ON THE BEHAVIOR OF EXTENSIONS OF VECTOR BUNDLES UNDER THE FROBENIUS MAP

HIROSHI TANGO

Introduction.

Let k be an algebraically closed field of characteristic $p>0$, and let X be a curve defined over k. The aim of this paper is to study the behavior of the Frobenius map $F^{*}: H^{1}(X, E) \rightarrow H^{1}\left(X, F^{*} E\right)$ for a vector bundle E.

Our main result is the following.
ThEOREM 15. Let X be a curve of genus $g>0$. Let $n(X)$ be the integer defined by
$\boldsymbol{n}(X)=\max \left\{\sum_{x \in X}\left[\frac{v_{x}(\mathrm{~d} f)}{p}\right] ; f\right.$ runs over all rational functions on X with $\mathrm{d} f \neq 0\}$.

Then
(i) for any line bundle L such that $\operatorname{deg} L>\boldsymbol{n}(X)$, the Frobenius map $F^{*}: H^{1}(X, \check{L}) \rightarrow H^{1}\left(X, F^{*} \check{L}\right)$ is injective.
(ii) if $\boldsymbol{n}(X)>0$, then there exists a line bundle M of degree $\boldsymbol{n}(X)$ such that the Frobenius map $F^{*}: H^{1}(X, \check{M}) \rightarrow H^{1}\left(X, F^{*} \check{M}\right)$ is not injective. (where \check{L} is the dual line bundle of L)

This main result leads us to a counter example to a question posed by R. Hartshorne:

Question. Assume the Hasse-Witt matrix of X is non-singular. Is the Frobenius map $F^{*}: H^{1}(X, \breve{L}) \rightarrow H^{1}\left(X, F^{*} \check{L}\right)$ injective for any ample line bundle L ?

I wish to thank Professor Hideyasu Sumihiro for his advice and

[^0]Revised May 19, 1972.
encouragement, and Professors Masayoshi Nagata and Masaki Maruyama for their valuable conversations.

Notations.

Throughout this paper, we mean by a variety (resp. curve) an irreducible complete non-singular variety (resp. curve) defined over an algebraically closed field of characteristic $p>0$. We denote by \mathcal{O}_{X} the structure sheaf of X, by $K=K(X)$ the field of rational functions on X and by Ω_{X}^{i} the sheaf of germs of regular differential i-forms.

We use the words vector bundle and locally free sheaf interchangeably. For any vector bundle E of rank n on a curve, there exists a series of subbundles of E

$$
0=E_{0} \subset E_{1} \subset E_{2} \subset, \cdots, \subset E_{n}=E
$$

where $L_{i}=E_{i} / E_{i-1}$ is a line bundle (cf. Atiyah [1])
($L_{1}, L_{2}, \cdots, L_{n}$) will be called a splitting of E. A line subbundle L of E will be called a maximal line subbundle of E, if L satisfies the following condition: for any line subbundle M of E, $\operatorname{deg} L \geqq \operatorname{deg} M$.

A splitting ($L_{1}, L_{2}, \cdots, L_{n}$) will be called a maximal splitting of E, if it satisfies the following conditions:
(i) L_{1} is a maximal line subbundle of E,
(ii) $\left(L_{2}, L_{3}, \cdots, L_{n}\right)$ is a maximal splitting of E / L_{1}.

We denote by \check{E} the dual vector bundle of E and denote by $h^{i}(E)$ the dimension of the k-vector space $H^{i}(X, E)$.

1. Let X be a variety of $\operatorname{dim} n$. Let $F: X \rightarrow X$ be the Frobenius morphism. (cf. [4]). The natural derivation $\mathrm{d}: \mathcal{O}_{X} \rightarrow \Omega_{X}^{1}$ gives rise to a k-linear mapd: $\Omega_{X}^{i} \rightarrow \Omega_{X}^{i+1}$ for each i, which induce $a \mathcal{O}_{X}$-homomorphism $F_{*} \mathrm{~d}: F_{*} \Omega_{X}^{i} \rightarrow F_{*} \Omega_{X}^{i+1}$ for each i. We denote by \mathscr{Z}_{X}^{i} (resp. \mathscr{B}_{X}^{i+1}) the kernel (resp. image) of $F_{*} \mathrm{~d}: F_{*} \Omega_{X}^{i} \rightarrow F_{*} \Omega_{X}^{i+1}$. Let x be a point of X and let $u_{1}, u_{2}, \cdots, u_{n}$ be local parameters of X at x. Then we have the following Propositions, due to Cartier (cf. [10]).

PROPOSITION 1. $\quad \mathscr{Z}_{X X}^{i}=\mathscr{B}_{X, x}^{i} \oplus\left(\oplus \mathcal{O}_{X, x}^{P}\left(u_{j_{1}}, u_{j_{2}}, \cdots, u_{j_{i}}\right)^{p-1} \mathrm{~d} u_{j_{1}} \wedge \mathrm{~d} u_{j_{2}}\right.$ $\wedge \cdots \wedge \mathrm{d} u_{j_{i}}$) where $\mathcal{O}_{X, x}^{P}=\left\{f^{p} ; f \in \mathcal{O}_{X, x}\right\}, \mathscr{Z}_{X, x}^{i}$ is an $\mathcal{O}_{X, x}$-module through the p-th power map.

Proposition 2. There are \mathcal{O}_{X}-homomorphisms $C: \mathscr{Z}_{X}^{i} \rightarrow \Omega_{X}^{i}$, called the Cartier operator, with the following properties.
(i) $C\left(\omega_{1}+\omega_{2}\right)=C\left(\omega_{1}\right)+C\left(\omega_{2}\right)$
(ii) $C\left(f^{p} \omega\right)=f C(\omega)$
(iii) $C(\omega)=0 \quad$ if $\omega \in \mathscr{B}_{X, x}^{i}$
(iv) $C\left(\left(f_{1} f_{2} \cdots f_{i}\right)^{p-1} \mathrm{~d} f_{1} \wedge \mathrm{~d} f_{2} \wedge \cdots \wedge \mathrm{~d} f_{i}=\mathrm{d} f_{1} \wedge \mathrm{~d} f_{2} \wedge \cdots \wedge \mathrm{~d} f_{i}\right.$ where $\omega_{1}, \omega_{2}, \omega \in \mathscr{Z}_{X, x}^{i}$ and $f, f_{1}, f_{2}, \cdots, f_{i} \in \mathcal{O}_{X, x}$.

