j. 

Thus the coefficients A j , B j and C j in (23) may be computed once and for all; they do not 
depend on n. 

The boundary conditions give, from (2 I), 

and from (22) 
VI ZI6.X 

VI + Nr 6.X
e2

+ VI + N, 6.x · 
e, = 

To solve the second-order difference equation (23) directly we should need to know two 
starting values at one end. Instead we have one condition at each end. This boundary value 
problem is easily dealt with by the m ethod described by Richtmycr (1957, p. 103- 04) . 

We discuss the one-parameter family of solutions S satisfying the boundary condition at 
x = L U = I). They will satisfy a certain first-order difference equation, say 

j = I,2 ... J - I , 

and our problem is to find Ei and F j so that (26) is true for any member of S. Since both 
(25) and (26) are true for all members of S, it follows that 

V, 
E , = V ' r+ Nr6.x 

By substituting E j_, ej + F j- , for ej_. in (23) and comparing with (26) we find 

E . = Aj F; j _ CjFj- I- Z j 
J B e r' - B CE ' U = 2,3 ···J- I ) . 

j _. ' j ~ j - ' j - 'i j - I 

Since E, and F, are now known from (27) these equations a llow E2 , E3, . . . and F2 , F3, .. •. 

to be computed in succession. 
Equation (26) may now be used to compute the ej in succession, starting with j = J - I 

a nd using the value of e J given by (24) . The method is very efficient. 
Accordingly, the numerical procedure is to solve equation ( 19) by the above method 

for n = r. Z (2) is then found from (17) and equation (19) is solved for n = 2, and so on. 
This de termines the e(x , n). 

Some m ethods of this sort for solving the diffusion equation by forward integration in time 
suffer from instability when the time step is too long in comparison with 6.x (Richtmyer, 
1957, p . 9) · However, the Crank- Nicholson method, which we a re using, is unconditionally 
stable. This important result was secured essentia ll y by ta king central differences a t p in 
Figure 2 rather than, say, one-sided time differences at R. 

W e havc now described how, from the fun ctions B o(x ), co(x ), Do(x), the influence co­
efficients (ex , n) in equations (5), (6), (7) , etc., may be obtained numerically- essentially 
by forward integration of the diffusion equation in time steps of I yr. The next step is to 
invert the e array by equations (10) and thus obtain the g's. This need only be done [or the 
point x that is of interest, normally x = L, the end of the datum glacier. Having found 
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g ( I) , g (2), ... , they may be applied directly to a record of the changes in terminus position 
to deduce the time variation of the net budget. 

A check on the values obtained for the e(n) and g (n) may be made by considering the 
case of a perturbation steady in time. Thus if aI (t) = A say, hI will come to the steady sta te 
H (x) say . In the notation ofNye [Ill] we have 

H (x) = fLO(X) A and A = Ao(X) H (x) (Ao = fLo- I) . 

In the notation of this paper, we put 

a( I ) = a(2) = ... = A and h(I, x) = h(2, x) = ... = H (x) 

in equations (8) and (9) to obtain 

00 00 

H (x) = A L e(n, x) and A = H (x) L g (n, x). 
tl = I n = I 

Thus 
00 00 

L e(n, x) = fLO(X) and )' g (n, x) = Ao(X) . 
11 = 1 

--I 
n = 1 

If fLO(X) and Ao(X) are known by some other method (for example by integra tion of equations 
( I) and (2) with % t = 0, or from the frequency response at zero frequency) these formulae 
give a check on the values of e(n, x) and g (n, x). 

Interpretations may also be given of the other coeffi cients fLl, fL o, ... and AI , A" .. . 
introduced in Nye [Ill]. For example, take the series 

ar (t ) = Aohr (t )+ A,AI (t)+ A, h, (t )+ ... 

and let h, = pt, where p is a constant. Thcn, at t = 0, 

al = AlP. 

