Families of finite sets satisfying an intersection condition

Peter Frankl

The following theorem is proved.

Let X be a finite set of cardinality $n \ge 2$, and let F be a family of subsets of X. Suppose that for $F_1, F_2, F_3 \in F$ we have $|F_1 \cap F_2 \cap F_3| \ge 2$. Then $|F| \le 2^{n-2}$ with equality holding if and only if for two different elements x, y of X, $F = \{F \subseteq X \mid x \in F, y \in F\}$.

1. Introduction

Let i, j, n, r be positive integers, $n \ge 2$. Let [i, j] denote the set of integers $k, i \le k \le j$. Set X = [1, n].

For any pair of non-negative integers t, h , $t \ge 2$, define

 $F(n, t, h) = \{F \subseteq X \mid |F \cap [1, r+th]| \ge r+(t-1)h\}$.

Then for $F_1, \ldots, F_t \in F(n, t, h)$ we have $|F_1 \cap \ldots \cap F_t| \ge r$. Erdös and the author have made the following conjecture.

CONJECTURE. Let F be a family of subsets of X. If for any $F_1, \ldots, F_t \in F(n, t, h)$ we have $|F_1 \cap \ldots \cap F_t| \ge r$, then $|F| \le \max_h |F(n, t, h)|$.

The case r = 1 is trivial (*cf.* Erdös, Ko, and Rado [1]). For the case t = 2 and r arbitrary, the validity of the conjecture follows from Katona [4].

Received 24 March 1976.

73

https://doi.org/10.1017/S0004972700036777 Published online by Cambridge University Press

So the first open case is t = 3 , r = 2 . The aim of this paper is to establish the conjecture for this case.

In FrankI [3] the conjecture is proved for $r \leq \frac{2^{t}t}{150}$. We need two preliminary results.

LEMMA 1. Let A and B be collections of subsets of X. Suppose that for $A \in A$, $B \in B$, $A \cap B \neq \emptyset$. Then

$$|\mathsf{A}| + |\mathcal{B}| \le 2^n .$$

Proof. Let us set $A' = \{X-A \mid A \in A\}$. Then the condition implies $A' \cap B = \emptyset$ whence $|A| + |B| = |A'| + |B| \le 2^n$. //

LEMMA 2. Let $y_1, y_2, \ldots, y_m, \ldots$ be identically distributed independent random variables defined by $p(y_i = 1) = 1/2$, $p(y_i = -2) = 1/2$. Let s be a non-negative integer. Then

$$p\left(\max_{m}\left(\sum_{i=1}^{m} y_{i}\right) \geq s\right) = \left(\frac{\sqrt{5}-1}{2}\right)^{s}.$$

Proof. The assertion can be easily deduced from the more general theorems in Feller [2], Chapter XII. We use the following corollary of Lemma 2.

COROLLARY 1. Let k be a positive integer and let y_1, \ldots, y_k be defined as above. Then

(2)
$$p\left(\max_{m\leq k} \left(\sum_{i=1}^{m} y_{i}\right) \geq s\right) < \left(\frac{\sqrt{5}-1}{2}\right)^{s}$$

2. The main result

THEOREM. Let F be a collection of subsets of X = [1, n]. Suppose that for F_1, F_2, F_3 ,

(3) $|F_1 \cap F_2 \cap F_3| \ge 2$.

Then $|F| \leq 2^{n-2}$ and equality holds if and only if for some $1 \leq i < j \leq n$, $F = \{F \subseteq X \mid i \in F, j \in F\}$.

