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Abstract

We consider the extent of certain complete hypersurfaces of Euclidean space. We prove that
every complete hypersurface in En+1 with sectional curvature bounded below and non-positive
scalar curvature has at least (n — 1) unbounded coordinate functions.
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In this note we consider complete hypersurfaces of Euclidean space that lie en-
tirely within the convex body bounded by certain "cylindrical" hypersurfaces.
The results are interesting because they supply information concerning the extent
of certain complete hypersurfaces of Euclidean space. Results in this direction
have already appeared in [1].

We take a fixed splitting of Euclidean space En+1 = En~k+1 x Ek. The cylin-
drical hypersurface S"~k x Ek of En+1, where S"~k denotes the hypersphere in
the subspace En~k+1, with center at the origin and radius A, bounds a convex
body that we denote by C(n,X,k). Note that C(n,A,0) is the closed ball of
radius A in En+1.

First we prove the following theorem.

THEOREM 1. Let Mn be a complete, oriented, n-dimensional (n > 2) hyper-
surface in En+1, with sectional curvature bounded below, assume Mn is contained
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in a C(n, A, k), with 0 < fc < n - 2. Then

where R stands for the scalar curvature of Mn.

The following lemma, whose proof is an easy consequence of the law of inertia
for quadratic forms, will be used in the proof of the theorem.

LEMMA 1. Let V be an n-dimensional Euclidean space and W be an m-
dimensional subspace ofV. Assume B is a symmetric bilinear form on V with
corresponding self-adjoint linear map A. If for some constant a > 0 and any
nonzero X € W we have B(X,X) > a|X|2, then A has at least m eigenvalues
greater than a.

PROOF OF THEOREM 1. Let ai,...,ak be an or thonormal basis in the

subspace Ek. We consider t he smooth function

where x is the position vector for the points of M and ( , ) stands for the usual
inner product in En+1. It is obvious that / is well defined on M, independently
of the origin we choose on the fixed subspace Ek, and / < A2/2, since M lies in
C(n,X,k).

Using the Gauss formula, we obtain easily for the gradient and hessian of /
that

{X, grad /) = / X, x - ^ ( x , a^ai \ ,
\ t=i /

fc / k \
V2f(X,X) = |X|2 - £<X,a,)2 + (LX,X)(N,x- £>,a i )a t ) ,

i=l \ t=l /

for every tangent vector X, where TV is a chosen unit normal to M, and L stands
for the Weingarten map of M. By setting y = x — J2i=i (x' a«)ai> w e 8et

/ = | |y |2 , grad/ = yT

and
fc

V2/(X,X) = |X|2 - J^iX, "i)2 + (LX,X)(N,y),
i=i

where yr is the component of y tangent to M.
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Applying Omori 's theorem [3], we conclude t h a t there exists a sequence { P m }
of points of M such tha t

(1) lim /(Pm)=sup/
m—oo M

(2) |grad/|(Pm) = | j / T | ( F m ) < i

and

(3) V2f(X,X) = \X\2 - £ ( X , a i )
2 + (LX,X)(N,y) < ±\X\2,

t=i

for any nonzero tangent vector X at Pm. Let supM / — ^A2,; then 0 < Ao < A.
Since \y\2 - \yT\2 + (y,N)2, we get from (1) and (2) that l i m ^ c \(N,y)\(Pm) =
Ao- From the last relation we conclude that, taking a constant positive number
e < Ao, there exists a natural number mo such that for m > mo we have

(4) A0-e<|<2/,JV)|(Pm)<A0.

Now, the subspace Wm = (TpmM) n (E1*)1- of TpmM has dimension di
n — k. Thus for any nonzero X € Wm, we get from (3)

or

Without loss of generality, we can choose a subsequence of {Pm}, which we
denote also by {Pm}, such that at P m we have

( 1 - ±)
(5) (LX,X) > v

 x
 m> \X\2, for any nonzero X € Wm,

Ao
and thus from (3) and (4) we conclude that

(6) -Ao<(?/ , iV)(Pm)<-(Ao-e).

Now from (3) and (6) at Pm and for any nonzero X 6 TpmM we obtain

i \ I x \ 2 l
(LX,X) l E \ a V

i ; \X\2 (V,N)

For the principal curvatures of our hypersurface we adopt the numbering k\ >
••• > kn with corresponding eigenvectors Ei,...,En. Then, since fcj(Pm) =
(LEi,Ei)/\Ei\2, we get from (7) that

(8) liminf ki(Pm) > 0, for all i = 1 , . . . , n.
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Now, Lemma 1 and (5) imply that at any Pm there are at least n — k principal
curvatures, for example fci,..., kn-k, greater than (1 —l/m)/Ao- Because n—k >
2, we can assume that

(9) l imsupki(Pm) < oo, for all i = 1 , . . . , n;

otherwise for the sectional curvature K we would have lim sup K = oo and then
sup i i = oo, since the sectional curvature is bounded below, which makes the
assertion trivial. By using (8) and (9) we obtain

(10) liminf kikj(Pm) > 0, for all i, j = 1 , . . . , n.

