# Families of finite sets satisfying an intersection condition 

## Peter Frankl

The following theorem is proved.
Let $X$ be a finite set of cardinality $n \geq 2$, and let $F$ be a family of subsets of $X$. Suppose that for $F_{1}, F_{2}, F_{3} \in F$ we have $\left|F_{1} \cap F_{2} \cap F_{3}\right| \geq 2$. Then $|F| \leq 2^{n-2}$ with equality holding if and only if for two different elements $x, y$ of $X$, $F=\{F \subseteq X \mid x \in F, y \in F\}$.

## 1. Introduction

Let $i, j, n, r$ be positive integers, $n \geq 2$. Let $[i, j]$ denote the set of integers $k, i \leq k \leq j$. Set $X=[1, n]$.

For any pair of non-negative integers $t, h, t \geq 2$, define

$$
F(n, t, h)=\{F \subseteq X| | F \cap[1, r+t h] \mid \geq r+(t-1) h\}
$$

Then for $F_{1}, \ldots, F_{t} \in F(n, t, h)$ we have $\left|F_{1} \cap \ldots \cap F_{t}\right| \geq r$. Erdös and the author have made the following conjecture.

CONJECTURE. Let $F$ be a family of subsets of $X$. If for any $F_{1}, \ldots, F_{t} \in F(n, t, h)$ we have $\left|F_{1} \cap \ldots \cap F_{t}\right| \geq r$, then $|F| \leq \max _{h}|F(n, t, h)|$.

The case $r=1$ is trivial ( $c f$. Erdös, Ko, and Rado [1]). For the case $t=2$ and $r$ arbitrary, the validity of the conjecture follows from Katona [4].

Received 24 March 1976.

So the first open case is $t=3, r=2$. The aim of this paper is to establish the conjecture for this case.

In Frankl [3] the conjecture is proved for $r \leq \frac{2^{t} t}{150}$. We need two preliminary results.

LEMMA 1. Let $A$ and $B$ be collections of subsets of $X$. Suppose that for $A \in A, B \in B, A \cap B \neq \emptyset$. Then

$$
\begin{equation*}
|A|+|B| \leq 2^{n} \tag{1}
\end{equation*}
$$

Proof. Let us set $A^{\prime}=\{X-A \mid A \in A\}$. Then the condition implies $A^{\prime} \cap B=\emptyset$ whence $|A|+|B|=\left|A^{\prime}\right|+|B| \leq 2^{n}$. //

LEMMA 2. Let $y_{1}, y_{2}, \ldots, y_{m}, \ldots$ be identically distributed independent random variables defined by $p\left(y_{i}=1\right)=1 / 2$, $p\left(y_{i}=-2\right)=1 / 2$. Let $s$ be a non-negative integer. Then

$$
p\left(\max _{m}\left(\sum_{i=1}^{m} y_{i}\right) \geq s\right)=\left(\frac{\sqrt{5}-1}{2}\right)^{s}
$$

Proof. The assertion can be easily deduced from the more general theorems in Feller [2], Chapter XII. We use the following corollary of Lemma 2.

COROLLARY 1. Let $k$ be a positive integer and let $y_{1}, \ldots, y_{k}$ be defined as above. Then

$$
\begin{equation*}
p\left(\max _{m \leq k}\left(\sum_{i=1}^{m} y_{i}\right) \geq s\right)<\left(\frac{\sqrt{5}-1}{2}\right)^{s} \tag{2}
\end{equation*}
$$

2. The main result

THEOREM. Let $F$ be a collection of subsets of $X=[1, n]$. Suppose that for $F_{1}, F_{2}, F_{3}$,

$$
\begin{equation*}
\left|F_{1} \cap F_{2} \cap F_{3}\right| \geq 2 \tag{3}
\end{equation*}
$$

Then $|F| \leq 2^{n-2}$ and equality holds if and only if for some $1 \leq i<j \leq n, F=\{F \subseteq X \mid i \in F, j \in F\}$.

Proof. Let us suppose that $|F| \geq 2^{n-2}$ but $F$ is not of the above form. Let $1 \leq i<j \leq n$ and let $H$ be a collection of subsets of $X$. The following operation was essentially defined in [1];

$$
A_{i, j}(H)=\left\{A_{i, j}(H) \mid H \in H\right\}
$$

where

$$
A_{i, j}(H)= \begin{cases}(H-\{j\}) \cup\{i\} & \text { if } j \in H, i \notin H,((H-\{j\}) \cup\{i\}) \notin H, \\ H & \text { otherwise. }\end{cases}
$$

It can be easily checked that if $H$ satisfies Condition (3) then $A_{i, j}(H)$ satisfies it as well. Let us apply the operation $A_{i, j}$ iteratedly for all the pairs $i, j(1 \leq i<j \leq n)$ starting with $H=F$. As $X$ is finite and whenever $A_{i, j}\left(H^{\prime}\right) \neq H$ then

$$
\sum_{H \in A_{i, j}(H)} \sum_{q \in H} q<\sum_{H \in H} \sum_{q \in H} q ;
$$

so after a finite number of steps we obtain a collection $G$ which still satisfies (3), $|G|=|F|$, and for any $1 \leq i<j \leq n, A_{i, j}(G)=G$. We divide the proof of the theorem into a series of propositions.

