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Families of finite sets satisfying an

intersection condition

Peter Frankl

The following theorem is proved.

Let X be a finite set of cardinality n= 2, and let F be a
family of subsets of X . Suppose that for F., F2, F3 € F we

-2

have |Fl nF,n F3| 22 . Then |F| =2"° with equality

holding if and only i1f for two different elements x, y of X,
F={rc<x|xe€F,y e F}.

1. Introduction

Let %, J, n, * be positive integers, n =22 . Let [Z, jJ] denote
the set of integers k, 1 =k =j . Set X =[1, n] .

For any pair of non-negative integers ¢, h , ¢t = 2 , define

F(n, t, k) = {Pcx | |F n[1, r+eth]| = re(t-1)h} .

Then for Fl, cee, Ft € F(n, t, k) we have |Fl n...n Ftl > r ., Erdds
and the author have made the following conjecture.

CONJECTURE, Let F ©be a family of subsets of X . If for any

Fiy ooy Fy € F(n, t, h) we have |Fl n...n Ftl z r , then

[F| < max |F(n, ¢, B)| .
h

The case r = 1 is trivial (ef. Erdds, Ko, and Rado [71]). For the
case t =2 and r arbitrary, the validity of the conjecture follows from
Katona [4].
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So the first open case is £ =3, r =2 , The aim of this paper is

to establish the conjecture for this case.

2tt

In Frankl [3] the conjecture is proved for r < =—= . We need two

150

preliminary results.

LEMMA 1. Let A and B be collections of subsets of X .

that for A €A, B €B, AnB¥ @ . Then

(1) |A| + |B| = 2" .

Suppose

Proof. Let us set A' = {X-4 | 4 € A} . Then the condition implies

A' nB =9 whence |A| + |B| = |A"| + |B] =2". /1

LEMMA 2. Let Yys Ups wnes Yps voe be identically distributed

independent random variables defined by p(y; = 1) = 1/2 ,

p(yi = -2) =1/2 . Let s be a non-negative integer. Then

ol (£ =) 15

Proof. The assertion can be easily deduced from the more general

theorems in Feller [2], Chapter XII. We use the following corollary of

Lemma 2.
COROLLARY 1. Let k be a positive integer and let Yy»
defined as above. Then

i=1 2

=k ’z”: yi] 23] < [_\/-2'__1]8 .

(2) p[max [

2. The main result

THEOREM. Let F be a collection of subsets of X = [1, n] .

that for Fl, F’2, F3 s

(?) ]FlannF3|22.

i .

Then |F| = 22 and equality holds if and only if for some
1=si<j=n, F={FcX|1i¢€F,jeF}.
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Proof. Let us suppose that [F| = 22 put F is not of the above
form. Let 1 <1< j=<n and let H be a collection of subsets of X .

The following operation was essentially defined in [11];

Ai’j(H) = {Ai,j(H) | # € H} ,

where

(H-{3}) v (&} ir j €H, < § &, ((B-{g}) v (Z}) ¢ H ,

H otherwise.
It can be easily checked that if f satisfies Condition (3) then

Ai j(H) satisfies it as well. Let us apply the operation Ai 7
> t]

iteratedly for all the pairs %, J (1 =17 < j =n) starting with H = F .
As X is finite and whenever Ai j(H) # H then
H]

> La< )y Y a;

Hed. .(H) geH HeH qed
T,5d
so after a finite number of steps we obtain a collection G which still
satisfies (3), |G| = |F| , and for any 1 =i <j<=n, A, j(G) =G .
b

We divide the proof of the theorem into a series of propositions.

PROPOSITION 1. If G = {zl, cees zs} €G, Zy < Z, < ... < (o and
F={d, «oosd s t28, J) <dy<..<i,, i24, for
k=1, ..., 8, then F €G .

Proof. The assertion follows from Ai J.(G) =G for any %, J ,

t]

1=i1<j=n.

PROPOSITION 2. Let us define

G = {1, 3, 4, 6, 7, ..., 3k, 3k+l, ...} n [1, n] .
Then G ¢ G.
1
Proof. If Gl belongs to G then in view of Proposition 1 so do

02 = {19 23 h) 59 Ty cees 3k‘l, 3k+l, ...} n [l, n]

and
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03 ={1, 2,3, 5,6, ...y 3k-1, 3%k, ...} n[1, n],

but Gl n 02 n G, = {1} , contradicting (3).