Proposition 3. The following sequence of \mathcal{O}_{X}-Modules are exact.
(i) $0 \longrightarrow \mathscr{Z}_{X}^{i} \longrightarrow F_{*} \Omega_{X}^{i} \xrightarrow{F_{*}{ }^{d}} \mathscr{B}_{X}^{i+1} \longrightarrow 0$
(ii) $0 \longrightarrow \mathcal{O}_{X} \xrightarrow{F^{\prime}} F_{*} \mathcal{O}_{X} \xrightarrow{F_{*}^{\mathrm{d}}} \mathscr{B}_{X}^{1} \longrightarrow 0$
(iii) $0 \longrightarrow \mathscr{B}_{X}^{i} \longrightarrow \mathscr{Z}_{X}^{i} \xrightarrow{C} \Omega_{X}^{i} \longrightarrow 0$

Since the Frobenius morphism F is affine, the canonical p-linear map $\alpha: H^{i}\left(X, F_{*} \mathscr{F}\right) \rightarrow H^{i}(X, \mathscr{F})$ is bijective, for any coherent sheaf \mathscr{F} on X and for any integer i, (cf. [3] III. 1. 3. 3.). Since $\mathscr{Z}_{X}^{n}=F_{*} \Omega_{X}^{n}$, $\operatorname{dim} H^{n}\left(X, \mathscr{Z}_{X}^{n}\right)$ $=\operatorname{dim} H^{n}\left(X, \Omega_{X}^{n}\right)=1$ and the Cartier operator $C^{*}: H^{n}\left(X, \mathscr{Z}_{X}^{n}\right) \rightarrow H^{n}\left(X, \Omega_{X}^{n}\right)$ is surjective, so we have that C^{*} is bijective. Let E be a vector bundle on X. Then there exists a natural map $\psi: E \otimes \check{E} \otimes \Omega_{x}^{n} \rightarrow \Omega_{X}^{n}$ and the cup product

$$
U: H^{i}(X, E) \times H^{n-i}\left(X, \check{E} \otimes \Omega_{X}^{n}\right) \longrightarrow H^{n}\left(X, E \otimes \check{E} \otimes \Omega_{X}^{n}\right) .
$$

The composition map

$$
H^{i}(X, E) \times H^{n-i}\left(X, \check{E} \otimes \Omega_{X}^{n}\right) \longrightarrow H^{n}\left(X, E \otimes \check{E} \otimes \Omega_{X}^{n}\right) \longrightarrow H^{n}\left(X, \Omega_{X}^{n}\right) \approx k
$$

gives the Serre duality between $H^{i}(X, E)$ and $H^{n-i}\left(X, E \otimes \Omega_{X}^{n}\right)$.
The following is well known (e.g. for curves Serre [9]).

Proposition 4. Let E be a vector bundle on X. Then the following two k-linear maps are dual to each other.
(i) $\quad F^{\prime *}(i, E): H^{i}(X, E) \longrightarrow H^{i}\left(X, E \otimes F_{*} \mathcal{O}_{X}\right)$
(ii) $\quad C^{*}(n-i, \check{E}): H^{n-i}\left(X, \check{E} \otimes \mathscr{Z}_{X}^{n}\right) \longrightarrow H^{n-i}\left(X, \check{E} \otimes \Omega_{X}^{n}\right)$.

In particular, we have $\operatorname{dim} \operatorname{Image} F^{\prime *}(i, E)=\operatorname{dim} \operatorname{Image} C^{*}(n-i, \check{E})$.
For the sake of completeness we include a proof:

$$
H^{i}(X, E) \times H^{n-i}\left(X, \check{E} \otimes \Omega_{X}^{n}\right) \xrightarrow{U} H^{n}\left(X, E \otimes \check{E} \otimes \Omega_{X}^{n}\right) \xrightarrow{\psi^{*}} H^{n}\left(X, \Omega_{X}^{n}\right) \approx k
$$

$$
\left.\uparrow i d \times C *(n-i, \check{E}) \quad u \quad \uparrow C *(n, E \otimes \check{E}) \quad \psi^{\prime}\right) \quad \uparrow C *\left(n, O_{X}\right)
$$

$H^{i}(X, E) \times H^{n-i}\left(X, \check{E} \otimes \mathscr{Z}_{X}^{n}\right) \xrightarrow{U} H^{n}\left(X, E \otimes \check{E} \otimes \mathscr{Z}_{X}^{n}\right) \xrightarrow{\psi^{*}} H^{n}\left(X, \mathscr{Z}_{X}^{n}\right)$ $\downarrow F^{\prime *}(i, E) \times i d$
$H^{i}\left(X, E \otimes F_{*} \mathcal{O}\right) \times H^{n-i}\left(X, \check{E} \otimes \mathscr{Z}_{X}^{n}\right)$

$H^{i}\left(X, F^{*} E\right) \times H^{n-i}\left(X, F^{*} \check{E} \otimes \Omega_{X}^{n}\right) \xrightarrow{U} H^{n}\left(X, F^{*} E \otimes F^{*} \check{E} \otimes \Omega_{X}^{n} \xrightarrow{\psi^{*}} H^{n}\left(X, \Omega_{X}^{n}\right)\right.$
Giving the duality between $H^{i}\left(X, E \otimes F_{*} \mathcal{O}_{X}\right)$ and $H^{n-i}\left(X, \check{E} \otimes \mathscr{Z}_{X}^{n}\right)$ by the composition $\operatorname{map} C^{*}\left(n, \mathcal{O}_{X}\right) \circ \alpha^{-1} \circ \psi^{*} \circ U \circ(\alpha \times a)$, we have the duality between $F^{\prime *}(i, E)$ and $C^{*}(n-i, E)$.
2. Let E be a vector bundle on X. We denote by $F^{*}(i, E)$, the composition map $\alpha \circ F^{\prime *}(i, E): H^{i}(X, E) \rightarrow H^{i}\left(X, F^{*} E\right)$.

Theorem 5. Let X be a curve and let E be a vector bundle on X. Then
(i) $\quad \operatorname{dim}$ Cokernel $F^{*}(1, E)=h^{0}\left(\check{E} \otimes \mathscr{B}_{x}^{1}\right)$
(ii) $\quad \operatorname{dim} \operatorname{Kernel} F^{*}(1, \check{E})=h_{0}\left(\check{E} \otimes \mathscr{B}_{x}^{1}\right)-\left(h^{0}\left(F^{*} \check{E}\right)-h^{0}(\check{E})\right)$

$$
\leqq h^{0}\left(\check{E} \otimes \mathscr{B}_{x}^{1}\right)
$$

Proof. By virtue of Proposition 3, we have the following exact sequences,

$$
\begin{aligned}
& 0 \longrightarrow \check{E} \otimes \mathscr{B}_{x}^{1} \longrightarrow \check{E} \otimes \mathscr{Z}_{X}^{1} \quad \xrightarrow{C} \check{E} \otimes \Omega_{X}^{1} \longrightarrow 0 \\
& 0 \longrightarrow \check{E} \longrightarrow F_{*} \mathcal{O}_{X} \longrightarrow \check{E} \otimes \mathscr{B}_{x}^{1} \longrightarrow 0
\end{aligned}
$$

and hence following cohomology exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(X, \check{E} \otimes \mathscr{B}_{X}^{1}\right) \longrightarrow H^{0}\left(X, \check{E} \otimes \mathscr{Z}_{x}^{1}\right) \xrightarrow{C *(0, \check{E})} H^{0}\left(X, \check{E} \otimes \Omega_{X}^{1}\right) \\
& 0 \longrightarrow H^{0}(X, \check{E}) \quad \xrightarrow{\longrightarrow} H^{0}\left(X, \check{E} \otimes F_{*} \mathcal{O}_{X}\right) \longrightarrow H^{0}\left(X, \check{E} \otimes \mathscr{B}_{X}^{1}\right) \\
&\left.\longrightarrow H^{1}(X, \check{E})\right) \xrightarrow{F^{\prime} *(1, \check{E})} H^{1}\left(X, \check{E} \otimes F_{*} \mathcal{O}_{X}\right)
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \operatorname{dim} \text { Cokernel } F^{*}(1, E)=\operatorname{dim} \text { Cokernel } F^{\prime *}(1, E) \\
&=h^{1}\left(E \otimes F_{*} \mathscr{O}_{X}\right)-\operatorname{dim} \text { Image } F^{\prime *}(1, E) \\
&=h^{1}\left(F^{*} E\right)-\operatorname{dim} \operatorname{Image} C^{*}(0, \check{E}) \quad(\text { by virtue of Proposition 4) } \\
&=h^{1}\left(F^{*} E\right)-\left(h^{0}\left(\check{E} \otimes F_{*} \Omega_{X}^{1}\right)-h^{0}\left(\check{E^{\prime}} \otimes \mathscr{B}_{X}^{1}\right)\right) \\
&=h^{0}\left(\check{E} \otimes \mathscr{B}_{X}^{1}\right)
\end{aligned}
$$

