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ON THE BEHAVIOR OF EXTENSIONS OF VECTOR BUNDLES
UNDER THE FROBENIUS MAP

HIROSHI TANGO

Introduction.

Let k& be an algebraically closed field of characteristic p > 0, and let
X Dbe a curve defined over k. The aim of this paper is to study the
behavior of the Frobenius map F*: H(X,FE) —» H(X,F*E) for a vector
bundle .

Our main result is the following.

THEOREM 15. Let X be a curve of genus g > 0. Let n(X) be the
integer defined by

n(X) = max {er X[M]; f runs over all rational functions on X
with d f % 0} .

Then

(i) for any line bundle L such that deg L > n(X), the Frobenius map
F*: H(X,L) —» H\(X,F*L) is injective.

(i) if n(X) > 0, then there exists a line bundle M of degree n(X)
such that the Frobemius map F*: H'(X, M) — H\X, F*M) is not injective.
(where L is the dual line bundle of L)

This main result leads us to a counter example to a question posed
by R. Hartshorne:

QUESTION. Assume the Hasse-Witt matrix of X is non-singular. Is
the Frobenius map F*:H'X,L)— H'X,F*L) injective for any ample
line bundle L?
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Notations.

Throughout this paper, we mean by a variety (resp. curve) an irre-
ducible complete non-singular variety (resp. curve) defined over an
algebraically closed field of characteristic p > 0. We denote by 0y the
structure sheaf of X, by K = K(X) the field of rational functions on X
and by 2% the sheaf of germs of regular differential i-forms.

We use the words vector bundle and locally free sheaf interchange-
ably. For any vector bundle £ of rank n on a curve, there exists a
series of subbundles of F

O=FKE,CE,CE,C,...,CE,=F

where L, = E;/E,;_, is a line bundle (cf. Atiyah [1])
(L, L, - -+, L,;) will be called a splitting of E. A line subbundle L of F
will be called a maximal line subbundle of F, if L satisfies the following
condition: for any line subbundle M of E, deg L = deg M.

A gplitting (Ly, Ly, + - -, L,) will be called a maximal splitting of E,
if it satisfies the following conditions:

(i) L, is a maximal line subbundle of E,

G (@&, Ly, --+,L,) is a maximal splitting of E/L,.

We denote by E the dual vector bundle of E and denote by hi(E) the
dimension of the k-vector space HYX, E).

1. Let X be a variety of dim#n. Let F:X — X be the Frobenius
morphism. (cf. [4]). The natural derivation d: 0y — Q% gives rise to a
k-linear map d: 2% — Q%" for each ¢, which induce a @y-homomorphism
F.d:F Q% — F 08" for each . We denote by &% (resp. #%) the kernel
(resp. image) of F,d: F Q% — F. 0% Let # be a point of X and let
Uy, Uy, - -+, U, be local parameters of X at . Then we have the following
Propositions, due to Cartier (cf. [10]).

PROPOSITION 1. Z%y = %%, ® (D 0% (s, Uy, - -, u)?  duy, A duy,
A~ N duy) where 0%, = {f?; f €0y}, %, s an Ox ~module through
the p-th power map.
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PROPOSITION 2. There are Ox-homomorphisms C:Z% — 2%, called
the Cartier operator, with the following properties.

(i) Clo, + ;) = C(w) + Clw,)

(i) C(frw) = fC(w)

(ii) Clw) =0 if we By,

(iv) CW(fifer - SIPA/iNAS N oo ANdfi=dfiNdfu Ao Ad Sy
where oy, w,, € Z% , and f,fi,for -+, Ji € Ox 5.

PrOPOSITION 3. The following sequence of Ox-Modules are exact.