But by (9) we find for a, the expression 

g( I ) . 0 - g (2) .p6.t -g(3) . 2p6.t - . .. - g (n) . (n- I ) p6.t -
H ence 

00 

AI = - 6.t ') (n- I ) g (n) . 
4-..< 

11 = 2 

In general, by putting hi = ptm we find 

00 

(- 6.t )m ~ 
Am = I (n- I )rng(n). 

m. 
n = 2 

A similar equation relates fLm with the e(n) . 
A remark about the convergence of thG two series (8) and (9) is in place before we proceed 

to the numerical work. Experience with the response of the special model [Nye 11] lead s us 
to expect that the impulse response of a g lacier will persist for several hundred years. Thus 
several hundred e(n, x) will be needed if (8) is to be used. On the other ha nd, we found [ ye lIJ 
that onl y a much shorter past history of hi was needed in calculating a,. So we expect that the 
g series in (9) will converge much more rapidly than the e series in (8) . To calculate, say, the 
first 50 g' s we do not have to calculate more than the first 50 e's . Even though at n = 50 
the e's are still very appreciable, we expect that the g's will be quite sma ll. 

L et us now see how these procedures work out in practice. 
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6" A pPLICATIO N T O S OUTH CASCADE GLACIER 

(i) Computing the influence coefficients 

T he a bove m ethod for finding the e(n, x) a nd g(n, x) was programmed for a n LB. M" 70 9 
digital computer. The fun ctions Bo(x), co(x) , D o(x) could be rea d in in tabu la r fo rm and the 
programme m ade linear in terpolation as necessary" The ra nge of x was divided in to 500 

interva ls and 6.t was taken as I yr. The Bo(x), co(x) , Do(x) functions fo r South Cascade 
G lacier , W ashington, U "S "A " h ave been derived [Nye Ill] from the fi eld observations of M eier 
and T angborn ( I 965) " They gave the values of the e(n) a nd g (n) a t x = L shown in T a ble I 

T AB L E 1. VALUES O F e(n) AND g(n) FOR SOUTH CASCADE GLACI E R AND S T ORGLACI AREN 

South Cascade GLacier StorgLaciiiren South Cascade GLacier StorgLaciiiren 
Il e(ll ) g (n) e(n) g (n) Il e(l1) g(n) e(n) g(n) 

yr" 

2 

3 
4 
5 
6 
7 
8 
9 

10 

1I 

12 

' 3 
' 4 
' 5 
16 

' 7 
18 

' 9 
20 

2 1 
22 

23 
24 
25 

26 
27 
28 

29 

30 

3 ' 
32 

33 
34 
35 

36 
37 
38 
39 
40 

4 ' 
42 

43 
44 
45 

46 
47 
48 
49 
50 

1 -084 
1 - 2 75 
I - 5 1 7 
1 -808 
2 " 129 

2-459 
2 - 78 1 

3- 084 
3-364 
3 -6 19 

3 "849 
4- 0 5 4 
4 - 2 34 
4-39 1 

4- 526 

4- 64 ' 
4-735 
4 -8 12 

4- 872 

4-9 ,6 

4 -946 

4-963 
4 - 967 
4-96 1 

4-944 

4-9 ' 9 
4- 885 
4 -8 43 
4- 795 
4- 74 ' 