And we have

$$
\begin{aligned}
& \operatorname{dim} \text { Kernel } F^{*}(1, \check{E})=\operatorname{dim} \operatorname{Kernel} F^{\prime *}(1, \check{E}) \\
& \quad= h^{0}\left(\check{E} \otimes \mathscr{B}_{x}^{1}\right)-h^{0}\left(\check{E} \otimes F_{*} \mathcal{O}_{x}\right)+h^{0}(\check{E}) \\
& \quad=h^{0}\left(\check{E} \otimes \mathscr{B}_{x}^{1}\right)-\left(h^{0}\left(F^{*} \check{E}\right)-h^{0}(\check{E})\right) \\
& \leqq h^{0}\left(\check{E} \otimes \mathscr{B}_{X}^{1}\right)
\end{aligned}
$$

Corollary 6. Let X be a curve and let E be a vector bundle. Assume that the Frobenius map $F^{*}(1, E)$ is surjective, then $F^{*}(1, \check{E})$ is injective and $h^{0}\left(F^{*} \check{E}\right)=h^{0}(\check{E})$.

As a corollary of this Theorem 5, we have the following Theorem of Oda:

Theorem 7. (T. Oda). Let X be an elliptic curve and let E be an indecomposable vector bundle of rank r and of degree d. Then we have the following results.
(i) When the Hasse-Witt matrix of X is not zero (i.e., $F^{*}\left(1, \mathcal{O}_{X}\right)$ is injective), the Frobenius map $F^{*}(1, E)$ is injective.
(ii) When the Hasse-Witt matrix of X is zero (i.e., $F^{*}\left(1, \mathcal{O}_{X}\right)$ is the zero map), the Frobenius map $F^{*}(1, E)$ is not injective (and in fact the zero map) if and only if $r<p, d=0$ and E has a non-zero section (i.e., in Atiyah's notation $E=F_{r}$ with $r<p$).

Corollary 8. (Corollary of the proof of Theorem 7) (cf. [1] p. 451) Let X be an elliptic curve.
(i) When the Hasse-Witt matrix of X is not zero, then $\mathscr{B}_{X}^{1} \approx L_{1} \oplus L_{2} \oplus \cdots \oplus L_{p-1}$ where $\left\{\mathcal{O}_{X}, L_{1}, L_{2}, \cdots, L_{p-1}\right\}=\left\{L\right.$; line bundles with $\left.L^{\otimes P} \approx \mathcal{O}_{X}\right\}$
(ii) When the Hasse-Witt matrix of X is zero, then $\mathscr{B}_{X}^{1} \approx F_{p-1}$.
(iii) $F^{*} F_{*} \mathcal{O}_{X} \approx \stackrel{p}{\oplus} \mathcal{O}_{X}$

Proof. Let E be an indecomposable vector bundle of rank r and of degree d. We use the following results of Atiyah (cf. [1]).

$$
\begin{aligned}
& h^{0}(E)=d \quad \text { and } \quad h^{1}(E)=0 \quad \text { when } d \text { is positive } \\
& h^{0}(E)=0 \quad \text { and } \quad h^{1}(E)=-d \quad \text { when } d \text { is negative. } \\
& h^{0}(E)=h^{1}(E)=0 \quad \text { when } \quad d=0 \quad \text { and } E \not \approx F_{r} . \\
& h^{0}(E)=h^{1}(E)=1 \quad \text { when } \quad E \approx F_{r} .
\end{aligned}
$$

When $d=0$, there is a line bundle of degree 0 with $E \approx L \otimes F_{r}$. It is easy to see that \mathscr{B}_{X}^{1} is a vector bundle of rank $p-1$. Let $\mathscr{B}_{X}^{1} \approx E_{1} \oplus E_{2} \oplus \cdots \oplus E_{s}$ be the decomposition of \mathscr{B}_{X}^{1} into indecomposable factors. Let r_{i} be the rank of E_{i} and let d_{i} be the degree of E_{i}. Then we have $\sum \mathrm{d}_{i}=\operatorname{deg} \mathscr{B}_{X}^{1}=\chi\left(\mathscr{B}_{X}^{1}\right)=\chi\left(F_{*} \mathcal{O}_{X}\right)-\chi\left(\mathcal{O}_{X}\right)=0$. Let L be a non trivial line bundle of degree 0 , then $h^{0}\left(L \otimes \mathscr{B}_{x}^{1}\right) \neq 0$ (in fact equal to 1) if and only if $L^{\otimes P} \approx \mathcal{O}_{X}$ by virtue of following exact sequence.

$$
0=H^{0}(X, L) \longrightarrow H^{0}\left(X, L \otimes F_{*} \mathcal{O}_{X}\right) \longrightarrow H^{0}\left(X, L \otimes \mathscr{B}_{X}^{1}\right) \longrightarrow H^{1}(X, L)=0 .
$$

This shows that $d_{i} \leqq 0$ for all i and so $d_{i}=0$ for all i. Let L_{i} be the line bundle with $E_{i} \approx L_{i} \otimes F_{r_{i}}$, then $L_{i}^{\otimes P} \approx \mathcal{O}_{X}$. By virtue of Lemma 13, we have the following results. When $h^{0}\left(\mathscr{B}_{x}^{1}\right)=1$, then $s=1, r_{1}=p-1$ and $L_{1} \approx \mathcal{O}_{X}$. And when $h^{0}\left(\mathscr{B}_{X}^{1}\right)=0$, then $s=p-1, r_{i}=1$ and $\left\{\mathcal{O}_{X}, L_{1}, L_{2}, \cdots, L_{p-1}\right\}=\left\{L\right.$; line bundles with $\left.L^{\otimes P} \approx \mathcal{O}_{X}\right\}$. Let E be an indecomposable vector bundle of rank r and of degree d. If $d>0$, then $h^{1}(E)=0$. If $d<0$, then $h^{0}(E \otimes L)=0$ for all line bundle L of degree 0 , and so $h^{0}\left(E \otimes \mathscr{B}_{x}^{1}\right)=0$. Thus the Frobenius map $F^{*}(1, E)$ is injective when $d \neq 0$. When $d=0$ and $E \neq F_{r}$ then $h^{1}(E)=0$ and the Frobenius map $F^{*}(1, E)$ is injective. When $E=F_{r}$ and the Hasse-Witt matrix of X is not zero, then $h^{0}\left(E \otimes \mathscr{B}_{X}^{1}\right)=0$ and the Frobenius map $F^{*}(1, E)$ is injective. When $E=F_{r}$ and the Hasse-Witt matrix of X is zero, then we have the following results by induction on $r . \quad h^{0}\left(F^{*} \boldsymbol{F}_{r}\right)=\min \{p, r\}$, $F^{*} F_{r} \approx \stackrel{r}{\oplus} \mathcal{O}_{X}$ for all r with $r \leqq p$ and $F^{*}\left(1, F_{r}\right)$ is the zero map if and only if $r \leqq p-1$.
$r=1$. It is obvious.
$p \geqq r>1$. We have the following exact sequence

$$
0 \longrightarrow F_{r-1} \longrightarrow F_{r} \longrightarrow \mathcal{O}_{X} \longrightarrow 0 .
$$

