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Some Convexity Results
for the Cartan Decomposition

P. Graczyk and P. Sawyer

Abstract. In this paper, we consider the set S = a(eXKeY ) where a(g) is the abelian part in the Cartan

decomposition of g. This is exactly the support of the measure intervening in the product formula for

the spherical functions on symmetric spaces of noncompact type. We give a simple description of that

support in the case of SL(3, F) where F = R, C or H. In particular, we show that S is convex.

We also give an application of our result to the description of singular values of a product of two

arbitrary matrices with prescribed singular values.

1 Introduction

Let G be a semisimple noncompact connected Lie group with finite center, K a maxi-
mal compact subgroup of G, and X = G/K the corresponding Riemannian symmet-
ric space of noncompact type. We have a Cartan decomposition g = k + p and we
choose a maximal abelian subalgebra a of p. In what follows, Σ corresponds to the

root system of the pair (g, a) and Σ
+ to the positive roots. This implies that we have

chosen a set of simple positive roots α1, . . . , αr where r = dim a is the rank of the
symmetric space. We have the root space decomposition g = g0 +

∑

α∈Σ
gα. Recall

that k, the Lie algebra of K, can be described as

k = span {Xα + θ(Xα) : Xα ∈ gα, α ∈ Σ
+ ∪ {0}}

where θ is the Cartan automorphism. Let n =
∑

α∈Σ+ gα and n̄ =
∑

α∈Σ+ g−α =
∑

α∈Σ+ θ(gα). Denote the groups corresponding to the Lie algebras a, n and n̄ by
A, N and N̄ respectively. We have the Cartan decomposition G = KAK and the
Iwasawa decomposition G = KAN . Let a+

= {H ∈ A : α(H) > 0 ∀α ∈ Σ
+} and

A+
= exp(a+). In particular, for any g ∈ G, g = k1ea(g)k2 where a(g) ∈ a+ is uniquely

determined by g.
If λ is a complex-valued functional on a, the corresponding spherical function is

φλ(eH) =

∫

K

e(iλ−ρ)(H(eH k)) dk

where g = keH(g)n ∈ KAN and ρ = (1/2)
∑

α∈Σ+ mαα (mα denotes the multiplic-
ity of the root α). A spherical function, like any K-biinvariant function, can also be
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Convexity Results for the Cartan Decomposition 1001

considered as a K-invariant function on the Riemannian symmetric space of non-
compact type X = G/K. Naturally, such a function is completely determined by its

values on A (or on A+). The books [5, 6] constitute a standard reference on these
topics.

In [6, (32), page 480], Helgason shows that a Weyl-invariant measure µX,Y exists
on the Lie algebra a such that

φλ(eX)φλ(eY ) =

∫

a

φλ(eH) dµX,Y (H)

(unlike us, Helgason states his results at the group level).

It is known [6] that

φλ(eX)φλ(eY ) =

∫

K

φλ(eXkeY ) dk.

The measure µX,Y satisfies then

(1)

∫

K

f
(

a(eXkeY )
)

dk =

∫

a

f (eH) dµX,Y (H)

for all continuous functions f on a which are biinvariant under the action of W .
The support of the measure µX,Y is included in C(X) + C(Y ) where C(H) is the

convex hull of the orbit of H under the action of the Weyl group W .

The natural question whether the measure µX,Y is absolutely continuous with re-
spect to the Lebesgue measure on a, i.e. whether we have a “product formula”

(2) φλ(eX)φλ(eY ) =

∫

a

φλ(eH)k(H,X,Y ) dH

was answered positively when X ∈ a+ or Y ∈ a+ by Flensted-Jensen and Koorn-

winder ([1, 7]) in the rank one case and by the authors ([3]) in the general case. Very
little is known about the properties of this density, in particular its support, except
the rank one case and the complex case.

In rank 1 case the support of µX,Y was computed by Flensted-Jensen and Koorn-

winder ([1, 7]). This is the union of the segment [|X − Y |,X + Y ] and its reflection
with respect to 0 (X,Y ≥ 0).

In [2], we found the support of µX,Y in the case of SL(3,C):

supp(µX,Y ) ∩ a+ =
(

C(X) + Y
)

∩
(

X + C(Y )
)

∩ {H : H3 ≤ X2 + Y2 ≤ H1}.

This was obtained by using an explicit expression for the density of the measure µX,Y .
The objective of this paper is to study the support of the W -invariant measureµX,Y

or, equivalently, the intersection of supp µX,Y with the closed positive Weyl chamber

a+.
It is clear by (1) that the support of µX,Y is included in the union of the translates

of a(eXKeY ) under the action of the Weyl group. These sets are in fact equal. We
recall first a result of [3].
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1002 P. Graczyk and P. Sawyer

Lemma 1 Suppose X, Y ∈ a+. Let F : K 7→ a+ defined by F(k) = a(eXkeY ). Then
there exists a closed set C ⊂ K of Haar measure 0 such that F is analytic and dF is

surjective on K \C.

Proof This is a consequence of [3, Lemma 8].

Theorem 2 Suppose X, Y ∈ a+. Then supp(µX,Y ) ∩ a+ = a(eXKeY ). Consequently,
supp(µX,Y ) = W · a(eXKeY ).

Proof Let F and C be as in Lemma 1. Suppose that H ∈ a(eXKeY ) and let U be

any neighbourhood of H in a+. Then V = F−1(U ) is an open set which cannot be
included in C so there is a nonempty open set V0 ⊂ V such that F is analytic and dF
is surjective on V0. If we refer to (1), it follows easily that H ∈ supp(µX,Y ).

In this paper, we compute S = a(eXKeY ) (and therefore, by Theorem 2, the sup-
port of µX,Y ), for some non-exceptional rank 2 Riemannian symmetric spaces. We
aim to gain a better comprehension of harmonic analysis on these spaces and we be-

lieve that our results provide useful indications for the general symmetric space case
(see [4, 9]). In Section 2, we give a simple geometric description of the set a(eXKeY )
for G = SL(3, F) where F = R, C or H (the quaternions).

In all these cases S = a(eXKeY ) is the convex hull of the set I described in Def-
inition 9. Our result for the Cartan decomposition is a counterpart of the Kostant

convexity theorem for the Iwasawa decomposition.

We end with an application of our result which gives necessary and sufficient in-
equalities on the singular values of the product of two complex (or real) 3 × 3 ma-
trices. Only some necessary conditions (Gelfand-Naimark inequality, see [8]) were
known before.