4- 68 1 

4"6 '7 
4-548 

4-476 
4-40 0 

4 - 3 22 

4 -2 42 

4- ' 59 
4- 0 75 
3-990 

3-90 4 
3- 8 17 
3- 730 

3- 6 4 3 
3 -556 

3 -469 
3-383 
3- 2 97 
3- 2 12 

::l- 12 7 

0 - 9 224 ' 
- I -08522 
- 0 -0 14 25 
- 0 "00235 

0 -02079 

0-04 ,, 8 
0- 04997 
0-04558 
0-03360 
0 - 0 198 9 

0 -00758 
- 0-00 168 

- 0-00723 
- 0-00944 
- 0 -009 ' 2 

- 0-00725 
- 0-00475 
- 0- 00230 
- 0-00034 

0-00097 

0 -00 , 6 , 

0- 00 173 
0- 00 14 8 
0 -00 106 
0-00059 

0- 000 19 
- 0-000 10 
- 0- 0002 7 
- 0-00 033 
- 0 -00030 

- 0- 00024 
- 0- 000 15 
- 0 -00007 
- 0 -0000 1 

0-00003 

0-00005 
0-00005 
0-0000 4 
0-00003 
0-00002 

0-00000 
- 0- 0000 1 
- 0-0000 1 
- 0-0000 1 
- 0 -0000 1 

- 0 -0000 1 
o 00000 
0-00000 
0-00000 
0-00000 

1 - 0 6 6 
1 - 20 5 
1 -359 
1-528 

' -7 ' 4 

' "9 ' 5 
2" 130 
2"356 

2-589 
2 -8 2 6 

3 -063 
3- 2 99 
3"53 1 

3- 757 
3-977 

4 - 18 9 
4-393 
4"589 
4" 77 7 
4 -955 

5 - 125 
5- 2 86 

5-439 
5-583 
5"7 19 
5- 847 
5 - 9 67 
6- 0 79 
6- 184 
6-282 

6-373 
6 -458 

6"537 
6 - 6 10 
6-677 

6"738 

6 - 795 
6- 846 
6- 892 

6-934 

6-97 1 

7- 003 
7- 0 3 ' 
7- 0 54 
7- 0 72 

7- 086 

7- 0 96 
7 - 100 
7" 100 
7- 0 95 

0"938 15 
- I -06046 

0 -0029 6 
0-00343 
0-004 34 

0 "00604 
0 -0085 2 

0" 0 " 33 
0" 0 1379 
0- 0 1539 

0 -0 1588 
0 - 0 ' 53

' 
0- 0 1387 
0"0 11 82 
0 -0094

' 
0 -00689 
0"00445 
0 -00224 
0"00035 

- 0-00 11 6 

- 0-00228 
- 0 -00302 
- 0 -0034

' 
- 0 -0035

' 
- 0"00337 

- 0-0030 5 
- 0"0026 1 
- 0'002 1 I 

- 0- 00 158 
- 0- 0010 7 

- 0- 00060 
- 0 -000 19 

0- 000 14 
0-0004

' 
0"00060 

0-00073 
0-00080 
0- 00083 
0"0008 , 
0"00077 

0- 0007 1 
0- 00064 
0" 00056 
0-0004 8 
0-0004 1 

0- 00033 
0"00026 
0" 00020 
0 "0001 4 
0-00008 

yr_ 

5 ' 
52 

53 
5 4 
55 
56 

5 7 
58 
59 
60 

6 1 
62 
63 
64 
65 

66 
67 
68 

69 
70 

7' 
72 

73 
74 
75 
76 
77 
78 
79 
80 

8 1 
82 

83 
84 
85 

86 
87 
88 
89 

90 

9 ' 
92 

93 
94 
95 

96 
g7 
98 
99 

100 

3 -0 44 
2"962 
2 -88 1 
2-80 1 
2"72 2 

2- 645 
2-569 
2"495 
2"422 
2 - 350 

2 - 28 , 
2·2 12 

2" ' 45 
2-08 0 
2 - 0 16 

1- 954 
1 "894 
1 - 834 
I" 777 
I" 72 1 

1 - 666 
1 - 6 13 
1- 5 6 1 

1 -5 " 
1 -462 

' -4 ' 5 
1-369 
1 -3 2 4 
, -28 , 

1 - 2 39 

1 -198 
I " 158 
1 ' 120 

1 -082 
1- 0 46 

1 ·0 11 

0-977 
0-944 
0-9 ' 2 
0-88, 

0"852 
0- 82 3 
0-795 
0-768 

0-74
' 