74

Proof. Let us suppose that $|F| \ge 2^{n-2}$ but F is not of the above form. Let $1 \le i < j \le n$ and let H be a collection of subsets of X. The following operation was essentially defined in [1];

$$A_{i,j}(H) = \{A_{i,j}(H) \mid H \in H\},\$$

where

$$A_{i,j}(H) = \begin{cases} (H - \{j\}) \cup \{i\} \text{ if } j \in H, i \notin H, ((H - \{j\}) \cup \{i\}) \notin H, \\ H & \text{otherwise.} \end{cases}$$

It can be easily checked that if H satisfies Condition (3) then $A_{i,j}(H)$ satisfies it as well. Let us apply the operation $A_{i,j}$ iteratedly for all the pairs i, j $(1 \le i < j \le n)$ starting with H = F. As X is finite and whenever $A_{i,j}(H) \ne H$ then

$$\sum_{\substack{H \in A_{i,j}(H) \ q \in H}} \sum_{q \in H} q < \sum_{\substack{H \in H \ q \in H}} \sum_{q \in H} q;$$

so after a finite number of steps we obtain a collection G which still satisfies (3), |G| = |F|, and for any $1 \le i < j \le n$, $A_{i,j}(G) = G$. We divide the proof of the theorem into a series of propositions.

Proof. The assertion follows from $A_{i,j}(G) = G$ for any i, j, $1 \le i < j \le n$.

PROPOSITION 2. Let us define

$$G_1 = \{1, 3, 4, 6, 7, \dots, 3k, 3k+1, \dots\} \cap [1, n]$$

Then $G_1 \notin G$.

Proof. If G_1 belongs to G then in view of Proposition 1 so do $G_2 = \{1, 2, 4, 5, 7, \dots, 3k-1, 3k+1, \dots\} \cap [1, n]$

and

 $G_3 = \{1, 2, 3, 5, 6, \dots, 3k-1, 3k, \dots\} \cap [1, n]$

but $G_1 \cap G_2 \cap G_3 = \{1\}$, contradicting (3).

PROPOSITION 3. For any $G \in G$ there exists a non-negative integer h such that

(4)
$$|G \cap [1, 2+3h]| \ge 2 + 2h$$

Proof. The contrary would mean that for some $G \in G$, $G = \{i_1, \ldots, i_q\}$, $i_1 < i_2 < \ldots < i_q$, and any $h \ge 0$, $i_{2+2h} \ge 3 + 3h$. Hence for any $h \ge 0$, $i_{2(h+1)+1} \ge 3(h+1) + 1$, and these inequalities along with $i_1 \ge 1$ and Proposition 1, imply $G_1 \in G$, contradicting Proposition 2.

Let us define the random variables x_1, x_2, \ldots, x_n on a subset Fof X by $x_i = 1$ if $i \in F$ and $x_i = -2$ if $i \notin F$. Then the x_i 's are independent and $p(x_i = 1) = p(x_i = -2) = 1/2$.

Proposition 3 yields immediately

PROPOSITION 4. For every $G \in G$, $\max_{1 \le j \le n} \left(\sum_{i=1}^{j} x_i \right) \ge 2$. Let us set $G_{1,2} = \{ G \in G \mid 1 \in G, 2 \in G \}$. PROPOSITION 5.

(5)
$$|G_{1,2}| \le 2^{n-3}$$
.

Proof. If we knew that for $G, H \in G_{1,2}$,

76

Let us set

 $F_{i} = \{G_{-}[1, 5] \mid G \in G, G \cap [1, 5] = \{i, 3, 4, 5\}\} \quad (i = 1, 2) .$ PROPOSITION 6. For $F_{1} \in F_{1}$, $F_{2} \in F_{2}$, $F_{1} \cap F_{2} \neq \emptyset$.

Proof. If for some $F_1 \in F_1$, $F_2 \in F_2$, $F_1 \cap F_2 = \emptyset$, then, according to the definition of the F_i 's, there exist H_1 , $H_2 \in G$ such that $H_1 \cap H_2 = [3, 5]$. Using (3) it follows that for any $G \in G$,

(6)
$$|G \cap [3, 5]| \ge 2$$
.