2 The Set S = a(eXKeY ) on SL(3, F)

Definition 3 Let W = M ′/M be the Weyl group (M ′ ⊂ K is the normalizer of a in
K while M ⊂ K is its centralizer). If α is a root then sα ∈ W is the reflection with
respect to the hyperplane {α = 0}.

When appropriate we will not distinguish between w ∈ W and w ∈ M ′ ⊂ K. On

the other hand, to denote the action of w on X ∈ a, we will write wX. We then have
ewX

= weXw−1 ([5, VII, Proposition 2.2]).

We will write T = W X + WY = {w1X + w2Y : w1,w2 ∈ W} and T0 = T ∩ a+.

We define S = a(eXKeY ).

If α is a nonzero root then Kα will denote the subgroup of K with Lie algebra
kα = {Xα + θ(Xα) : Xα ∈ gα}.

Lemma 4 If w1X + w2Y ∈ a
+ then F(w−1

1 w2) = w1X + w2Y . In particular we have
T0 ⊂ S.

Proof If w1X + w2Y ∈ T0 then a(eXw−1
1 w2eY ) = a(ew1Xew2Y ) = w1X + w2Y .
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Denote by B(· , ·) the Killing form on g. Define Aα ∈ a by B(H,Aα) = α(H) for
all H ∈ a. Denote A ′

α = Aα/α(Aα) so that α(A ′
α) = 1.

Lemma 5 Let α be a nonzero root. Write Zα = Xα + θ(Xα) for Xα 6= 0 ∈ gα. Then
we have

exA ′

αetZαeyA ′

α = k1(t)esA ′

αk2(t), t ∈ R

with k1(t), k2(t) ∈ Kα and s taking all values from the closed interval between |x − y|
and |x + y|.

Proof This is a rank-one reduction (the algebra generated by Aα, Xα and θ(Xα) being
isomorphic to sl(2,R)). We use then [1, page 256].

Definition 6 Let C1, . . . ,C|W | ⊂ a be pairwise disjoint Weyl chambers, C1 = a+.
For each i, there exists a unique element wi ∈ W such that wi(Ci) = a+ ([5, Chap-
ter VII]). We define the projection π of a to a+ by

π(H) = wi(H) when H ∈ Ci .

Note that the definition still holds when H ∈ C i∩C j ([5, Chapter VII]). When X ∈ a,
we have a(eX) = π(X).

Let us denote by H1H2 the closed segment connecting H1 ∈ a and H2 ∈ a.

Proposition 7 Suppose w1X + w2Y ∈ T0 and let α be a positive root. Then the image
Iα,w1,w2

of t 7→ a(ew1XetZαew2Y ) is the projection π of:

1. the segment I = (w1X + w2Y )
(

w1X + sα(w2Y )
)

if α(w1X) ≥ α(w2Y ),

2. the segment I = (w1X + w2Y )
(

sα(w1X) + w2Y
)

if α(w1X) ≤ α(w2Y ).

Proof Note that α(w1X + w2Y ) ≥ 0 since w1X + w2Y ∈ a+. Now using Lemma 5
and the fact that Kα centralizes the elements of a which are in the hyperplane α = 0,
we have

a(ew1XetZαew2Y ) = a
(

ew1X−α(w1X)A ′

αeα(w1X)A ′

αetZαeα(w2Y )A ′

αew2Y−α(w2Y )A ′

α
)

= a
(

ew1X−α(w1X)A ′

αk1(t)esA ′

αk2(t)ew2Y−α(w2Y )A ′

α
)

= a
(

k1(t)ew1X−α(w1X)A ′

αesA ′

αew2Y−α(w2Y )A ′

αk2(t)
)

= a(ew1X−α(w1X)A ′

α+w2Y−α(w2Y )A ′

α+sA ′

α)

with s between α(w1X) + α(w2Y ) and |α(w1X) − α(w2Y )|.

Remark 8 The image Iα,w1,w2
belongs to S since

a(ew1XetZαew2Y ) = a(eXw−1
1 etZαw2eY ).

It does not depend on the choice of 0 6= Zα ∈ kα. The set Iα,w1,w2
is a segment or is a

connected finite union of segments, the original segment starting at w1X +w2Y being
reflected each time it meets a wall of a+.
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Definition 9 Let I ⊂ S be defined as

I =

⋃

α>0,w1,w2∈W

Iα,w1,w2
,

the network of all segments composing the images Iα,w1,w2
created according to Prop-

osition 7.

Definition 10 Let K0 =
⋃

α>0 W KαW .

Remark 11 Note that when the Weyl group acts transitively over the roots (which

is true in the case of the root system An) then W KαW does not depend on the choice
of nonzero root, i.e. K0 = W KαW for any fixed root α. Actually, when α and β are
two different roots and Ad(w)α = β, then Ad(w)Zα ∈ kβ .

Note also that a(eXkeY ) ∈ I if k ∈ K0. Indeed,

a(ew1XetZαew2Y ) = a(eXw−1
1 etZαw2eY ).

A “typical” example of the network I is given in Figure 1.

X + Y

O

O

O

O

O

O

Figure 1: The network I inside a+ (the points of T0 are shown as O)

If I = H1H2 is a closed segment in a we denote by I◦ = I \ {H1,H2}, the segment

I deprived of its endpoints. We extend the same notation for a π-projection of a
segment:

π(I)◦ := π(I◦).

The projections of H1 and H2 (the vertices of I) by π will be called the vertices of π(I).
Given Z ∈ kα, we denote by wZ,w1,w2

the Weyl group element such that

a(ew1XeZew2Y ) = π(H) = wZ,w1,w2
H

with H ∈ I as in Proposition 7.

Lemma 12 Let 0 6= Xα ∈ gα, Hα = [Xα, θ(Xα)] and Zα = Xα + θ(Xα). Suppose
that w1X + w2Y ∈ a+.
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1. If Zα is such that a(ew1XeZαew2Y ) ∈ I◦α,w1,w2
∩ a+, then for |t| small enough,

a(ew1XetZαeZαew2Y ) = a(ew1XeZαew2Y ) + γ1twZα,w1,w2
Hα + O(t2)

with γ1 6= 0.
2. For |t| small enough, a(ew1XetZαew2Y ) = w1X + w2Y + γ2t2Hα + O(t3) with γ2 6= 0.