0" 7 16 
0- 69 ' 
0 -668 

0 - 645 
0 -622 

0 -00000 
0"00000 
0 -00000 
0 -00000 
0 -00000 

0 -00000 
0 -00000 
0 "00000 
0"00000 
0 -00000 

0-00000 
0-00000 
0"00000 
0-00000 
0 -00000 

0 -00000 
0-00000 
0-00000 
0-00000 
0"00000 

0 -00000 
0 -00000 
0-00000 
0 -00000 
0-00000 

0"00000 
0 -00000 
0-00000 
0- 00000 
0-00000 

0-00000 
0-00000 
0 -00000 
0-00000 
0 -00000 

0"0000 0 
0"00000 
0-00000 
0-00000 
0-00000 

0"00000 
0-00000 
0 "00000 
0-00000 
0-00000 

0"00000 
0-00000 
0-00000 
0-00000 
0-00000 

7"085 
7 "070 

7"050 

7- 025 
6-994 

6-95 9 
6 -9 1 9 
6 -874 
6- 823 
6" 76 8 

6 - 708 
6- 6 4 4 
6 - 5 74 
6-50 1 

6"42 3 
6-34 1 
6- 2 56 
6 - 166 

6 -0 74 
5-978 

5"879 
5-778 
5"674 
5 -569 
5 -4 6 1 

5 -352 

5"24' 
5- 129 
5- 0 17 
4-90 3 

4- 790 

4--676 

4-562 

4-448 

4 -335 

4- 222 
4 - 11 0 
3-ggg 
3"888 

3- 779 

3 -672 

3 - 5 65 
3 -4 6 1 

3 -357 
3 "256 

3" 15 6 
3- 0 58 
2 - 9 62 
2-868 
2 - 776 

0"00003 
- 0"00002 
- 0"00006 
- 0 -000 10 
- 0- 000 14 

- 0- 000 17 
- 0-00020 
- 0-00022 
- 0" 0002 4 
- 0- 0002 4 

- 0- 00025 
- 0- 00025 
- 0- 0002 4 
- 0- 0002 3 
- 0 "00022 

- 0 -00020 
- 0-000 18 
- 0"000 16 
- 0" 000 14 
- 0-000 11 

- 0-00009 
-0-00007 
- 0-00006 
- 0" 00004 
- 0"00003 

- 0"00002 
- 0-0000 1 

0-00000 
0-00000 
0-00000 

0-00000 
0 -0000 1 
0- 0000 1 
0"00000 
0-00000 

0 -00000 
0 -00000 
0-0000 1 
0 -0000 1 
0"0000 1 

0-00001 
0-00002 
0-00002 
0-00002 
0-00003 

0-00003 
0-00003 
0-00004 
0-00004 
0-00004 
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and plotted in Figures 4a a nd b . T he impulse response e(n) b ehaves as expec ted (Fig. 4a) . 
W e recall tha t e(n) is the response of hi to a pulse of a, of unit ampli tude, say I m. /yr. , lasting 
for I yr. from n = 0 to n = I . One year a fter the start of the pulse h, = I .084 m. T h e pulse 
now ends. After a further year hi = I · '275 m ., a nd so on down the table. T h e fact tha t hi 
grows a t first, ra ther than d ecays, is the instability phenom enon treated in N ye [1]. T he 
annua l increment in hi also grows at fi rst, becomes a m aximum between n = 6 and 7, and then 
diminishes . hi itself reaches a Aa t maximum of 4 . 967 m. a t n = '23- the m aximum of the 
Aood wave- a nd then slowl y diminishes. Its fas test ra te of fa ll is a t n = 43 to 44. After 100 
years, hi is still q uite apprecia ble, 0· 6'2 '2 m. T his, remem ber, is th e resul t of a m e re I m . of ice 
added to the g lacier 100 yr. previously. 

The behaviour of g(n) is m ore complicated (F ig . 4b) . g( l ) = 0·9'2'2 and g('2 ) = - 1.085. 
A fter this the varia tion set tl es down to an oscill a tion of decreasing amplitude. The g 's diminish 
much faster th a n the e's, as forecast ; a fter n = 46, Ig(n)1 < 0· 00001. T he values of g( l ) and 
g('2 ) ma y be understood by considering the a rtific ia l situat ion where the glacie r was a perfect 
in tegra tor. T h en a ll the e(n) would be simpl y tlt (= I). a, would then be oh, /ct, or 
a( l ) = {h( I )- h('2 )}/tlt . Comparing with equa tions (9) we see that 

g( l ) = ( tl t)_I = I, g('2 ) = _( tll ) - I = - I, g(3) = g(4) = ... = o. 

T hus the d epartures of g( I ) a nd g('2 ) from the values I and - I , and the subsequen t oscilla ­
tions of g(n), m easu re the ex tent to which the g lacier is not a p er fect integra tor. 

I t is al so illumina ting to no tice tha t after a pulse of unit height and length tl t the thickn ess 
of new m ateri a l a dded to the g lacier is tlt . H ence as tlt ~ 0, e( I) and e('2 ) both a pproach tl t. 
It then fo llows from the fi rs t two equa tions of ( 10 ) tha t g( I ) --7 (tlt )- I and g( '2 ) --7 - (tlt)- I. 
(In the continuum limi t the g 's in fact involve the first derivative of a o-fun ction .) 

The physical m eaning of the g(n) sequence is found by regarding the g(n) as a seri es of a, 
values movin g fo rward in time. The g(n) sequence represen ts that time sequence of al which 
would be necessa ry to produce a time sequence of hi in which the first value was I a nd a ll 
o thers were zero. 