Hence we have $F^{*} F_{r} \approx \stackrel{r}{\oplus} \mathcal{O}_{X}$ and $h^{0}\left(F^{*} F_{r}\right)=r$ by the induction assumption. But we have $h^{0}\left(F_{r} \otimes \mathscr{B}_{x}^{1}\right)=h^{0}\left(F_{r} \otimes F_{p-1}\right)=\min \{r, p-1\}$ (for all r, cf. [1] Lemma 17). Hence we have $h^{0}\left(F_{r} \otimes \mathscr{B}_{x}^{1}\right)-h^{0}\left(F^{*} F_{r}\right)+h^{0}\left(F_{r}\right)=1$, if $r<p$. This shows that when $r<p$ the Frobenius map $F^{*}\left(1, F_{r}\right)$ is the zero map.
$p \leqq r . \quad F_{r}$ has F_{p} as a subbundle and so $h^{0}\left(F^{*} F_{r}\right) \geqq p$ by the induction assumption. Hence we have
$0 \leqq h\left(F_{r} \otimes \mathscr{B}_{X}^{1}\right)-h^{0}\left(F^{*} F_{r}\right)+h^{0}\left(F_{r}\right) \leqq 0$. This shows that $h_{0}\left(F^{*} F_{r}\right)=p$ and the Frobenius map $F^{*}\left(1, F_{r}\right)$ is injective.
3. Let X be a curve. For any divisor D on X, we denote by $\mathcal{O}(D)$ the line bundle associated with D.

DEFINITION 9. For any function $f \in K$, we denote by $\boldsymbol{n}(f)$ the integer (or infinity) $\sum_{x \in X}\left[v_{x}(\mathrm{~d} f) / p\right]$ where [] is the Gauss symbol, and v_{x} is the valuation associated with x.

Lemma 10. Let g be the genus of the curve X. Then
(i) $\boldsymbol{n}(f)=\infty$ if and only if $f \in K^{p}$,
(ii) $\boldsymbol{n}(f) \leqq[2(g-1) / p]$, if $\boldsymbol{n}(f)<\infty$.

Proof. $\mathrm{d} f=0$ if and only if $f \in K^{p}$, and if $\mathrm{d} f=0$, then $n(f)=\infty$. If $\mathrm{d} f \neq 0$, the divisor $D=\sum_{x \in X} v_{x}(\mathrm{~d} f) x$ is a canonical divisor, and so the degree of D is $2(g-1)$. Therefore we have

$$
n(f) \leqq\left[\frac{2(g-1)}{p}\right]
$$

Definition 11. We define $n(X)$ by the following formula

$$
\boldsymbol{n}(X)=\max \left\{\boldsymbol{n}(f) ; f \in K \text { and } f \notin K^{p}\right\} .
$$

Note that $n(X) \leqq[2(g-1) / p]$, by virtue of Lemma 10 .
Lemma 12. Let D be a divisor on X, Then we have

$$
H^{0}\left(X, \mathcal{O}(-D) \otimes \mathscr{B}_{X}^{1}\right) \cong\{\mathrm{d} f ; f \in K \text { and }(\mathrm{d} f)>p D\}
$$

Proof. By virtue of Proposition 3, we have the following exact sequence.

$$
0 \longrightarrow \mathcal{O}(-D) \otimes \mathscr{B}_{X}^{1} \longrightarrow \mathcal{O}(-D) \otimes \mathscr{Z}_{X}^{1} \xrightarrow{C} \mathcal{O}(-D) \otimes \Omega_{X}^{1} \longrightarrow 0
$$

Hence, we have the following cohomology exact sequence.

$$
\begin{aligned}
0 \longrightarrow H^{0}\left(X, \mathcal{O}(-D) \otimes \mathscr{B}_{x}^{1}\right) \longrightarrow & H^{0}\left(X, \mathcal{O}(-D) \otimes \mathscr{Z}_{x}^{1}\right) \xrightarrow{C^{*}} H^{0}\left(X, \mathcal{O}(-D) \otimes \Omega_{X}^{1}\right) \\
& H^{0}\left(X, \mathcal{O}(-p D) \otimes \Omega_{X}^{1}\right)
\end{aligned}
$$

Since, $H^{0}\left(X, \mathcal{O}(-p D) \otimes \Omega_{X}^{1}\right)=\left\{\omega \in \Omega^{1}(K / k) ;(\omega)>p D\right\}$. The assersion is obvious by virtue of Proposition 3.

Remark: By Lemma 12, it is easy to see that $n(X)$ coincides with the degree of a maximal line subbundle of \mathscr{B}_{x}^{1}.

Lemma 13. Let G be the group of linear equiualence classes of
divisors on X, and let G_{p} be the subgroup of elements $\bar{D} \in G$ such that $p \bar{D}=0$. Then G_{p} is a finite group of order p^{σ}, where σ is the rank of the Hasse-Witt matrix of X.

Proof. See Serre [9] Proposition 10 § 2.
Proposition 14. Let X be a curve of genus $g>0$. Then $\boldsymbol{n}(X) \geqq 0$.
Proof. When the Hasse-Witt matrix of X is not zero. $G_{p} \neq 0$, by virtue of Lemma 13. So there exists a non-zero element $\bar{D} \in G$ such that $p \bar{D}=0$. Therefore, there exists a rational function f such that $f \notin K^{p}$ and $(f)=p D$. Hence $(\mathrm{d} f)>p D$. Thus $n(X) \geqq \operatorname{deg} D=0$.

When the Hasse-Witt matrix of X is zero, i.e., $F^{*}\left(1, \mathcal{O}_{X}\right)$ is the zero map. We have

$$
0 \longrightarrow H^{0}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{0}\left(X, F^{*} \mathcal{O}_{X}\right) \longrightarrow H^{0}\left(X, \mathscr{B}_{X}^{1}\right) \longrightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \longrightarrow 0
$$

and hence we have $H^{0}\left(X, \mathscr{B}_{X}^{1}\right) \approx H^{1}\left(X, \mathcal{O}_{X}\right) \neq 0$. Therefore $n(X) \geqq 0$, by virtue of Remark.

ThEOREM 15. Let X be a curve of genus $g>0$. Then
(i) for any line bundle L such that $\operatorname{deg} L>\boldsymbol{n}(X)$, the Frobenius $\operatorname{map} F^{*}(1, \check{L}): H^{1}(X, \check{L}) \rightarrow H^{1}\left(X, F^{*} \check{L}\right)$ is injective.
(ii) if $\boldsymbol{n}(X)>0$, then there exists a line bundle M of degree $\boldsymbol{n}(X)$ such that the Frobenius map $F^{*}(1, \check{M})$ is not injective.

Proof. Let $\operatorname{deg} L>\boldsymbol{n}(X)$. Then $H^{0}\left(X, \check{L} \otimes \mathscr{B}_{X}^{1}\right)=0$ by virtue of Remark. Therefore the Frobenius map $F^{*}(1, \check{L})$ is injective by virtue Theorem 5.
(ii) $\boldsymbol{n}(X)>0$. There exists a line bundle M of degree $\boldsymbol{n}(X)>0$, with $H^{0}\left(X, \check{M} \otimes \mathscr{B}_{X}^{1}\right) \neq 0$. Since $h^{0}\left(F^{*}(\check{M})\right)=0$, the Frobenius map $F^{*}(1, \check{M})$ is not injective by virtue of Theorem 5.