Proof Similarly as in the proof of [3, Corollary 14] or in the proof of Proposition 7
above, we may write w1X = aHα + X ′ and w2Y = bHα +Y ′ where α(X ′) = α(Y ′) =

0. The fact that α(w1X) 6= 0 and α(w2Y ) 6= 0 implies that a 6= 0 and b 6= 0. Using

again the fact that eX ′

and eY ′

commute with elements of Kα, we see that in order
to prove the 1. and 2. of the lemma, it is enough to compute the limited Taylor
expansion of eaHαetZαebHα at t = 1 and at t = 0 respectively.

The Lie algebra generated by Hα, Xα and θ(Xα) is isomorphic to sl(2,R). Indeed,

Xα corresponds to the matrix cE1,2 with c =
√

−α(Hα)/2 6= 0, θ(Xα) to −cE2,1 and
Hα to −c2(E1,1 − E2,2) (see [3, Proposition 13]). Note that the constant c may take
any strictly positive value when Zα (and therefore Xα) varies.

We now work in SL(2,R). Let eaHαetZαebHα correspond to

gt = k1(t)ea(t)c2(E1,1−E2,2)k2(t)

(the Cartan decomposition in SL(2,R)). We basically want the limited expansion of
a(t) since

a(ew1Xe(t+h)Zαew2Y ) = a(ew1XetZαew2Y ) + a ′(t)hwHα + a ′ ′(t)h2wHα + O(h3)

where w ∈ W comes from an eventual projection to a+.
Note that a(0) = |a + b| > 0. We compute

f (t) := tr gt g
T
t = 2 sin2(ct) cosh

(

2(a − b)c2
)

+ 2 cos2(ct) cosh
(

2(a + b)c2
)

,

f ′(t) = −4c sin(2ct) sinh(2ac2) sinh(2bc2),

f ′ ′(t) = −8c2 cos(2ct) sinh(2ac2) sinh(2bc2)

and note that f (t) = 2 cosh
(

2c2a(t)
)

. This means that

f ′(t) = −4 sinh
(

2c2a(t)
)

a ′(t)

and therefore that a ′(0) = 0. Similarly, computing f ′ ′(0) shows that a ′ ′(0) 6= 0.
This proves 2.

Now, a ′(t) = 0 implies f ′(t) = 0. On the other hand, f ′(t) = 0 if and only if
2 sin(ct) cos(ct) = 0. This implies that f (t) = 2 cosh

(

2(a − b)c2
)

i.e. a(t) = |a − b|
or f (t) = 2 cosh

(

2(a + b)c2
)

i.e. a(t) = |a + b|.
It follows that the function a(t) has only two extremal values |a−b| and |a+b|. We

not only prove directly the result of [1] on the form of S in rank 1 case but we show
that the values of the function a(t) run over the whole projected segment Iα,w1,w2

from
one vertex to another, without any interior reflection points.
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Corollary 13 Suppose H0 ∈ T0 ∩ a+. Then any point in any sector of less than π with
vertex H0 and edges in I which is close enough to H0 belongs to S (refer to Figure 1).

Proof We have H0 = a(ew1Xew2Y ) and consider g(t1, t2) = a(ew1Xet1Zα1 et2Zα2 ew2Y )

where α1 and α2 correspond to the sides of the sector. We have g(t1, t2) = H0 +
ψ1Hα1

t2
1 +ψ2Hα2

t2
2 + O(‖t‖3) with ψ1 6= 0 and ψ2 6= 0. The absence of a mixed term

in t1t2 follows from the invariance g(±t1,±t2) = g(t1, t2) as shown in [3, Lemma 17].

We will say that R is an intersection point in I if R ∈ I◦γ,w1,w2
∩I◦γ ′,w ′

1 ,w
′

2
with I◦γ,w1,w2

6=
I◦γ ′,w ′

1 ,w
′

2
(recall that I◦γ,w1,w2

is equal to Iγ,w1,w2
without its extremities). In particular,

R 6∈ T0.

Up to this point, the results of this section apply for a general pair (G,K). From

now on, we will be assuming that G = SL(3, F).

Lemma 14 Given any X, Y ∈ a+, the set X + WY intersects at most 3 Weyl chambers
or the set W X + Y intersects at most 3 Weyl chambers (the Weyl chambers a+, sαa+ and
sβa+ where α(H) = H1 − H2 and β(H) = H2 − H3).

Proof Let A1, . . . ,A6 be the points of X + WY starting from A1 = X + Y and going

clockwise.

Then X + WY intersect more than 3 Weyl chambers if and only if A4 is below α +
β = 0 i.e. if and only if (α+β)(A4) < 0. Noting that A4 = [X1,X2,X3]+[Y3,Y2,Y1],
(α + β)(A4) < 0 means that X1 + Y3 < X3 + Y1 i.e. X1 − X3 < Y1 − Y3.

Applying the same reasoning to Y + W X, we can conclude that the corresponding
vertex is above α + β = 0 i.e. that Y + W X intersects at most 3 Weyl chambers.

Let the points A1, . . . ,A6 be as in the proof of Lemma 14 in the case X1 − X3 >
Y1 − Y3 and let it be the elements of Y + W X otherwise.

Let C(X,Y ) =

{

∂
(

X + C(Y )
)

∪ A1A4 ∪ A2A5 ∪ A3A6 if X1 − X3 > Y1 − Y3,

∂
(

Y + C(X)
)

∪ A1A4 ∪ A2A5 ∪ A3A6 otherwise.

In the following proposition we explain in which way, by a simple geometric trans-
formation, it is possible to get the network I from the set C(X,Y ).

Proposition 15 Let C ′(X,Y ) = π
(

C(X,Y )
)

and D = π({Ai}i=1,...,6) (the projec-

tion π was defined in the Definition 6). Remove any segment of C ′(X,Y ) joining a
point of D and the wall {α = 0} or {β = 0}. Then the image of C(X,Y ) by all these
transformations is equal to I and T0 = D.

Remark 16 Suppose that the set C(X,Y ) intersects the wall {α = 0} of a+. The
projection π intervening in the Proposition 15 consists in “folding” symmetrically

along α = 0 the portion which is in {α < 0} into a+. The resulting set is
(

C(X,Y )∪
sαC(X,Y )

)

∩ a+.