As a check o n the num bers obta ined for the two sequences we find 
100 100 

~ e(n) = '275, ~ g(n) = 0·00343, 
1/ = I 

compared w ith 

[N ye IV, tab le I , col. ('2 )] . T he fi rst 100 term s thus give excel len t agreemen t w ith equation 
('28) for the g's; but, as is clea r from their slow rate of decay, more tha n 100 e's wo uld be needed 
before their sum a tta ined the lim iting va lue 1-'-0 to 3 figures . 

As a cheek to see whether tlt = [ yr. was sma ll eno ugh the time interva l was ha lved , bu t 
the pulse leng th was kept the sa me, now run n ing from n = 0 to n = '2. T his showed that 
the e(n) computed w ith tlt = I yr. do indeed represen t th e tr ue response to a u nit rec ta ngular 
pu lse of du ra tion 1 yr. to an accuracy of 0 · 3 per cent. We concl ud e that the basic prem ise, 
tha t we can work so lely with a nn ua l values, is justifi ed . 

(ii ) Application flf the g(lI ) to the terminus record 

The record of the position of the terminus of Sou th Cascade G lacier (Meier a nd T a ngborn , 
1965) (Fig. 5a ) consists of observa tions in 19'28, * 1953, and a nnua ll y from 1955- 63. T he to tal 
leng th is thus 35 yr. T he record of al (t ) (shown shad ed in Figure 5b)t extends fro m ' 95'2 to 

• Th is is a pho togra ph only recen lly d iscovered by Dr. M eie r. 
t (I , is ded uced from the mean spec ific net budge t o f M eie r a nd T angborn ( ' 965. la ble J I) . The mean specifi c 

ne l budge t is th e sp ecifi c ne t budgc t a ve raged over the c ur rent g lacier su rfa ce, while (I, is Ihe spec ifi c ne t budge t 
averaged O\T r th e d a tum glac ier su rface. Thus (I , is equa l 10 the mea n spec ifi c ne l budge l, ", ilh a sma ll correClion 
10 ta ke account o f Ih (' cha nging a rea of the g lacier. 
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1963 with a gap for 1953/54. It is not unreasonable to apply the foregoing theory and see to 
what extent the theoretical al (t) agrees with that observed. (Some comparison has already 
been made in Nye [Ill]. ) 

We must first fill in the gaps in the terminus record ll (t ); this was done arbitrarily by linear 
interpolation for the years 1929- 52 and for 1954. The record was also extrapolated back 
linearly before 1928. The angle 0 in equation (4) was taken as the current value of6· 7 degrees. 
Then the g(n) gave the record of a, by equations (9) ; it is shown in Figure 5b (unshaded ) . 
There is some correspondence with the observed a, record but it is not at all good; peaks occur 
in the right places, but they are all accentuated. The best agreement would be expected for 
the most recent points ; detailed agreement ought to fall off into the past as the amount of 
information in the terminus record diminishes. On this basis the 1962 /63 value is discordant. 

co -. 
'" 

.. : •. .. . . ... 

o· 

00 

...... .. .... .... . 

e ( n ) 

00. 

o. 
00 

Storglacioren 

South Cascade 
G lac ier 

'" . .. . 
'" '" '" ..... 

oL-----------~20~--------~.~O-----------7.60~--------~B~O~--------~IOO 
n (year s) 

Fig. 4a. Influence coif/icients e(n) for the termini rif South Cascade Glacier and Storglaciiiren. The curves also represent the 
response to a unit pulse 

(The theoretical values for 1953/54 and 1954/55 are r eplaced by their m ean because separately 
they depend heavily on the missing I, value for 1954. ) The computed a, (t ) before 1953 is 
linear and reflects the assumed linear retreat. 

We have given the direct comparison between theory and observation . Now we must look 
a little more closely at possible sources of difficulty. To begin the discussion let us take note of 
the following well-known relation which must hold at the terminus of a glacier ending on 
land: 

(29) 

where t, is the rate of advance measured along the b ed , - at is the rate of abla tion m easured 
perpendicular to the ice surface, Ut is the ice velocity parallel to the bed, and 0 is the angle 
between the upper surface of the ice and the bed . (If ablation occurs at the bottom surface 
of the ice an extra term will appear.) This relation is a geometrical requirement and is quite 
independent of any theory of the sort we have been dealing with. The reason this simple 
formula cannot be used to relate the changing ablation-rate to the retreat of the glacier is that 
changes higher up the glacier will continually be propagated down and will change the values 
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9 (n) 