PROPOSITION 1. If $G=\left\{i_{1}, \ldots, i_{s}\right\} \in G, i_{1}<i_{2}<\ldots<i_{s}$ and $F=\left\{j_{1}, \ldots, j_{t}\right\}, \quad t \geq s, j_{1}<j_{2}<\ldots<j_{t}, i_{k} \geq j_{k}$ for $k=1, \ldots, s$, then $F \in G$.

Proof. The assertion follows from $A_{i, j}(G)=G$ for any $i, j$, $1 \leq i<j \leq n$.

PROPOSITION 2. Let us define

$$
G_{1}=\{1,3,4,6,7, \ldots, 3 k, 3 k+1, \ldots\} \cap[1, n]
$$

Then $G_{1} \neq G$.
Proof. If $G_{1}$ belongs to $G$ then in view of Proposition 1 so do

$$
G_{2}=\{1,2,4,5,7, \ldots, 3 k-1,3 k+1, \ldots\} \cap[1, n]
$$

and

$$
G_{3}=\{1,2,3,5,6, \ldots, 3 k-1,3 k, \ldots\} \cap[1, n],
$$

but $G_{1} \cap G_{2} \cap G_{3}=\{1\}$, contradicting (3).
PROPOSITION 3. For any $G \in G$ there exists a non-negative integer $h$ such that

$$
\begin{equation*}
|G \cap[1,2+3 h]| \geq 2+2 h . \tag{4}
\end{equation*}
$$

Proof. The contrary would mean that for some $G \in G$, $G=\left\{i_{1}, \ldots, i_{q}\right\}, i_{1}<i_{2}<\ldots<i_{q}$, and any $h \geq 0$, $i_{2+2 h} \geq 3+3 h$. Hence for any $h \geq 0, i_{2(h+1)+1} \geq 3(h+1)+1$, and these inequalities along with $i_{1} \geq 1$ and Proposition 1 , imply $G_{1} \in G$, contradicting Proposition 2.

Let us define the random variables $x_{1}, x_{2}, \ldots, x_{n}$ on a subset $F$ of $X$ by $x_{i}=1$ if $i \in F$ and $x_{i}=-2$ if $i \notin F$. Then the $x_{i}{ }^{\prime}$ s are independent and $p\left(x_{i}=1\right)=p\left(x_{i}=-2\right)=1 / 2$.

Proposition 3 yields immediately
PROPOSITION 4. For every $G \in G, \max _{1 \leq j \leq n}\left(\sum_{i=1}^{j} x_{i}\right) \geq 2$.
Let us set $G_{1,2}=\{G \in G \mid 1 \in G, 2 \in G\}$.
PROPOSITION 5.

$$
\begin{equation*}
\left|G_{1,2}\right| \leq 2^{n-3} \tag{5}
\end{equation*}
$$

Proof. If we knew that for $G, H \in G_{1,2}$,
$(G-[1,2]) \cap(H-[1,2]) \neq \varnothing$, then the assertion would follow from Lemma 1 , $\left(A=B=\left\{G-[1,2] \mid G \in G_{1,2}\right\}\right)$. But if for some $G, H \in G_{1,2}$,
$(G-[1,2]) \cap(H-[1,2])=\emptyset$, then $G \cap H=[1,2]$ implies, in view of (3), that for any $G^{\prime} \in G,[1,2] \subseteq G^{\prime}$. As $|G|=|F| \geq 2^{n-2}$ so necessarily $\{1,2\} \in G$. Now by the definition of the operation $A_{i, j}$ it follows that there is a 2-element set $\{i, j\}$ which belongs to $F$ which in turn implies $F=\{F \subseteq X \mid i \in F, j \in F\}$, a contradiction.