Apply the analogous “folding” operation if the set C(X,Y ) intersects the wall
{β = 0} of a+. We obtain in this way the set C ′(X,Y ).
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For the geometrical meaning of the Proposition 15 refer to Figure 2 (the vertical
axis α = 0 and the axis β = 0 are shown as dotted lines, the points of T0 are marked

by ◦ and the point A1 = X + Y is always the upper right vertex).

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Figure 2: C(X,Y ), C(X,Y ) ∪ sα(C(X,Y ) ∩ {α < 0}), C ′(X,Y ) and I

Proof We can assume without loss of generality that X1 − X3 > Y1 − Y3. Call the
constructed set J. If we consider Proposition 7, it is clear that J ⊂ I.

Let H = w1X + w2Y ∈ T0 ∈ a+. We only need to show that H is one of the

Ais or a reflection of one of the Ais by sα or sβ . In other words, we have to show
that w1 ∈ {id, sα, sβ}. The possibilities to eliminate are w1 = sαsβ , w1 = sβsα
and w1 = sαsβsα. In the first and third case, the first entry of H would be H1 =

X3 + Yi . There is one entry of H of the form X1 + Y j . Since H ∈ a+, we have

0 ≤ X3 + Yi − X1 − Y j = Yi − Y j − (X1 − X3) ≤ Y1 − Y3 − (X1 − X3) < 0 which
is absurd. In the second case, the last component of H is X1. A similar reasoning also
leads to a contradiction.

Lemma 17 All the intersection points belong to π(A1A4), π(A2A5) or π(A3A6).

Proof We can assume without loss of generality that X1 − X3 > Y1 − Y3, that is,
that X + C(Y ) intersects at most 3 Weyl chambers and therefore that C(X,Y ) =

∂
(

X + C(Y )
)

∪ A1A4 ∪ A2A5 ∪ A3A6. We distinguish the following cases:

(1) X + C(Y ) ⊂ ā+.
(2) X + C(Y ) intersects a+ and {α < 0} but not {β < 0}.
(2 ′) X + C(Y ) intersects a+ and {β < 0} but not {α < 0}.

(3) X + C(Y ) intersects a+, {α < 0} and {β < 0}.

The lemma is clear in case (1). The intersection points are then the vertices of

the central triangle of C(X,Y ). They are given by R1 = [X1 + Y2,X2 + Y2, ∗], R2 =

[∗,X2 +Y2,X3 +Y2] and R3 = [X1 +Y2, ∗,X3 +Y2] (the coordinate ∗ is determined by
the fact that the trace is zero) Refer to Figure 3 (on this and on the following figures
the set I is drawn in boldface).

https://doi.org/10.4153/CJM-2003-040-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-040-x


1008 P. Graczyk and P. Sawyer

O

O

O O

O

O

Figure 3: Case (1)

In the case (2), we verify that only one of the points Ri , say R0, may not belong to
a+. In fact R0 is equal to R2 or R3. By the construction of I given in the Proposition 15,
it follows that π(R0) is not an intersection point.

The new intersection points may only appear when the reflected part sα
(

C(X,Y )∩
{α < 0}

)

intersects some segments of C(X,Y )∩ a+ different from the exterior edges

of C(X,Y ). These segments are among π(A1A4), π(A2A5) and π(A3A6). The case
(2 ′) is similar by symmetry. Refer to Figure 4.

O

O

O O

O

O

O

O

O O

O

O

Figure 4: Case (2)

Case (3) boils down to considering separately cases (2) and (2 ′) because the parts

of C(X,Y ) which are reflected by sα and sβ while constructing I are disjoint. This
follows from the fact that the hypothesis X1 − X3 > Y1 − Y3 is equivalent to the in-
equality X1 + Y3 > X3 + Y1 between the second entries of A ′

5 = π(A5) = sα(A5)
and A ′

3 = π(A3) = sβ(A5), which in turn means that the point A ′
5 is situated

above and the point A ′
3 below a line H2 = c. Hence this line separates the sets

π
(

C(X,Y ) ∩ {α < 0}
)

and π
(

C(X,Y ) ∩ {β < 0}
)

. Refer to Figure 5.

Lemma 18 and Theorem 19 will only apply in the case of F = R. As we will see
in Proposition 23, this will not be an impediment in proving our main result for
SL(3, F).
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Figure 5: Case (3)

Lemma 18 Restricting ourselves to the case F = R, let k = eθ1Zα+β eθZαeθ2Zα+β . Then
k ∈ K0 if and only if one of the following is true.

1. sin θ = 0.

2. sin θ = ±1 and sin θ1 = 0 or ±1.
3. sin θ = ±1 and sin θ2 = 0 or ±1.
4. sin θ1 = ±1 or 0 and sin θ2 = ±1 or 0.

Proof It is easy to check that these conditions give elements of K0.
To prove the inverse statement, let us assume that k ∈ K0 and sin θ 6= 0. Writing

the product k = eθ1Zα+β eθXαeθ2Zα+β explicitly, we have

k =





cos θ1 cos θ cos θ2 − sin θ1 sin θ2 − cos θ1 sin θ − cos θ1 cos θ sin θ2 − sin θ1 cos θ2

sin θ cos θ2 cos θ − sin θ sin θ2

sin θ1 cos θ cos θ2 + cos θ1 sin θ2 − sin θ1 sin θ − sin θ1 cos θ sin θ2 + cos θ1 cos θ2



.

The elements of K0 are obtained from the elements of Kα, Kβ and Kα+β by permu-
tations of rows and columns. It follows that any row and any column of k contains

at least one zero. Also, there is one row and one column with elements {±1, 0, 0}. It
follows that there is at least a 0 on the second row.

Suppose that, say, cos θ = 0. Considering different possible situations of ±1 we
deduce that there is another 0 on the same column or row. This forces cos θ1 = 0 or
cos θ2 = 0 or sin θ1 = 0 or sin θ2 = 0.

The other cases are handled in much the same way.

The technical condition in the following theorem will be overcome in the final
theorem on the form of S.

Theorem 19 Restricting ourselves to the case F = R, suppose that Xi + Y j 6= Xp + Yq

whenever (i, j) 6= (p, q). If R ∈ a+ is an intersection point in I then R ∈ F(K \ K0).

Proof According to Lemma 17, we have 3 cases. We will assume first that R ∈
π(A1A4).
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Let F(θ1, θ, θ2) = a(eXeθ1Zα+β eθZαeθ2Zα+β eY ) ∈ I. Then F(θ1, θ, θ2) ∈ π(A1A4) if
and only if e2X2+2Y2 is an eigenvalue of the matrix eXke2Y kTeX where

k = eθ1Zα+β eθZαeθ2Zα+β .