The following Proposition gives the relation between the number $\boldsymbol{n}(X)$ and the rank of the Hasse-Witt matrix.

Proposition 16. Let X be a curve of genus $g>0$, and let $\boldsymbol{h}(X)$ be the rank of the Hasse-Witt matrix of x. Then we have

$$
g-h(X) \leqq(p-1)(n(X)+1)
$$

Proof. Let D be an effective divisor of degree $d>0$, such that the

Frobenius map $F^{*}(1, \mathcal{O}(-D))$ is injective. Then we have the following exact commutative diagram.

And we have
$\operatorname{dim} \operatorname{Image} \varphi \circ F^{*}(1, \mathcal{O}(-D)) \geqq h^{1}(\mathcal{O}(-D))-\operatorname{dim} \operatorname{Kernel} \varphi=g+d-p d$.
Hence we have $\boldsymbol{h}(X) \geqq g+d-p d$, i.e., $g-\boldsymbol{h}(X) \leqq(p-1) d$. Since, for any effective divisor D of degree $\boldsymbol{n}(X)+1$, the Frobenius map $F^{*}(1, \mathcal{O}(-D))$ is injective, we have

$$
g-\boldsymbol{h}(X) \leqq(p-1)(\boldsymbol{n}(X)+1) .
$$

4. In this section we shall extend Theorem 15 from line bundles to indecomposable vector bundles of arbitrary rank.

Proposition 17. Let X be a curve of genus $g>0$. Then for any r, there exists an indecomposable vector bundle which has a splitting

$$
\left(\Omega_{X}^{1 \otimes(r-1)}, \Omega_{X}^{1 \otimes(r-2)}, \cdots, \Omega_{X}^{1}, \mathcal{O}_{X}\right) .
$$

In order to prove Proposition 17, we need the following Lemmas.
Lemma 18. Let E and E^{\prime} be vector bundle on X, and $\operatorname{let}\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ be a splitting of E, and suppose that $\varphi: E \rightarrow E^{\prime}$ is a generically surjective morphism. Then there exists a splitting ($L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{s}^{\prime}$) of E^{\prime} which satisfies the following condition; There exists a sequence $1 \leqq i_{1}<i_{2}<$, $\cdots,<i_{s}$ such that Hom $\left(L_{i j}, L_{j}^{\prime}\right) \neq 0$ for all j, in particular $\operatorname{deg} L_{i_{j}} \leqq \operatorname{deg} L_{j}^{\prime}$.

Proof of Lemma 18. It is easy.
Lemma 19. Let X be a curve and let E^{\prime} be an indecomposable vector bundle which has a splitting ($L_{1}, L_{2}, \cdots, L_{r}$). Let L be a line bundle such that $\operatorname{deg} L<\operatorname{deg} L_{j}$ for all j. If an exact sequence $0 \longrightarrow E^{\prime} \xrightarrow{\alpha} E \xrightarrow{\varphi} L \longrightarrow 0$ does not split, then E is indecomposable.

Proof of Lemma 19. Tensoring the sequence with \check{L} we may assume
that $L=\mathcal{O}_{X}$ and $\operatorname{deg} L_{j}>0$ for all j. Suppose E is decomposable. Let $E=E_{1} \oplus E_{2}$ and let ψ_{i} be the injection $E_{i} \rightarrow E \quad(i=1,2)$. We may assume that $\varphi \circ \psi_{1} \neq 0$. By virtue of Lemma 18, there exists a splitting ($L_{1}^{\prime}, L_{2}^{\prime}, \cdots, L_{r_{1}}^{\prime}$) of E_{1} such that $\operatorname{deg} L_{i}^{\prime} \geqq 0$ for all i. Therefore $\varphi \circ \psi$ is surjective. And we have the following exact commutative diagram.

where $E^{\prime \prime}$ is the kernel of $\varphi \circ \psi_{1}, \psi_{1}^{\prime}$ is the injection induced by $\psi_{1}, E^{\prime \prime \prime}$ is the cokernel of ψ_{1}^{\prime} and α^{\prime} is the homomorphism induced by α. By virtue of Snake Lemma, the map α^{\prime} is an isomorphism. Since $\operatorname{deg} L_{i}>0$ for all j, the composition map $\varphi \circ \psi_{2} \circ \alpha^{\prime} \circ \eta^{\prime}=0$, by virtue of Lemma 18, since η is a surjection, $\varphi \circ \psi_{2} \circ \alpha^{\prime}=0$. Hence, the exists a map $\psi_{2}^{\prime}: E^{\prime \prime \prime} \rightarrow E^{\prime}$ such that $\alpha \circ \psi_{1}^{\prime}=\psi_{2} \circ \alpha^{\prime}$. It is easy to show that $\eta^{\prime} \circ \psi_{2}^{\prime}=$ identity. Therefore $E^{\prime}=E^{\prime \prime} \oplus E^{\prime \prime \prime} \cdot E^{\prime \prime}=0$, since E^{\prime} is indecomposable and $E^{\prime \prime \prime} \approx E_{2} \neq 0$. Hence $E_{1}=\mathcal{O}_{X}$. This shows that the exact sequence $0 \longrightarrow E^{\prime} \xrightarrow{\alpha} E$ $\xrightarrow{\varphi} \mathcal{O}_{X} \longrightarrow 0$ splits. This is a contradiction. Therefore E is indecomposable.

Proof of Proposition 17. When $g=1 . \quad \Omega_{X}^{1} \approx \mathcal{O}_{X}$ and F_{r} has a splitting ($\mathcal{O}_{X}, \mathcal{O}_{X}, \cdots, \mathcal{O}_{X}$) (cf. [1]).

When $g>1$. We prove this by induction on r.
$r=1$. It is obvious.
$r>1$. By induction assumption, there exists an indecomposable vector F_{r-1} which has a splitting $\left(\Omega_{X}^{1 \otimes(r-2)}, \Omega_{X}^{1 \otimes(r-3)}, \cdots, \Omega_{X}^{1}, \mathcal{O}_{X}\right)$. Since $H^{1}\left(X, F_{r-1} \otimes \Omega_{X}^{1}\right)=H^{0}\left(X, \check{F}_{r-1}\right) \neq 0$, the exists a non-split exact sequence $0 \rightarrow F_{r-1} \otimes \Omega_{X}^{1} \rightarrow E \rightarrow \mathcal{O}_{X} \rightarrow 0$.

Applying Lemma 19 to this exact sequence, we see that E is indecomposable. It is easy to show that E has a splitting $\left(\Omega_{X}^{1 \otimes(r-1)}, \Omega_{X}^{1 \otimes(r-2)}, \cdots, \mathcal{O}_{X}\right)$.

Proposition 20. Let X be a curve of genus $g \geqq 2$. Let E be an indecomposable vector bundle of rank r on X and let $\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ be a maximal splitting of E. If $d_{0}=\min \left\{\operatorname{deg} L_{1}, \operatorname{deg} L_{2}, \cdots, \operatorname{deg} L_{r}\right\}$, then

$$
\operatorname{deg} E \leqq r(r-1)(g-1)+r d_{0} .
$$

In order to prove Proposition 20, we need the following Lemmas.
Lemma 21. Let X be a curve of genus g. Let E (resp. E^{\prime}) be a vector bundle of rank r (resp. r^{\prime}) on X and let (resp. $\left(M_{1}, M_{2}, \cdots, M_{s}\right)$) be a splitting of E (resp. E^{\prime}). Suppose that $\operatorname{deg} L_{i}>\operatorname{deg} M_{j}+2(g-1)$, for all i, j, then $H^{1}\left(X, E^{E} \otimes E^{\prime}\right)=0$.