Let us set
$F_{i}=\{G-[1,5] \mid G \in G, G \cap[1,5]=\{i, 3,4,5\}\} \quad(i=1,2)$.
PROPOSITION 6. For $F_{1} \in F_{1}, F_{2} \in F_{2}, F_{1} \cap F_{2} \neq \varnothing$.
Proof. If for some $F_{1} \in F_{1}, F_{2} \in F_{2}, F_{1} \cap F_{2}=\emptyset$, then, according to the definition of the $F_{i}{ }^{\prime} s$, there exist $H_{1}, H_{2} \in G$ such that $H_{1} \cap H_{2}=[3,5]$. Using (3) it follows that for any $G \in G$,

$$
\begin{equation*}
|G \cap[3,5]| \geq 2 \tag{6}
\end{equation*}
$$

If for some $G \in G,|G \cap[1,5]|<4$, then, by Proposition 1 , $G^{\prime}=((G-[1,5]) \cup[1,3]) \in G ;$ but $G^{\prime} \cap[3,5]=\{3\}$ contradicting (6). Hence for any $G \in G,|G \cap[1,5]| \geq 4$; that is, $G \subseteq F(n, 3,1)$.

But $|F(n, 3,1)|=6.2^{n-5}<2^{n-2}$, a contradiction.
PROPOSITION 7.

$$
\begin{equation*}
\left|F_{1}\right|+\left|F_{2}\right| \leq 2^{n-5} \tag{7}
\end{equation*}
$$

Proof. (7) follows immediately from Proposition 6 and Lemma 1. Now let us set $G_{i}=\{G \in G|[1,2] \nsubseteq G,|G \cap[1,5]|=i\}$, $i=0,1,2,3$. Then

$$
\begin{equation*}
|G|=\left|G_{1,2}\right|+\left|F_{1}\right|+\left|F_{2}\right|+\left|G_{0}\right|+\left|G_{1}\right|+\left|G_{2}\right|+\left|G_{3}\right| \tag{8}
\end{equation*}
$$

PROPOSITION 8. FOR $G \in G_{i}(i=0,1,2,3)$,
(9)

$$
\max _{6 \leq s \leq n}\left(\sum_{i=6}^{s} x_{i}\right) \geq 3(4-i)
$$

Proof. It is an immediate consequence of Proposition 3 and 4.
PROPOSITION 9.
(10)

$$
\left|G_{3}\right| \leq 7.2^{n-5}\left(\frac{\sqrt{5}-1}{2}\right)^{3}
$$

Proof. Let us set $F_{3}=\left\{G-[1,5] \mid G \in G_{3}\right\}$. As there are 7 subsets $A$ of $[1,5]$ satisfying $|A \cap[1,5]|=3$ and $[1,2] \nsubseteq A$ so $\left|G_{3}\right| \leq 7\left|F_{3}\right|$.

In view of (9) and Corollary $1,\left(y_{i}=x_{6-i}\right)$, we have

$$
\frac{\left|F_{3}\right|}{2^{n-5}} \leq\left(\frac{\sqrt{5}-1}{2}\right)^{3}
$$

so (10) follows.
PROPOSITION 10.

$$
\begin{align*}
& \left|G_{2}\right| \leq 9.2^{n-5}\left(\frac{\sqrt{5}-1}{2}\right)^{6}  \tag{11}\\
& \left|G_{1}\right| \leq 5.2^{n-5}\left(\frac{\sqrt{5}-1}{2}\right)^{9} \\
& \left|G_{0}\right| \leq 2^{n-5}\left(\frac{\sqrt{5}-1}{2}\right)^{12} \tag{13}
\end{align*}
$$

Proof. These inequalities can be proven in exactly the same way as inequality (10).

Now summing up the inequalities (5), (7), (10), (11), (12), (13) in view of (8) we obtain
$|G| \leq 2^{n-2}\left(\frac{1}{2}+\frac{1}{8}+\frac{7}{8}\left(\frac{\sqrt{5}-1}{2}\right)^{3}+\frac{9}{8}\left(\frac{\sqrt{5}-1}{2}\right)^{6}+\frac{5}{8}\left(\frac{\sqrt{5}-1}{2}\right)^{9}+\frac{1}{8}\left(\frac{\sqrt{5}-1}{2}\right)^{12}<\right.$ $<0,91 \cdot 2^{n-2}$.

This final contradiction finishes the proof of the theorem.

## References

[1] P. Erdös, Chao Ko, and R. Rado, "Intersection theorems for systems of finite sets", Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
[2] William Feller, An introduction to probability theory and its applications, Volume II (John Wiley \& Sons, New York, London, Sydney, Toronto, 1966; second edition, 1971).
[3] Peter Frankl, "Families of finite sets satisfying a union-condition", submitted.
[4] Gy. Katona, "Intersection theorems for systems of finite sets", Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.

Department of Algebra and Number Theory, Eötvös Lorand University Budapest, Budapest, Hungary.