If for some $G \in G$, $|G \cap [1, 5]| < 4$, then, by Proposition 1, $G' = ((G-[1, 5]) \cup [1, 3]) \in G$; but $G' \cap [3, 5] = \{3\}$ contradicting (6). Hence for any $G \in G$, $|G \cap [1, 5]| \ge 4$; that is, $G \subseteq F(n, 3, 1)$. But $|F(n, 3, 1)| = 6 \cdot 2^{n-5} < 2^{n-2}$, a contradiction.

PROPOSITION 7.

(7)
$$|F_1| + |F_2| \le 2^{n-5}$$
.

Proof. (7) follows immediately from Proposition 6 and Lemma 1. Now let us set $G_i = \{G \in G \mid [1, 2] \notin G, |G \cap [1, 5]| = i\}$, i = 0, 1, 2, 3. Then

(8)
$$|G| = |G_{1,2}| + |F_1| + |F_2| + |G_0| + |G_1| + |G_2| + |G_3|$$
.
PROPOSITION 8 For $G \in G$ $(i = 0, 1, 2, 3)$

PROPOSITION 8. For $G \in G_i$ (i = 0, 1, 2, 3),

(9)
$$\max_{\substack{6 \le s \le n}} \left(\sum_{i=6}^{s} x_i \right) \ge 3(4-i)$$

Proof. It is an immediate consequence of Proposition 3 and 4. PROPOSITION 9.

(10)
$$|G_3| \leq 7.2^{n-5} \left(\frac{\sqrt{5}-1}{2}\right)^3$$
.

Proof. Let us set $F_3 = \{G-[1, 5] \mid G \in G_3\}$. As there are 7 subsets A of [1, 5] satisfying $|A \cap [1, 5]| = 3$ and $[1, 2] \notin A$ so $|G_3| \leq 7|F_3|$. In view of (9) and Corollary 1, $(y_i = x_{6-i})$, we have $\frac{|F_3|}{2^{n-5}} \le \left(\frac{\sqrt{5}-1}{2}\right)^3$,

so (10) follows.

PROPOSITION 10.

(11)
$$|G_2| \le 9.2^{n-5} \left(\frac{\sqrt{5}-1}{2}\right)^6$$
,

(12)
$$|G_1| \le 5.2^{n-5} \left(\frac{\sqrt{5}-1}{2}\right)^9$$

(13)
$$|G_0| \leq 2^{n-5} \left(\frac{\sqrt{5}-1}{2}\right)^{12}$$
.

Proof. These inequalities can be proven in exactly the same way as inequality (10).

Now summing up the inequalities (5), (7), (10), (11), (12), (13) in view of (8) we obtain

$$|G| \leq 2^{n-2} \left(\frac{1}{2} + \frac{1}{8} + \frac{7}{8} \left(\frac{\sqrt{5}-1}{2} \right)^3 + \frac{9}{8} \left(\frac{\sqrt{5}-1}{2} \right)^6 + \frac{5}{8} \left(\frac{\sqrt{5}-1}{2} \right)^9 + \frac{1}{8} \left(\frac{\sqrt{5}-1}{2} \right)^{12} < 0, \ 91.2^{n-2}$$

This final contradiction finishes the proof of the theorem.

References

- P. Erdös, Chao Ko, and R. Rado, "Intersection theorems for systems of finite sets", Quart. J. Math. Oxford Ser. 12 (1961), 313-320.
- [2] William Feller, An introduction to probability theory and its applications, Volume II (John Wiley & Sons, New York, London, Sydney, Toronto, 1966; second edition, 1971).
- [3] Peter Frankl, "Families of finite sets satisfying a union-condition", submitted.

https://doi.org/10.1017/S0004972700036777 Published online by Cambridge University Press

[4] Gy. Katona, "Intersection theorems for systems of finite sets", Acta Math. Acad. Sci. Hungar. 15 (1964), 329-337.

Department of Algebra and Number Theory, Eötvös Lorand University Budapest, Budapest, Hungary.