- . 05 

South Cascade Glacier 

n 
o 

10 30 4C 0 

- I - -.0 5 

Fig. 4b. Co~fficients g (n) for SOll tit Cascade Glacier. The co~fficients are shown as a step curve 10 emphasize Iheir illteljlretation 
as a series of a(n) . Scale alleft refers 10 jilled-in curve. The u'!filled-in curve (scale al righl ) shows the same dala wilh scale 
enlarged 20 li lIles 

9 (n) 

Storglo ci iiren 

n 
40 

O~ __ ----------~---------- ~~--------~--~=r--~======== 

-I 

I I 
I I 

.03 

.02 

.0 1 

0 

- . 01 

-.02 

- .03 

Fig . 4C. Same as Figure 4b . buI for Storglaciaren . Scale at lefl refers lo /illed-in curve. T he unjilled-in CIIrve (scale al right) 
shows Ihe same dala with scale enlarged 10 times 
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of 8 and Ut. It could be said that our purpose in formulating the theory with kinematic waves 
and diffusion is precisely to dea l with this difficulty. evertheless, over short enoug h periods 
8 and Ut will stay relatively constant, a nd then 11 will simply be linearly rela ted by (29) to at. 

Year 
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- -I 

i I c- -5 L-----~1~9~3~0-------L------~179~470-------L-------1~9~5~0-------L------~19~6~0------~ E 

Ye ar 

Fig·5a. Record of terminus jJosition of South Cascade Glacier . • observed jJositions (M eier and Tangbom, [965), 0 inter­
JJolated positions 

Fig · 5 b. South Cascade Glacier. Time variation of net budget. Shaded stel' curve: observed, il~fe".edfrom data of Meier and 
Tangbom ([965). Ullshaded step curve: computed from llllsmoothed terminus record 

Fig. 5C. South Cascade Glacier. Time variation of net budget . D ots show 10 yr. running mealls qf values computedfrom termillus 
record,- opell circle, observed 9)" . mean 

Detailed consideration shows that over a short per iod like 6 yr. on South Cascad e G lacier it 
is r easonable to take Ut and (J as constant. Let us then do so and plot 1, against at for the various 
years (Fig. 6) . The points show a good deal of scatter. T he straight line shown corresponds 
to the measured values (J = 6 ' 7 d egrees and Ut = 3 1' 4 ft ./yr. (9.6 m ./yr. ). The errors shown 
for 1, are obtained from the errors in the individual 1, values given by M eier and Tangborn. 
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The average error in the ablation at the snout is perhaps ± 1 ft. /yr. (0' 3 m. /yr.), so one sees 
at once that i t is the error in measuring L that is the source of the trouble . The ab lation is 
measured with ample precision in most years, but the retreat rate is not. 

Now South Cascade Glacier ends in a small lake, and it may be that this is the main cause 
of the scatter. For, in the first place, the occasional calving of the glacier into the lake causes 
ab rupt changes in the terminus position ; second ly, the geometry of the terminus does not 
strictly fu lfil the conditions assumed in the d erivation of equation (29) . In these circumstances 
the proper comparison to m ake would be with the changing height of the ice surface at a 
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Fig. 6. SOlllh Cascade Glacier. Showillg Ihe floor correlalion belween - Z" Ihe measured annual relreal of the lerlllinus, alld - {{t, 

lhe measured anl/ual ablalioll al the lerminlls 

transve rse section near the tcrminus, rather than with the changing term inus position , if these 
da ta were avai lab le for a sufficient number of ycars. Unfortunately they a rc not. Thus, th e 
relevance of the theory to the ex isting data on year-to-year changes of thi , part icular termin us 
is ques tionab le. The calcu lation of {l, with the g coefficients depends heavil y on the currellt 
retreat rate; it is therefore not surprising that the correspondence in Figure 5b is rathcr pOOL 

Although it is evident that the details of the retreat curve can not be used with much 
connden ce, the average re treat rate ovcr say 10 yL is surely still signincant. vVith this though t 
we have taken 10 yr. running means of the computed {l, values. T hey a re plo ttcd on Figure 5c. 
For comparison we show the measured 9 yr. m ean for 1954/55- 1962 /63. T hc agreemcnt is 
very good. With the short terminus record of South Cascade Glacier wc cannot go much 
further than this, except to deduce that on average the net budget was onl y very slightl y 
negative in the 1930's and 1940's. It seem s that for year-to-year flu ctua tions th e geometry of 
the terminus and ca lving prevent effective use of the theory. But for longer-period trends the 
comparison between observation and calculation is favourable for the theory. 
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7. A pPLICATIO N T O STORG LACIAREN 