Setting det(eXke2Y kTeX − e2X2+2Y2 I) = 0, we see after tedious elementary computa-
tions (which may be very quickly done using for example Maple) that F(θ1, θ, θ2)
belongs to π(A1A4) if and only if

sin2 θ
(

f0(X,Y ) − f1(X,Y ) sin2 θ1 − f2(X,Y ) sin2 θ2

)

= 0

where

f0 = (e2X2+2Y2 − e2X3+2Y3 )(e2Y1 − e2Y2 )(e2X1 − e2X2 ),(3)

f1 = e2X2 (e2Y1 − e2Y2 )(e2Y2 − e2Y3 )(e2X1 − e2X3 ),(4)

f2 = e2Y2 (e2Y1 − e2Y3 )(e2X1 − e2X2 )(e2X2 − e2X3 ).(5)

We will also use

f1 − f0 = (e2X2 − e2X3 )(e2Y1 − e2Y2 )(e2X2+2Y2 − e2X1+2Y3 ),(6)

f2 − f0 = (e2X1 − e2X2 )(e2Y2 − e2Y3 )(e2X2+2Y2 − e2X3+2Y1 ),(7)

f1 + f2 − f0 = (e2X2 − e2X3 )(e2Y2 − e2Y3 )(e2X1+2Y1 − e2X2+2Y2 ).(8)

We are interested in the condition

(9) f0(X,Y ) − f1(X,Y ) sin2 θ1 − f2(X,Y ) sin2 θ2 = 0.

Let σ = {(x, y) : f1x + f2 y = f0, 0 ≤ x, y ≤ 1}. With the restriction that θ1,
θ2 ∈ [0, π/2], let

(θ1, θ2) = ψ(x, y) = (arcsin
√

x, arcsin
√

y).

Since ψ is continuous, the set ψ(σ) is connected. It follows that the set Σ of points

(θ1, θ2) ∈ [0, π/2]2 such that (9) holds is connected.
The fact that f0 − f1 − f2 < 0 implies that there is a solution of (9) with θ1 =

θ0 = θ2, θ0 ∈ (0, π/2). In particular, σ and ψ(σ) are not empty. Note then that
F(θ0, π, θ0) = X + Y .

Now we compute

tr e2F(θ1,θ,θ2)
= e2X1

[

cos2 θ1(d cos2 θ + e2Y2 sin2 θ)

+ 1
2

cos θ sin(2θ1) sin(2θ2)(e2Y3 − e2Y1 ) + f sin2 θ1

]

+ e2X2 [d sin2 θ + e2Y2 cos2 θ]

+ e2X3

[

sin2 θ1(d cos2 θ + e2Y2 sin2 θ)

− 1
2

cos θ sin(2θ1) sin(2θ2)(e2Y3 − e2Y1 ) + f cos2 θ1

]
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where we denote d = e2Y1 cos2 θ2 + e2Y3 sin2 θ2 and f = e2Y1 sin2 θ2 + e2Y3 cos2 θ2. It
follows that

tr e2F(θ1,θ,θ2)
= tr e2F(θ1,0,θ2) + 1

2
(e2X1 − e2X3 )(e2Y1 − e2Y3 ) sin(2θ1) sin(2θ2)(1 − cos θ)

+
(

(e2Y1 − e2Y2 ) − (e2Y1 − e2Y3 ) sin2 θ2

)

(10)

·
(

−(e2X1 − e2X2 ) + (e2X1 − e2X3 ) sin2 θ1

)

sin2 θ.

Let R be as in the hypothesis. Recall that SO(3) = Kα+βKαKα+β (see [10]). Since
R is an intersection point in I we can write R = F(k) with k = eθ1Zα+β eθZαeθ2Zα+β and
sin θ 6= 0 (basically, because R belongs also to the segment emanating from another

element of T0). This means that (9) is satisfied. Condition (4) of Lemma 18 cannot
be fulfilled since f0, f0 − f1, f0 − f2 and f0 − f1 − f2 are nonzero. Hence one of the
remaining conditions (2)–(3) of Lemma 18 is verified. Therefore, in addition to (9),
one of the following holds:

1. sin θ = ±1 and (a) sin θ1 = 0 or (b) sin θ1 ± 1.

2. sin θ = ±1 and (a) sin θ2 = 0 or (b) sin θ2 = 0 ± 1.

In all possible cases, (10) becomes

(11) tr e2F(θ1,θ,θ2)
= tr e2F(θ1,0,θ2) +

(

(e2Y1 − e2Y2 ) − (e2Y1 − e2Y3 ) sin2 θ2

)

·
(

−(e2X1 − e2X2 ) + (e2X1 − e2X3 ) sin2 θ1

)

sin2 θ.

Using (9), these cases correspond to

1a. sin2 θ1 = 0 and sin2 θ2 = f0/ f2.

1b. sin2 θ1 = 1 and sin2 θ2 = ( f0 − f1)/ f2.

2a. sin2 θ1 = f0/ f1 and sin2 θ2 = 0.

2b. sin2 θ1 = ( f0 − f2)/ f1 and sin2 θ2 = 1.

Using (3)–(7), we observe that the coefficient of sin2 θ = 1 in (11) is strictly
positive in all these cases. This means that if R = F(θ1, θ, θ2) is an intersection
point then for (θ1, θ2) fixed, then tr e2F(θ1,θ,θ2) is maximum at R and minimum at
R ′

= F(θ1, 0, θ2) 6= R.

For P1, P2 ∈ Iα+β,id,id , we have tr eP1 > tr eP2 whenever, starting at X + Y and
running along Iα+β,id,id , the point P1 precedes P2. This follows from the negativity of

f ′(t) = −4c sin(2ct) sinh(2ac2) sinh(2bc2), t > 0

where f (t) = tr gtg
T
t , according to the formula for f ′(t) in the proof of Lemma 12.

Since c > 0, the sign of f ′ is that of −ab where a = γ(w1X)/γ(Hγ) and b =

γ(w2Y )/γ(Hγ) when running along the segment Iγ,w1,w2
starting at w1X + w2Y ∈ T0

(see the proof of [3, Corollary 14]). When starting from X + Y with γ = α + β we
have a < 0 and b < 0.