3

PROPOSITION 3. PFor any G € G there exists a non-negative integer

h such that
(%) |6 n [1, 243n]| 2 2 + 2n .
Proof. The contrary would mean that for some G € G ,
¢ = iy, ...,iq} s &) i, <. <i ,andany hz20,
i2+2h =2 3+ 3k . Hence for any h =0 , iz(h+1)+1 > 3(h+l) + 1 , and

these inequalities along with <. 2 1 and Proposition 1, imply Gl €6,

1l

contradicting Proposition 2.

Let us define the random variables Tis Ty oves

-2 if 7 ¢ F . Then the x,'s

xn on a subset F

of X by x; =1 if 4 € F and x;

are independent and p[xi = l) = p(x. —2) =1/2 .

7

Proposition 3 yields immediately

PROPOSITION 4. For every G € G, max [% x] =2,
1<j=n Y=1 *

Let us set G ={¢eG|1¢€c,2¢€G).
1,2

PROPOSITION 5.

n-3

(5) 16, p =2

Proof. If we knew that for G, H € Gl 5

(¢-[1, 2]) n (H-{1, 2]) # @ , then the assertion would follow from Lemma 1,

(A=8B=1{c-[1,2] | e Gl,2})' But if for some G, H € G ,

(¢-[1, 21) n (H-[1, 2]) =9 , then G n H = [1, 2] implies, in view of

(3), that for any G' € G, [1,2]lc¢G' . As |G| = |F| = "2 s

necessarily {1, 2} € G . Now by the definition of the operation A i it
L]

follows that there is a 2-element set {Z, j} which belongs to F which

in turn implies F={Fc X | i €F, j € F} , a contradiction.
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Let us set

Fo={6-(1,51 | ¢c€6,6n[1,51=1i,3, 4,5} (£=1,2) .

PROPOSITION 6
0 . For FlGFl,FgéFe,FlnFe;éﬂi.
f =
Proof, 1If for some Fl € Fl , 17’2 € F2 R Fl n F2 @ , then,

according to the definition of the Fi's , there exist Hl, H2 € G such

that H, NH, = [3, 5] . Using (3) it follows that for any G €G ,
(6) ¢ n[3, 5]l 22.

If for some G € G, |G o (1, 5]| <4 , then, by Proposition 1,
G¢' = ((6-[1, 51) v [1, 3]) €G; but G' n[3, 5] = {3} contradicting
(6). Hence for any G €6, |6 n[1,5]] 2L ; that is, G c F(n, 3, 1).

But |F(n, 3, 1)] = 6.2"° < 2% , & contradiction.
PROPOSITION 7.

< n-5
(1) [AENARY =S

Proof, (7) follows immediately from Proposition 6 and Lemma 1.
Now let us set G, = {G €6 | [1, 21 ¢ 6, |6 n 1, 5]| =1},
2=0,1l, 2, 3 . Then

® 16l = 16, 1+ IFyl + 1F,l + 65l + 16,1 + 16,1 + 16, -

PROPOSITION 8, pFor G € Gi (¢ =0,1, 2, 3),

8
(9) max [LZ :ct] = 3(4-7) .
6s=n “i=6
Proof, 1t is an immediate consequence of Proposition 3 and b.

PROPOSITION 9.

< 7n-5 \/§-l 3
(10) 6l = 7.2 [—2 ] .

Proof, Let us set F3 = {e-[1, 5} | G ¢ G3} . As there are T

subsets A of [1, 5] satisfying [4 0 [1, 5]} =3 and [1, 2]1¢4 so
=7|F.1 .
l6,] = 7IF,|
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In view of (9) and Corollary 1, (yi = x6-i) , we have

3

o

so (10) follows.

PROPOSITION 10.

6
(11) |G| < 9.2"7 -‘5‘—1]

2 2 ) ¢
9
(12) 6,1 = 5.0 YS&&} ,
2
12
(13) |6, = 2"-5[_‘/%-&] ,

Proof, These inequalities can be proven in exactly the same way as
inequality (10).
Now summing up the inequalities (5), (7), (10), (11), (12), (13) in

view of (8) we obtain

3 6 9 12
o223 U o

This final contradiction finishes the proof of the theorem.
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