(i) Computation of the influence coefficients 

In Nye [IV] the observations of Dr. V . Schytt and Dr. E . W oxnerud on Storglacia ren , 
K ebnekaise, Sweden, were used to deduce Bo(x), co(x) and Do(x) for this glacier. T hese 
ta bula ted fun ctions were then used to find the e(n) and g (n) a t the snout of Storglacia ren 
shown in T a ble I and in Figures 4a and c. The general behaviour of e(n) is the sam e as we have 
already seen but the time scale is about twice as long. The maximum of e(n), the peak of the 
flood wave, is reached at n = 48 (n(48 ) = 7' 100) instead of n = 23 for South Cascade 
G lacier. The check whether t,.t = I yr. was small enough fo r e(n) to be a true representa tion 
o f the impulse response showed that the maximum error was 0'08 per cent ; the figure for 
South Cascade Glacier was 0 '3 per cent; the smaller value for Storglacia ren again refl ects 
its longer time-scale. 

The g 's (Fig. 4c) do not fall off as fast as one would wish: 
100 00 

L g (n) = 0'0014 compared with L g (n) = Ao = 0'00 17· 
n = I n = J 

The error incurred by not using enough g's d epends, of course, on the record of hI ; but if the 
record were steady we should obtain 0' 00 14 h, instead of 0'00 [ 7 hI as the value of aI, a n 
error of 18 per cen t. 

(ii) Application to the terminus record 

The terminus record ofStorglaci aren (Fig. 7a) goes back to 1897 with annua l observations 
since [944 (personal communication from V. Schytt; [Ahlma nn and others], [1 950] . The record 
of annua l net budget obtained by Dr. Schytt and Dr. W oxnerud (persona l communication 
from V. Schytt) extends from 1945 onwards. 

The correlation between at and l, implied by equa tion (29) is again poor (Fig . 8) . As with 
South Cascade Glacier the scatter is presumably due to difficulties with II rather than with 
at ; but there is no lake to blame in this case. The difficulty seem s to be one of sampling and 
averaging. Schytt points out (personal communication) tha t the retreat vari es apprecia bly 
across the ice fron t and that the terminus shows relief in the transverse direction- that is, a 
varia tion both in position and in angle (J . During some summers par ts of the front may stay 
snow-covered , and again during other summers mora ine-covered . Nevertheless, in spi te of 
these complications, if a ll quantities in equation (29) are m easured a t strictly the same point 
on the terminus, the equa tion should hold precisely- a part from bottom m elting. It should 
a lso hold precisely if all quantities are averaged, in an appropriate way, across the terminus. 
I t is presumably the difficulty of finding precise averages from a limited number of points that 
preven ts a better year-to-year correlation between at a nd l l' interpreted as averages across 
the glacier. A further reason for discrepancy is that the survey of the fron t is very seldom 
simultaneous with the end of the budget year; the er ror in II from this source could be a bou t 
2 m . (persona l communication from V . Schy tt). 

In this situa tion it is plain that we must be very cautious in a ttaching signifi cance to the 
observed a nnual fluctua tions in ll. Bearing this clearly in mind, let us nevertheless see what 
happens if, just for the m om ent, we take the observed II values literally and fill in gaps by linear 
interpola tion and extrapolation (not shown in Figure 7a). The result for al (using (J = [8 ' 2 
d egrees) is shown in Figure 7b by the unshaded step curve. The sharp changes a t [908 a nd 
1922 m erely reflec t the arbitrary assumption m ade to fill in the l , record . 

W e now wish to compare this theore tical al(t ) curve with observation . As illustra ted in 
Nye [IV] , the observed ar(x, t ) shows some dependence on x from year to year on Storglaeiaren , 
a lthough when averaged over several years the approximation al(x, t ) =, al (t ) is roughly 
o beyed . T he question a rises therefore of how best to interpret the al (t ) of the theory in this 
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Fig . la. Record of lerminus /)osition of Storglaciiiren. Dols show observed /)ositions (j)ersonal communication .from V. Schylt, 
LAhlmann and olhers.] [.'950]). Curve shows smoolhed posilion llsed for computation 