Proof of Lemma 21. ($L_{i} \otimes \check{M}_{j}$) i, j is a splitting of $E \otimes \check{E}^{\prime \prime}$. Since $\operatorname{deg} \Omega_{X}^{1} \otimes M_{j} \otimes \check{L}_{i}<0$, we have $H^{1}\left(X, L_{i} \otimes \check{M}_{j}\right)=H^{0}\left(X, \Omega_{X}^{1} \otimes M_{j} \otimes \check{L}_{i}\right)=0$. Therefore we have $H^{1}\left(X, E \otimes \tilde{E}^{\prime}\right)=0$.

Lemma 22. Let X be a curve of genus g. Let E be an indecomposable vector bundle of rank r on X and let $\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ be a splitting of E. Then for any m with $1 \leqq m \leqq r$, we have

```
min}{\operatorname{deg}\mp@subsup{L}{1}{},\operatorname{deg}\mp@subsup{L}{2}{},\cdots,\operatorname{deg}\mp@subsup{L}{m-1}{}
    @max {deg L Lm, deg L Lm+1},\cdots,\operatorname{deg}\mp@subsup{L}{r}{}}+2(g-1)
```

Proof of Lemma 22. It is obvious by virtue of Lemma 21.
Lemma 23 (M. Nagata). Let X be a curve of genus g. Let E be a vector bundle of rank 2 and let $\left(L_{1}, L_{2}\right)$ be a maximal splitting of E. Then

$$
\operatorname{deg} L_{2} \leqq \operatorname{deg} L_{1}+g
$$

Proof of Lemma 23. See M. Nagata [7] or M. Maruyama [6] Theorem 3. 13.

Lemma 24. Let X be a curve of genus g. Let E be a vector bundle of rank r on X and let $\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ be a maximal splitting of E. Then

$$
\operatorname{deg} L_{r} \leqq \operatorname{deg} L_{1}+(r-1) g .
$$

Proof of Lemma 24. It is obvious by virtue of Lemma 23.
Proof of Proposition 20. We shall define a sequence of integers,
$1=i_{n}<i_{n-1}<, \ldots,<i_{2}<i_{1}<i_{0}=r+1$, which satisfies the following condition.

$$
\operatorname{deg} L_{i_{m}}=\min \left\{\operatorname{deg} L_{1}, \operatorname{deg} L_{2}, \cdots, \operatorname{deg} L_{i_{m-1}-1}\right\} \quad(m>0) .
$$

We define a one-to-one onto map

$$
\varphi:\{1,2, \cdots, r\} \longrightarrow\{0,1, \cdots, r-1\}
$$

such that $\varphi(j)=r+j-i_{m}-i_{m-1}+1$ where $i_{m} \leqq j<i_{m-1}$. We shall prove that

$$
\operatorname{deg} L_{j} \leqq d_{0}+2 \varphi(j)(g-1)
$$

by induction on m such that $i_{m} \leqq j<i_{m-1}$.
For $m=1$. Since ($L_{i_{1}}, L_{i_{1}+1}, \cdots, L_{j}$) is a maximal splitting of a vector bundle, we have $\operatorname{deg} L_{j} \leqq d_{0}+\left(j-i_{1}\right) g$, by virtue of Lemma 24. Since $\varphi(j)=j-i_{1}$ and $g \leqq 2(g-1)$, we have

$$
\operatorname{deg} L_{j} \leqq d_{0}+2 \varphi(j)(g-1)
$$

For $m>1$. Since ($L_{i_{m}}, L_{i_{m}}+1, \cdots, L_{j}$) is a maximal splitting of a vector bundle, we have $\operatorname{deg} L_{j} \leqq \operatorname{deg} L_{i_{m}}+\left(j-i_{m}\right) g \leqq \operatorname{deg} L_{i_{m}}+2\left(j-i_{m}\right)$ ($g-1$). Since $\varphi\left(i_{m-2}-1\right) \geqq \varphi(q)$ for all $i_{m-1} \leqq q \leqq r$, we have

$$
\operatorname{deg} L_{q} \leqq d_{0}+2 \varphi(q)(g-1) \leqq d_{0}+2 \varphi\left(i_{m-2}-1\right)(g-1),
$$

for all $i_{m-1} \leqq q \leqq r$, by induction assumption. For any $1 \leqq q^{\prime}<i_{m-1}$, $\operatorname{deg} L_{q^{\prime}} \geqq \operatorname{deg} L_{i_{m}}$. Hence by virtue of Lemma 22, we have

$$
\operatorname{deg} L_{i_{m}} \leqq d_{0}+2 \varphi\left(i_{m-2}-1\right)(g-1)+2(g-1)
$$

Hence we have

$$
\begin{aligned}
\operatorname{deg} L_{j} & \leqq d_{0}+2\left(r-i_{m-1}+1\right)(g-1)+2\left(j-i_{m}\right)(g-1) \\
& =d_{0}=2 \varphi(j)(g-1)
\end{aligned}
$$

Therefore, we have

$$
\operatorname{deg} E=\sum_{j=1}^{r} \operatorname{deg} L_{j} \leqq r d_{0}+\sum_{j=1}^{r} 2 \varphi(j)(g-1)=r d_{0}+r(r-1)(g-1)
$$

Theorem 25. Let X be a curve of genus $g>1$. Then
(i) for any indecomposable vector bundle of rank r such that $\operatorname{deg} E>r(r-1)+(g-1)+r n(X)$, the Frobenius map $F^{*}(1, \check{E})$ is injective.
(ii) if $\boldsymbol{n}(X)>0$, then for any $r>0$, there exists an indecomposable vector bundle E^{\prime} of rank r with $\operatorname{deg} E^{\prime}=r(r-1)(g-1)+r n(X)$ such that the Frobenius map $F^{*}\left(1, E^{\prime \prime}\right)$ is not injective

Proof. (i) Let $\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ be a maximal splitting of E. Then $\operatorname{deg} L_{j}>\boldsymbol{n}(X)$, by virtue of Proposition 20. Hence the Frobenius map $F^{*}\left(1, L_{j}\right)$ is surjective for all j, and the Frobenius map $F^{*}(1, E)$ is surjective. Therefore, the Frobenius map $F^{*}\left(1, \check{E}^{\prime}\right)$ is injective by virtue of Corollary 8.
(ii) When $\boldsymbol{n}(X)>0$, there exists a line bundle M of degree $\boldsymbol{n}(X)$, such that the Frobenius map $F^{*}(1, \check{M})$ is not injective. There exists an indecomposable vector bundle F_{r} which has a splitting ($\Omega_{X}^{1 \otimes(r-1)}, \Omega_{X}^{1 \otimes(r-2)}, \cdots, \Omega_{X}^{1}, \mathcal{O}_{X}$). Put $E^{\prime}=F_{r} \otimes M$. Then E^{\prime} is an indecomposable vector bundle of rank r, and of degree $r(r-1)(g-1)+r n(X)$, which has M as a quotient line bundle. And $H^{0}\left(X, \check{E}^{\prime}\right)=H^{0}\left(X, \check{E}^{\prime \prime(p)}\right)=0$. Therefore, the Frobenius map $F^{*}\left(1, \check{E}^{\prime}\right)$ is not injective, by virtue of Corollary 6.
5. In this section we shall give an example of a curve with positive $\boldsymbol{n}(X)$ although the Hasse-Witt matrix of X is non-singular. We also give other examples of a curve X with positive $n(X)$.