It follows that R ′ ∈ π(A1A4) and X + Y ∈ π(A1A4) are on different sides of
the intersection point R ∈ π(A1A4). Hence for ε > 0 sufficiently small, the points
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F(θ0, π−ε, θ0) ∈ π(A1A4) and F(θ1, π−ε, θ2) ∈ π(A1A4) (recall that R = F(θ1, π/2,
θ2) ) are on different sides of the intersection point R ∈ π(A1A4).

The sets ψ(σ) and π(A1A4) being connected it follows that there exists θ ′1, θ
′
2 such

that
R = F(θ ′1, π − ε, θ ′2).

Since (0, 0), (π/2, 0), (0, π/2), (π/2, π/2) 6∈ ψ(σ), it follows by Lemma 1 that R ∈
F(K \ K0).

For the other two cases, let us suppose without loss of generality that X1 − X3 >
Y1 − Y3 so that the points Ai are the vertices of X + C(Y ). In the case R ∈ π(A3A6),
consider first the subcase π(A3) = A3 = X + wα+βwβY ∈ a+, which is equivalent to

X1 + Y2 > X2 + Y3 > X3 + Y1.

Consider F1(θ1, θ, θ2) = a(eXeθ1Zβ eθZαeθ2Zβ ewα+βwβY ). Then F1(θ1, θ, θ2) ∈ I be-
longs to π(A3A6) if and only if det(eXke2wα+βwβY kTeX − e2(X1+Y2)I) = 0 with k =

eθ1Zβ eθZαeθ2Zβ .
Observe that a(eXkewα+βwβY ) = a(ewαXk1ewαwα+βwβY ) where k1 = eθ1Zα+β e−θZαeθ2Zα+β

is as in the case π(A1A4). Similarly

D = det(eXke2wα+βwβY kTeX − e2(X1+Y2)I) = det(ewαXk1e2wαwα+βwβY kT
1 ewαX − e2(X1+Y2)I)

and we observe that the determinant D is equal to the determinant computed in the
case π(A1A4) evaluated for variables X2, X1, X3, Y3, Y2, Y1, −θ, θ1, θ2 instead of X1,

X2, X3, Y1, Y2, Y3, θ, θ1, θ2. In particular we find without any new computation that
D = 0 if and only if

sin2 θ
(

f0(X,Y ) − f1(X,Y ) sin2 θ1 − f2(X,Y ) sin2 θ2

)

= 0

where

f0 = (e2X1+2Y2 − e2X3+2Y1 )(e2Y3 − e2Y2 )(e2X2 − e2X1 ),(12)

f1 = e2X1 (e2Y3 − e2Y2 )(e2Y2 − e2Y1 )(e2X2 − e2X3 ),(13)

f2 = e2Y2 (e2Y3 − e2Y1 )(e2X2 − e2X1 )(e2X1 − e2X3 )(14)

f1 − f0 = (e2X1 − e2X3 )(e2Y3 − e2Y2 )(e2X1+2Y2 − e2X2+2Y1 ),(15)

f2 − f0 = (e2X2 − e2X1 )(e2Y2 − e2Y1 )(e2X1+2Y2 − e2X3+2Y3 ),(16)

f1 + f2 − f0 = (e2X1 − e2X3 )(e2Y2 − e2Y1 )(e2X2+2Y3 − e2X1+2Y2 ).(17)

The inequality X1 +Y2 > X3 +Y1 implies that f0 > 0 and the inequality X1 +Y2 >
X2 + Y3 implies that f0 − f1 − f2 < 0. It follows as in the first case that the inequality

(18) f0(X,Y ) − f1(X,Y ) sin2 θ1 − f2(X,Y ) sin2 θ2 = 0

admits a solution θ1 = θ2 = θ0 ∈ (0, π/2). We have F1(θ0, π, θ0) = A3.
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The computation of the trace of e2F1(θ1,θ,θ2) also boils down to the trace of
e2F(θ1,θ,θ2), in the same way as the computation of D boils down to the determinant of

the first case. In particular, in the cases 1a–b and 2a–b as in the proof of the first case,

tr e2F1(θ1,θ,θ2)
= tr e2F1(θ1,0,θ2) +

(

(e2Y3 − e2Y2 ) − (e2Y3 − e2Y1 ) sin2 θ2

)

(19)

·
(

−(e2X2 − e2X1 ) + (e2X2 − e2X3 ) sin2 θ1

)

sin2 θ.

Observe that the second factor of sin2 θ in (19) is always positive. The fact that
f2 − f0 > 0 implies that the case 2b is impossible. It is trivial to see that in the
case 2a the factor of sin2 θ in (19) is negative. It is a matter of easy verifications using

(12), (14) and (15) to see that the same is true in cases 1a and 1b.

Finally one checks using the same ideas as in the proof for π(A1A4) that the trace
of gt g

T
t increases when we start at A3 and run along π(A3A6). We conclude the proof

in the same way as for π(A1A4).

The subcase A3 6∈ a+ (so π(A3) = wβ(A3) ∈ a+) of the case R ∈ π(A3A6) reduces
to the first subcase if we consider F2(θ1, θ, θ2) = a(ewβXeθ1Zβ eθZα+β eθ2Zβ ewβwα+βwβY ) =

F1(−θ1, θ,−θ2). The inequalities X1 +Y2 > X3 +Y1 and X1 +Y2 > X2 +Y3 intervening

in the case A3 ∈ a+ still hold true because wβ(A3) ∈ a+.

The proof in the case R ∈ π(A2A5) goes along the same lines as that for R ∈
π(A3A6) if we choose as a starting point A5 ∈ a+ (or π(A5) ∈ a+) and we con-
sider F3(θ1, θ, θ2) = a(eXeθ1ZαeθZα+β eθ2Zαewα+βwαY ) (or, respectively, F4(θ1, θ, θ2) =

a(ewαXeθ1ZαeθZβ eθ2Zαewαwα+βwαY ) = F3(−θ1, θ,−θ2)). In particular, the eigenvalues in-
tervening in the study of F3 ∈ π(A2A5) are e2(X3+Y2), the case 2a is now impossible
(since f0 > f1 > 0) and the trace of gt g

T
t increases when one starts at A5 (or π(A5)).

The reader will verify easily this last case of the proof.

Lemma 20 We have 0 ∈ S if and only if 0 ∈ T0.