Fig. lb. Slorglaciiiren. T ime varialioll qf nel budget. Shaded ste/) curve : observed, iriferred from dala of Se/l)'U and Woxnerud 
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Fig . 7c. Slorglaciiiren . T ime variatioll of net budget. Slel) curve is compuled/rom the smoothed terminus record. Open circles show 
1 0 y r. running means ~r observed values 
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case. One way is to take it as an average down the glacier. However, it seems better to take 
it as the a, (t ) measured at the terminus. By doing this we preserve the theoretical correlation 
between rate of retreat and ablation rate at the terminus for short-period changes-and for 
long-term changes it does not matter what point on the glacier is chosen for measuring al (t ). 
In this way we may hope to make use of the short-period information in the computed al ­
which we should otherwise have to discard as not meaningful. Accordingly, the al values shown 
in Figure 7b as observed (shaded step curve) are in fact al at the current g lacier terminus. 
There is some relation between observed and calculated values. That the r elation is not closer 
we believe to be due primarily to the difficulty of measuring 11 (averaged across the terminus) , 
as evidenced by Figure 8. * 

at m. (ice) Iyr. 

- 5 -4 -3 - 2 -I 
.----,r----.---~~---_.------~ o 
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Fig. 8. S torglaciiirell . Showing the poor correlation between - L" the measured anlZual retreat, and - at , the measured annual 
ablation at the terminus 

Again, as with South Cascade Glacier, it seems we must attach little w eight to the annual 
fluctuations of 11 , but we should be entitled to trust the general trend. Therefore we h ave 
drawn a smooth curve (Fig. 7a) through the poi nts for 1897, 1908, 1922 and 1929, and passing 
evenly among the 1944- 62 points. The a] step curve calculated from this smooth curve is 
shown in Figure 7c. VVe believe the trends to be significant, but of course the values must 
becom e less reliable as they go into the past, and as the information in the Ll record diminishes. 
For example, the linear trend before 1908 is purely the result of the linear in terpolation 
between 1908 and 189 7 and the quite arbitrary linear ex trapolation before 1897. The sharp 
down-turn in the LI record about '920 is reflected in the sharp decrease of a, at this time (no te, 
no time lag) . But, interestingly, even though a, returned to zero about ' 930 the retreat still 
continued , because of effects from the earl y ' 920's propagated down the g lacier. Looked at 
in another way, if fl, had not risen in the 1930's the re treat caused by the pulse in the 1920'S 
would have accelerated, by the instability effect- for the e(n) show that the greatest rate of 
retreat a fter a negative pulse occurs 10 yr . after the pulse. However, a reduction in a, in tile 

* The points in F igure 3 fa ll into two groups, before and a fte r 1954. This is clea rly related to the sharp change 
in obse rved recession rate in 1954 seen in Figu re 7a. No te a lso in Figure 7b that a ll the calcula ted a, are less 
than th e observed va lues before 1954 and a rc g rea ter than the observed values a fter 1954 ( 1961 /62 is an exception ) . 
There is nothing in the observed a, values to account for such a cha nge in recess ion rate in 1954. We therefo re 
beli eve tha t it is eith er spuri o us or due to some effect outside the present theory. 
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late 1930'S was need ed to sustain the retreat. The theory finds that al has been fairl y constant 
between - 0'3 and - 0'7 m. ofice/yr. since 1940. The 10 yr. running m ean of the observed 
a, (at the terminus) is a lso shown in Figure 7c. It agrees quite well. By taking other smooth 
curves through the l, data the agreement could probably be made even better. 

One complication should be m entioned (personal commun ication from V . Schytt ) . Our 
theory assumes that the slope of the bed is much the same at the successive positions of the 
terminus. Before about 1935- 40 the slope of the bed was in fact opposite in sign to the slope 
of the ice surface; subsequently it was the same. The main effect, presumably, will be to make 
8 larger [or the earlier years than the value we have taken. Thus, for these years, we have 
underestimated the abso lu te magnitude of a,. 

Our conclusion is that, just as for South Cascade Glacier, the observed year-to-year 
fluc tuations of th e te rminus cannot b e used with any certa inty to obtain the annual budget ; 
but the genera l trend of advance and retreat over longer periods g ives a m ean a, that agrees 
w ell with recent observation. We therefore think tha t the curve in Fig ure 7c, with its maximum 
in the 1930' s, has genuine significance, and extends the budget record back into the period 
before it was m easured . In saying this we must repeat the proviso that the curve necessaril y 
becom es less trustworthy as it goes into the past. 
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