Example 1. Let k be an algebraically closed field of characteristic 3. Let $X \subset \boldsymbol{P}_{k}^{2}$ be the curve defined by the homogeneous equation

$$
X_{0}^{3} X_{1}+X_{1}^{3} X_{2}+X_{2}^{3} X_{0}=0
$$

One verifies easily that X is non-singular. Being a plane curve of degree 4, it has genus 3. (This example was given in [5]). The Hasse-Witt matrix of X is identically zero. (cf. [5]).

Proposition 26. If X is the curve in Example 1, then $\boldsymbol{n}(X)=1$.
Proof. By Definition 11, $\boldsymbol{n}(X) \leqq 1$. Let $f=\left(X_{0}-X_{2} / X_{1}\right) \in K=K(X)$. We have $(f)_{\infty}=(0,0,1)+3(1,0,0)$. This shows that $f \notin K^{3}$. It is easy to show that $v_{x}(\mathrm{~d} f) \geqq-3$, if $\mathrm{x}=(0,0,1)$ or $x=(1,0,0)$, and $v_{x}(\mathrm{~d} f) \geqq 3$, if $x=(1-\alpha,-1,1) \quad i=1,2,3$ where α_{i} are the distinct roots of the equation $\alpha^{3}=\alpha+1$, and $v_{x}(\mathrm{~d} f) \geqq 0$, if $x \neq(1,0,0)$. This shows that $n(f) \geqq 1$, and $n(X)=1$.

Example 2. Let k be an algebraically closed field of characteristic 3. Let $X \subset \boldsymbol{P}_{k}^{2}$ be the curve defined by the homogeneous equation

$$
X_{0}^{4}-X_{1}^{3} X_{2}-X_{1} X_{2}^{3}=0 .
$$

One verifies easily that X is non-singular. Being a plane curve of degree 4, it has genus 3. (This example was given in [2]). The Hasse-Witt matrix of X is identically zero. (cf. [2]).

Proposition 27. If X is the curve in Example 2, theh $n(X)=1$.
Proof. We prove this in the same way as in Proposition 26. We have $\boldsymbol{n}(X) \leqq 1$. Put $f=\left(X_{2} / X_{1}\right) \in K$, then $\boldsymbol{n}(f)=1$. Therefore we have $n(X)=1$.

Example 3. Let k be an algebraically closed field of characteristic $p \geqq 3$. Let $X \subset \boldsymbol{P}_{k}^{2}$ be the curve defined by the homogeneous equation

$$
X_{0}^{p+1}=X_{1} X_{2}\left(X_{0}^{p-1}+X_{1}^{p-1}-X_{2}^{p-1}\right) .
$$

One verifies easily that X is non-singular. Being a plane curve of degree $p+1$, it has genus $(1 / 2) p(p-1)$.

Proposition 28. If X is the curve in Example 3, then $n(X)=p$ $-2>0$.

Proof. We have $n(X) \leqq p-2$. Put $f=\left(X_{0} / X_{1}\right) \in K$, then we have $n(X)=p-2$.

Proposition 29. If X is the curve in Example 3, then the HasseWitt matrix is non-singular, i.e., the Frobenius endomorphism of $H^{1}\left(X, \mathcal{O}_{X}\right)$ is injective.

Proof. $\quad U_{i}=\left\{\left(X_{0}, X_{1}, X_{2}\right) ; X_{i} \neq 0\right\} i=1,2$ are affine open subsets of $\boldsymbol{P}_{k}^{2} . \quad$ Then $X \subset U_{1} \cup U_{2}$. Let $f=X_{0}^{p+1}-X_{1} X_{2}\left(X_{0}^{p-1}+X_{1}^{p-1}-X_{2}^{p-1}\right) \in$ $k\left[X_{0}, X_{1}, X_{2}\right]$. Now let $\alpha \in H^{1}\left(X, \mathcal{O}_{X}\right)$. Since $\left\{X \cap U_{1}, X \cap U_{2}\right\}$ is an affine open covering of X, we can realize α as a function \bar{h} on $X \cap U_{1} \cap U_{2}$. This function extends to a function h on $U_{1} \cap U_{2}$, i.e., to an element of the ring $k\left[X_{0} / X_{1}, X_{2} / X_{1}, X_{1} / X_{2}\right]$. The set of coboundaries is

$$
\left\{h_{1}-h_{2} ; h_{1} \in k\left[\frac{X_{0}}{X_{1}}, \frac{X_{2}}{X_{1}}\right], h_{2} \in k\left[\frac{X_{0}}{X_{2}}, \frac{X_{1}}{X_{2}}\right]\right\} .
$$

h is a linear combination of monomials $X_{0}^{i} / X_{1}^{j} X_{2}^{i-j}$. Now if $i \geqq p+1$, we can write

$$
\frac{X_{0}^{i}}{X_{1}^{j} X_{2}^{i-j}} \equiv \frac{X_{0}^{i-2}}{X_{1}^{j-1} X_{2}^{i-j-1}}+\frac{X_{0}^{i-p-1}}{X_{1}^{j-p} X_{2}^{i-j-1}}+\frac{X_{0}^{i-p-1}}{X_{1}^{j-1} X_{2}^{i-j-p}} \quad(\bmod f)
$$

If $i \leqq j$ or $j \leqq 0$, then $X_{0}^{i} / X_{1}^{j} X_{2}^{i-j}$ is a coboundary. Let φ be the natural map $k\left[X_{0} / X_{1}, X_{2} X_{1}, X_{1} X_{2}\right] \rightarrow H^{1}\left(K, \mathcal{O}_{X}\right)$. Then we can choose $\varphi\left(X_{0}^{2} / X_{1} X_{2}\right)$, $\varphi\left(X_{0}^{3} / X_{1} X_{2}^{2}\right), \varphi\left(X_{0}^{3} / X_{1}^{2} X_{2}\right), \cdots, \varphi\left(X_{0}^{p} / X_{1} X_{2}^{p-1}\right), \varphi\left(X_{0}^{p} / X_{1}^{2} X_{2}^{p-2}\right), \cdots, \varphi\left(X_{0}^{p} / X_{1}^{p-1} X_{2}\right)$ as a basis of $H^{1}\left(X, \mathcal{O}_{X}\right)$. Let $\alpha_{\varepsilon i j}=\left(X_{0}^{p-2 j+\varepsilon-1} / X_{1}^{i-j} X_{2}^{p-i-j+\varepsilon-1}\right)$, for all i, j and $\varepsilon=0$ or 1. To complete the proof we need the following Lemma.

Lemma 30. Under the same notation as above,
(i) let $V_{\text {si }}$ be a vector subspace of $H^{1}\left(X, \mathcal{O}_{X}\right)$ which is spanned by $\alpha_{\varepsilon i 0}, \alpha_{\varepsilon i 1}, \cdots, \alpha_{\varepsilon i j(\varepsilon i)}$ where $j(\varepsilon i)=\min \{i-1, p-i+\varepsilon-2\}$, for all i such that $p+\varepsilon-2 \geqq i \geqq 1$. Then $V_{\epsilon i}$ is stable under the Frobenius endomorphism.
(ii) $F^{*}\left(1, \mathcal{O}_{X} \mid V_{\varepsilon i}\right.$ is an injection.
(iii) $\underset{\varepsilon, i}{\oplus} V_{s i}=H^{1}\left(X, \mathcal{O}_{X}\right)$.