Proof If 0 ∈ S then 0 = a(eXkeY ) i.e. eXkeY
= k ′ or keY

= e−Xk which means that
Y = −wX for some w ∈ W since the abelian component of the Cartan decomposi-
tion is unique modulo W : 0 = wX + Y ∈ T0.

Lemma 21 Let K̂ = K \ K0.

1. If H ∈ S \ I then H = a(eXkeY ) for some k ∈ K̂.
2. If k ∈ K̂ and a(eXkeY ) ∈ a+ then a(eXkeY ) ∈ S◦.

Proof 1. One notes that I = a(eXK0eY ).

2. Suppose that k ∈ K̂ and a(eXkeY ) ∈ a+ (the second condition ensures the
analyticity of the map k ′ → a(eXk ′eY ) in the neighbourhood of k).

Let P = ke2Y k−1 and, for Z = a1Zα + a2Zβ + a3Zα+β , let Rt = eXetZPe−tZeX (note

that the eigenvalues of Rt determine a(eXetZkeY )). The functions tr Rt and tr R−1
t in

turn determine the eigenvalues of Rt .

Note that the format of k implies that P cannot have more than 2 zeros (which are
then symmetric about the diagonal).
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Now,

tr Rt = tr(eXPeX) + tr(eX[Z, P]eX)t + O(t2) and

tr R−1
t = tr(e−XP−1e−X) + tr(e−X[Z, P−1]e−X)t + O(t2).

It suffices to show that, locally, these two functions can give any direction we want
given the right choice of Z. The equations

tr(eX[Z, P]eX) = 0 and tr(e−X[Z, P−1]e−X) = 0

correspond to 2 equations of planes:

(e2x1 − e2x2 )P1,2a1 + (e2x2 − e2x3 )P2,3a2 + (e2x1 − e2x3 )P1,3a3 = 0, and

(e2x1 − e2x2 )Q1,2e2x3 a1 + (e2x2 − e2x3 )Q2,3e2x1 a2 + (e2x1 − e2x3 )Q1,3e2x2 a3 = 0

where Q = P−1. It is enough to show that the two planes do not coincide. To show
that the two planes are not the same, it suffices to show that

P1,2Q1,3e2x2 − Q1,2P1,3e2x3 6= 0 or

P1,2Q2,3e2x1 − Q1,2P2,3e2x3 6= 0 or

P1,3Q2,3e2x1 − Q1,3P2,3e2x2 6= 0.

This is equivalent to

P̂1,2Q̂1,3 − Q̂1,2P̂1,3 = −k̂1,1k̂1,2k̂1,3∆(H) 6= 0 or

P̂1,2Q̂2,3 − Q̂1,2P̂2,3 = k̂2,1k̂2,2k̂2,3∆(H) 6= 0 or

P̂1,3Q̂2,3 − Q̂1,3P̂2,3 = −k̂3,1k̂3,2k̂3,3∆(H) 6= 0.

where P̂ = eXPeX
= k̂e2H k̂T , Q̂ = P̂−1, and ∆(H) = (e2H1 − e2H2 )(e2H2 − e2H3 )(e2H1 −

e2H3 ) 6= 0 since H = a(eXkeY ) ∈ a+.
Now, note that P and P̂ have the same zeros and therefore k̂ 6∈ K0. By inspection

(using k̂k̂T
= I), this easily implies that k̂ has at least one row without zeros. This

allows us to conclude.

Corollary 22 The set S \ I \ ∂a+ is open in a+.

Proposition 23 Let

Z = {(X,Y ) ∈ a+ × a+ : W X + WY ∩ ∂a+ 6= ∅}

∪
⋃

i, j,p,q

{(X,Y ) ∈ a+ × a+ : Xi + Y j = Xp + Yq}.

If X, Y ∈ a+ and (X,Y ) 6∈ Z then S = conv(I).
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Proof Note that w1X+w2Y ∈ ∂a+ if and only if α(w1X+w2Y ) = 0 for some nonzero
root α. This implies that a+ × a+ \Z is dense in a+ × a+ since we only remove a finite

number of hyperplanes.

We prove first that conv(I) ⊂ S. We can assume without loss of generality that
F = R (indeed, it is clear that the set S corresponding to the real case is included in
the others and that the network I is the same).

Assume that conv(I) ⊂ S is not true. Divide conv(I) \ I into open connected
components Ci . Pick C j which contains H0 6∈ S. We know that C j is the interior of a
polygon with, say, n vertices. Each edge of C j is parallel to the direction Aγ of a root
γ ∈ ∆0. It is important to recall that the segments composing I are reflected when

they encounter a wall of a+.

We claim first that C j ∩ S ∩ a+ 6= ∅.

Suppose that more than two of the vertices of C j belong to ∂a+. We first note
that C j is a triangle. One sees this by taking into account the above observations

concerning the edges of C j . The same considerations then imply that at least one of
its vertices belongs to T0. The possibility is excluded by the hypothesis (X,Y ) 6∈ Z.

We can therefore assume that no more than two vertices belong to ∂a+. Since the
sum of the angles inside C j is (n − 2)π, there must be an angle inside C j less than

π with a vertex V ∈ a+. The vertex V is either an element of T0 with a sector in
C j included in S (Corollary 13) or the intersection point of 2 different segments of I
which is included in S◦ by Theorem 19.

The claim therefore follows.

Let H1 ∈ S◦ ∩ C j and let l(t), t ∈ [0, 1] be a continuous curve linking H0 to H1

contained in C j (l(0) = H0, l(1) = H1, l(s) 6= l(t) when s 6= t). One may choose l as

a segment or a finite connected union of segments.

Let t0 = sup{t ∈ [0, 1] | l(t) 6∈ S} and let H2 = l(t0) ∈ C j . By the maximality
of t0, in any neighbourhood of H2, there are points of S which is closed. It follows
that H2 ∈ S and H2 ∈ S \ I \ ∂a+ which is open according to Corollary 22. This

contradicts the definition of t0 since l(t0 − ε) ∈ S for ε > 0 small enough. The set
{t ∈ [0, 1] | l(t) 6∈ S} must be empty which contradicts the existence of H0.

We now return to F = R, C or H. Suppose now that there exists H ∈ S \ conv(I).
We can assume without loss of generality that H ∈ a+. Otherwise, take an open

neighbourhood U of H ∈ a+ which does not touch conv(I) and consider the open
set V = F−1(U ) in K. The set V cannot be included in the set C of Lemma 1 and
therefore, there exists k ∈ V such that F(k) ∈ U ∩ S◦ is in a+ (and not in conv(I)).