Finally at Pm we have

ikj(Pm) + 2 £ E kMPm)
i=l j=n—k+l

i

Ao i=1j=n-k+1
i<3

and using (10), we have

(n - k)(n - k - 1)
supi? > limsupfi > ^ 2 >

or, since Ao < A, swpR > (n — k)(n — k — 1)/A2, which completes the proof of
the theorem.

Easy consequences of Theorem 1 are the following two corollaries which gen-
eralize results due to Leung [2].

COROLLARY 1. Let Mn be a complete, oriented, hypersurface in En+1 with
sectional curvature bounded below. Assume Mn has non-positive scalar curva-
ture; then Mn has at least (n — 1) unbounded coordinate functions. In particular,
M " is unbounded in En+1.

PROOF. We assume that Mn has exactly k unbounded, and thus (n - k)
bounded, coordinate functions. Then Mn is contained in a C(n, A, k). If k <
n - 2, then by Theorem 1 we obtain that supi? > 0, which is a contradiction.
Thus fc > n - 1.

COROLLARY 2. Let Mn be a complete, oriented, hypersurface in En+1 with
sectional curvature bounded below. Assume Mn is contained in a closed ball of
radius A; then
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Theorem 1 does not cover two interesting cases (k — n or n — 1). In fact, the

proof of Theorem 1 breaks down when Mn is between two parallel hyperplanes

(k = n) or when Mn is in the interior of S j x E"'1 (k — n - 1). Can Theorem

1 be true in these two cases?

By making an additional assumption, we can also cover these two cases.

THEOREM 2. Let Mn be a complete, oriented, n-dimensional (n > 2) hy-
persurface in En+1, whose scalar curvature R is bounded below and whose mean
curvature H satisfies \H\ < Ho, where Ho is a positive constant. Suppose Mn

is in a C(n, A, k), with 0 < k < n; then

D (n - k){n -k-1)

The proof of this theorem is based on the following

LEMMA 2. Let Mn be as in Theorem 2. Then either Mn intersects every
hyperplane of En+1, or supi? > 0.

PROOF. Suppose M n has no intersection with a hyperplane II of En+1. So
M" is in a half-space W determined by II. We choose an origin O € W and
let e be the unit normal to II which points in the other half-space. Now, we
decompose e at every point P 6 Mn in a component CT tangent to M n , and a
component normal to Mn:

(11) e = eT + {e,N)N,

where N is a chosen unit normal to Mn.
The height function g = {x, e) is bounded above. For the gradient and hessian

of g we obtain at every P G M that

(12) grad</ = e r ,

(13) V2g(X,X) = {e,N)(LX,X),

where X € TpM and L is the Weingarten m a p with respect to N. The choice

of O and e implies supg < d(O, II) , where d is the euclidean distance in En+1.

From the Gauss equation, by simple algebra, using our hypotheses, we deduce

tha t the sectorial curvature of Mn is bounded in absolute value. Therefore we

may apply Omori 's theorem to the function g. So there exists a sequence {Pm}

of points of M such tha t

m—•oo
(14) lim

m•o

(15)
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and

(16) V*g(X,X) = (e,N)(LX,X)<±\X\2,

for any nonzero X € TpmM.
Since |e| = 1, by using (11) and (15) we get 1 — (e,N)2 < 1/m2, at each Pm,

or

(17) y/l-l/m*<\(e,N)\.

From (17), without loss of generality we may assume that there exists a subse-
quence of {Pm}, which we denote also by {Pm}, so that at each Pm we have

(18) sjl-l/m* < -(e,N) < 1.

Moreover, from (16), (18) for X — Ei (i = 1,... ,n), the eigenvectors of L at
Pm, we get ki(Pm) > -1/Vm2 - 1, for all i, and hence

(19) liminf fci(Pm) > 0, for all i.

Now, the boundedness of R and H imply

(20) limsupifci(Pm) < oo, for alii,

and thus, by using (19), we conclude that liminf kikj(Pm) > 0 and so supi? > 0.

PROOF OF THEOREM 2. This is a special case of Theorem 1 for k < n - 2,
and an immediate consequence of Lemma 2 for k = n or n - 1.

An immediate consequence of Theorem 2 is the following

COROLLARY 3. Let Mn be a complete, oriented minimal hypersurface in
En+1, with scalar curvature bounded below. Then either supi? = 0, or M" has,
in any coordinate system, n + 1 unbounded coordinate functions.
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