Proof. Let $1 / 2(p-1) \geqq j \geqq 1$, then we have

$$
\begin{aligned}
& X_{0}^{p(p-2 j+\varepsilon+1)}-X_{0}^{p(p-2 j+\varepsilon-1)}\left(X_{1} X_{2}\right)^{p} \\
&= X_{0}^{p(p-2 j+\varepsilon-1)}\left(X_{0}^{2}-X_{1} X_{2}\right)^{p} \\
& \equiv X_{0}^{p-2 j+\varepsilon-1}\left(X_{0}^{2}-X_{1} X_{2}\right)^{2 j-\varepsilon+1} X_{0}^{p-1}\left(X_{0}^{2}-X_{1} X_{2}\right)^{p-2 j+\varepsilon-1} \\
& \quad X_{0}^{p-2 j+\varepsilon-1}\left(X_{0}^{2}-X_{1} X_{2}\right)^{2 j-\varepsilon+1}\left(X_{1} X_{2}\right)^{p-2 j+\varepsilon-1}\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\varepsilon-1}
\end{aligned}
$$

$(\bmod f)$
$=\sum_{m=0}^{j}(-1)^{m}\binom{2 j-\varepsilon+1}{m} X_{0}^{p-2 j+2 m+\varepsilon-1}\left(X_{1} X_{2}\right)^{p-m}\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\varepsilon-1}$

$$
\begin{align*}
& +\sum_{m=1}^{j-\varepsilon+1}(-1)^{j+m}\binom{2 j-\varepsilon+1}{j+m} X_{0}^{p+2 m+\varepsilon-1}\left(X_{1} X_{2}\right)^{p-m-j}\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\varepsilon-1} \tag{1}\\
& \equiv \sum_{m=0}^{j}(-1)^{m}\binom{2 j-\varepsilon+1}{m} X_{0}^{p-2 j+2 m+\varepsilon-1}\left(X_{1} X_{2}\right)^{p-m}\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\varepsilon-1} \\
& +\sum_{m=1}^{j-\varepsilon+1}\left(\sum_{n=m}^{j-\varepsilon+1}(-1)^{j+n}\binom{2 j-\varepsilon+1}{j+n}\right) X_{0}^{2 m+\varepsilon-2}\left(X_{1} X_{2}\right)^{p-m-j+1} \\
& \times\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\varepsilon} \\
& +\left(\sum_{n=1}^{j-\varepsilon+1}(-1)^{j+n}\binom{2 j-\varepsilon+1}{j+n}\right) X_{0}^{p+\varepsilon-1}\left(X_{1} X_{2}\right)^{p-j}\left(X_{1}^{p}-X_{2}^{p-1}\right)^{p-2 j j+\varepsilon-1}
\end{align*}
$$

$(\bmod f)$.
In the sequel, let $p>i$ and $0 \leqq j-1 \leqq j(\varepsilon i)$. Then we have

$$
\varphi\left(\frac{X_{0}^{p-2 j+2 m+\epsilon-1}\left(X_{1} X_{2}\right)^{p-m}\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\epsilon-1}}{\left(X_{1}^{i-j+1} X_{2}^{p-i-j+\epsilon}\right)^{p}}\right)
$$

$$
\begin{align*}
& \quad=(-1)^{i-j}\binom{p-2 j+\varepsilon-1}{i-j} \varphi\left(\frac{X_{0}^{p-2 j+2 m+\varepsilon-1}}{X_{1}^{i-j+m} X_{2}^{p-i-j+m+\varepsilon-1}}\right) \tag{2}\\
& \quad=(-1)^{i-j}\binom{p-2 j+\varepsilon-1}{i-j} \alpha_{i j-m} . \\
& \varphi\left(\frac{X^{2 m+\varepsilon-2}\left(X_{1} X_{2}\right)^{p-m-j+1}\left(X_{1}^{p-1}-X_{2}^{p-1}\right)^{p-2 j+\varepsilon}}{\left(X_{0}^{i-j+1} X_{2}^{p-i-j+\varepsilon}\right)}\right)=0 . \tag{3}
\end{align*}
$$

By virtue of formulas (1), (2) and (3), we have

$$
\begin{aligned}
& F^{*}\left(1, \mathcal{O}_{X}\right)\left(\alpha_{s i j-1}\right)-F^{*}\left(1, \mathcal{O}_{X}\right)\left(\alpha_{\varepsilon i j}\right) \\
& \quad=\sum_{m=0}^{j-1}(-1)^{m}\binom{2 j-\varepsilon+1}{m}(-1)^{i-j}\binom{p-2 j+\varepsilon-1}{i-j} \alpha_{\varepsilon i j-m} \\
& \quad+a_{\varepsilon i j-1}(-1)^{i-j}\binom{p-2 j+\varepsilon-1}{i-j} \alpha_{\varepsilon i 0},
\end{aligned}
$$

where $a_{\Delta i j-1}=\sum_{m=0}^{j-\varepsilon+1}(-1)^{j+m}\binom{2 j-\varepsilon+1}{j+m}$
Since $j(\varepsilon i)+1 \leqq(1 / 2)(p-1)$ and $\alpha_{\varepsilon i j(\varepsilon i)+1}=0$, formula (4) shows that (i) is true.
(ii) Since $a_{s i j-1}+\sum_{m=0}^{j-1}(-1)^{m}\binom{2 j-\varepsilon+1}{m}=0$, it is easy to verify that $F^{*}\left(1, \mathcal{O}_{x}\right) \mid V_{i}$ is injective
(iii) It is obvious.

Bibliography

[1] M. F. Atiyah, Vector bundle over an elliptic curve. Proc. Lond. Math. Soc. (3) 7 (1957) 414-452.
[2] D. Gieseker, p-ample bundles and their Chern classes. Nagoya Math. J. 43 (1971).
[3] A. Grothendieck and J. Dieudonné, Elément de géométrie algébrique. Publ. Math. I. H. E. S.
[4] R. Hartshorne, Ample vector bundles. Publ. Math. I. H.E.S. 29 (1966).
[5] R. Hartshorne, Ample vector bundles on curves. Nagoya Math. J. 43 (1971).
[6] M. Maruyama, On classification of ruled surfaces. Kinokuniya book store Co. Ltd. Lectures in mathematics Dep. of Math. Kyoto Univ. 3.
[7] M. Nagata, On self intersection number of a section on a ruled surface. Nagoya Math. J. 37 (1970).
[8] T. Oda, Vector bundle on an elliptic curve. Nagoya Math. J. 43 (1971).
[9] J. P. Serre, Sur la topologié des variété algébraiques en characteristic p. Sympos. Internac. Topologia algebraica. Mexico City. (1956). 24-53. Univ. Nac. Aut. Mexico. 1958. MR 20. 4559.
[10] P. Cartier, Questions de rationalité des diviseurs en géométrie algébrique. Bull. Soc. Math. France. 86 (1958).
[11] C. S. Seshadri, L'opération de Cartier. Applications. Séminair Chevalley 3 (1958-59) Variétés de Picard.

Department of Mathematics, Kyoto University

[^0]: Received September 4, 1971.