Consider the half line ` starting at 0 and passing through H. Note that by the

hypothesis and by Lemma 20, 0 6∈ S and therefore S ∩ ` ⊂ a+. Let H0 be the
point on the compact S ∩ ` which is the furthest away from conv(I). It is plain
using Corollary 22 that such a point cannot exist. This contradicts the existence of
H ∈ S \ conv(I).

All that remains is to get rid of the technical condition “If X, Y ∈ a+ and (X,Y ) 6∈
Z” of Proposition 23. The following lemma is the tool we need to achieve this.

Lemma 24 A “segment” of I has the form a(eXw1Kαw2eY ) where wi ∈ W and α ∈

https://doi.org/10.4153/CJM-2003-040-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-040-x


1016 P. Graczyk and P. Sawyer

∆0 (the set of positive roots). Every element H ∈ conv(I) has the form

H =

∑

W×W×∆0

Γw1,w2,αa(eXw1kαw2eY )

where kα ∈ Kα, Γw1,w2,α ∈ [0, 1] and
∑

W×W×∆0
Γw1,w2,α ≤ 1.

Proof Clear.

Theorem 25 If G = SL(3, F) with F = R, C or H then S = conv(I).

Proof Let Z be as in Proposition 23. If (X,Y ) 6∈ Z then the result follows from
Proposition 23.

Suppose then that (X,Y ) ∈ Z. Let SX,Y = a(eXKeY ) and let IX,Y be the network I
associated to X and Y .

Take (Xn,Yn) 6∈ Z such that (Xn,Yn) converges to (X,Y ).

Let H = a(eXkeY ) and note that H = limn→∞ a(eXn keYn ). Now, for each n, we
have by Lemma 24 and by Proposition 23 that

a(eXn keYn ) =

∑

W×W

Γw1,w2,α(n)a
(

eXn w1kα(n)w2eY
)

with Γw1,w2,α(n) ∈ [0, 1] and
∑

W×W×∆0
Γw1,w2,α(n) ≤ 1. Since [0, 1] and each Kα

are compact, by taking a subsequence if necessary, we can assume without loss of
generality that Γw1,w2,α(n) converges to Γw1,w2,α and that kα(n) converges to kα (for
each α, w1 and w2). This means that

a(eXkeY ) =

∑

W×W

Γw1,w2,αa(eXw1kαw2eY ) ∈ conv(IX,Y ).

Suppose now that H ∈ conv(IX,Y ) i.e. H =
∑

W×W Γw1,w2,αa(eXw1kαw2eY ).
Then H = limn→∞

∑

W×W Γw1,w2,αa(eXn w1kαw2eYn ) = limn→∞ a(eXn w1knw2eYn )
with

∑

W×W×∆0
Γw1,w2,α ≤ 1 (using Proposition 23 and the fact that

∑

W×W Γw1,w2,α

a(eXn w1kαw2eYn ) belongs to conv(IXn ,Yn
)). As before, by taking a subsequence if neces-

sary, we can assume that kn converges to k. Hence, H = limn→∞ a(eXn w1knw2eYn ) =

a(eXkeY ) ∈ SX,Y .

Recall that the singular values of a complex square matrix A are the non-negative

square roots of the eigenvalues of the Hermitian matrix AA∗. It is useful to note
that if A is Hermitian (in particular if A is real symmetric) then its singular values
are the absolute values of its eigenvalues. When A is Hermitian positive definite its
eigenvalues and singular values coincide.

Theorem 26 Let A and B be two complex matrices of size 3 × 3 with singular values
a1 ≥ a2 ≥ a3 ≥ 0 and b1 ≥ b2 ≥ b3 ≥ 0 respectively. Let σ1 ≥ σ2 ≥ σ3 be the
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singular values of the product C = AB. Then

max{a1b3, a3b1} ≤ σ1 ≤ a1b1,(20)

max{a2b3, a3b2} ≤ σ2 ≤ min{a2b1, a1b2},(21)

a3b3 ≤ σ3 ≤ min{a3b1, a1b3},(22)

σ3 ≤ a2b2 ≤ σ1.(23)

Conversely, for any square 3 × 3 matrix C with singular values satisfying equations
(20)–(23), there exist matrices A and B with singular values a1 ≥ a2 ≥ a3 ≥ 0 and
b1 ≥ b2 ≥ b3 ≥ 0 such that AB = C.

If C is real then A and B can be chosen to be real.

Proof Suppose first that A and B are non-singular. In this case we can assume with-

out loss of generality that |A| = 1 = |B| so that A, B ∈ SL(3,C). We have then
A = k1eXk2 and B = k3eY k4 with ki ∈ SU(3), i ≤ 4 and eX

= diag[a1, a2, a3], eY
=

diag[b1, b2, b3]. Therefore, AB = k1eXk2k3eY k4 and ea(eX k2k3eY )
= diag[σ1, σ2, σ3].

The result follows by Theorem 25.
The general case follows by a continuity argument.

Remark 27 The conditions (20)–(23) in Theorem 26, when the considered matrices
have the determinant 1, have a nice geometric interpretation

[lnσ1, lnσ2, lnσ3] ∈ conv(I)

where I is constructed in the Proposition 15 starting from X = [ln a1, ln a2, ln a3]
and Y = [ln b1, ln b2, ln b3].

3 Conclusion

Naturally, the network I can be defined for any symmetric space of noncompact type.
In the other rank 2 cases, the difficulty is not so much with the result corresponding

to Proposition 23 but what to do with the “intersection points”. When the rank is
greater than 2, matters are even more complicated.

In [3] we showed that µX,Y is absolutely continuous with respect to the Haar mea-
sure on A whenever X, Y ∈ a+. We described other situations when X or Y were

in ∂a+ where this still held and others when it did not. However, we did not find
necessary and sufficient conditions on X and Y to settle this question. With a con-
vexity theorem such as we have found in this paper, the situation becomes clearer. It
is clear that µX,Y is absolutely continuous if and only if the network I does not live in

a hyperplane of a. In fact, we can conclude that µX,Y is absolutely continuous if and
only if the network W X + WY does not live in a hyperplane of a. A corresponding
result for all ranks would be very useful and we conjecture it.
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toire de Mathématiques de l’Université d’Angers.
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Département de mathématiques

Université d’Angers
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