. F )
(i) 0—> 2t —> F 03 gin__, ¢

.. F Fyd
(i) 0—> 0y —> F, 0y 5 % —>0

(i) 0—> 2t —> 2t Sh0i 50

Since the Frobenius morphism F is affine, the canonical p-linear map
a:H(X,F %) — H(X, %) is bijective, for any coherent sheaf # on X
and for any integer 4, (cf. [8] III. 1. 3. 3.). Since £% = F 0%, dim HY(X, Z%)
= dim HYX, Q%) = 1 and the Cartier operator C*: H*(X, Z%) — H¥X, Q%)
is surjective, so we have that C* is bijective. Let E be a vector bundle
on X. Then there exists a natural map v:E QK ® Q02 — 22 and the
cup product

U:H{(X,E) x H"{X,E ® Q%) . HX,EQE® Q%) .
The composition map
H{(X,E) x A" (X,EQ 0%) — H*X,EQE® Q%) — H*(X, Q%) = k .
gives the Serre duality between HYX,FE) and H* ¥ X,E ® 2%).
The following is well known (e.g. for curves Serre [9]).

PROPOSITION 4. Let E be a vector bundle on X. Then the follow-
ing two k-linear maps are dual to each other.

(i) F*@,E): H(X,E) —> HY(X,E @ F,0y)

i) C*n— i, E): H (X, E® Z7) — H(X,E ® Q7).
In particular, we have dim Image F'*(i, E) = dim Image C*(n — 1, E).

For the sake of completeness we include a proof:
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H{(X,E) x H"(X,E ® Q%) —L—]—> H*X,EQE® Q) AN HMX, %) = k
Tid X C*(n — i, K) TC*(n, EQ®E) TC*(n, 0x)

HYX,E) x H"(X,E® %) —U> HX,EQE®2Z%) AN HYX,Z?%)
lF'*(i, E)xid

H(X,EQF,0) x H"X,EQ Z7%) Qe e

2 la‘ 2 la

H{(X,F*E) x H (X, F*E ® Q%) Y, H*X,F*E Q F*E® .Q;;q'—*> H™X, Q2%)

Giving the duality between HYX,E ® F,0;) and H* (X, E® Zm) by the

composition map C*(n, Ox) o a o * o Uo (@ X @), we have the duality between

F'*@,E) and C*(n — i, E).

2. Let E be a vector bundle on X. We denote by F*(,E), the
composition map a-F'*(,E): H(X,E) — H(X, F*E).

THEOREM 5. Let X be a curve and let E be a wvector bundle on
X. Then
(i) dim Cokernel F*(1,E) = h(E ® %)
(i) dim Kernel F*(1,E) = h(E ® #Y) — (WEF*E) — h'(E))
< BEQ BY)

Proof. By virtue of Proposition 3, we have the following exact
sequences,
0> EQA ——>EQZ, —S»EQQ—>0
0—> K >EQF 0y —> EQ#y— 0

and hence following cohomology exact sequences

0—> HX,E® ) —> HX,E® 2y ZCE) px, B oy

0 —> H'X, E) — > H(X,E®F,0;) —> H(X,E ® %%
— w5 OB px EQF,00

Hence we have

dim Cokernel F*(1, E) = dim Cokernel F'*(1, E)
= hW(E Q F 0x) — dim Image F'*(1, F)
= W(F*E) — dim Image C*(0, E) (by virtue of Proposition 4)
= W(F*E) — (W(E Q F 2% — h(E Q &%)
= W(E ® BY)
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And we have

dim Kernel F*(1, E) = dim Kernel F'*(1, E)
= R(E ® #Y) — B(E ® F,0x) + h(E)
= (E Q By — (WF*E) — h((E))
< hW(E Q %)

COROLLARY 6. Let X be a curve and let E be a vector bundle.
Assume that the Frobenius map F*(1,E) is surjective, then F*(1,E) is
injective and h(F*E) = h'(E).

As a corollary of this Theorem 5, we have the following Theorem
of Oda:

THEOREM 7. (T. Oda). Let X be an elliptic curve and let E be an
indecomposable vector bundle of rank r and of degree d. Then we have
the following results.

(i) When the Hasse-Witt matrix of X is not zero (i.e., F*(1,0x) is
injective), the Frobenius map F*(1,E) is injective.

(ii) When the Hasse-Witt matriz of X is zero (i.e., F'*(1,0y) is the
zero map), the Frobenius map F*(1,E) is not injective (and in fact the
zero map) if and only if r < p, d =0 and E has a non-zero section (i.e.,
in Atiyah’s notation E = F, with r < p).

COROLLARY 8. (Corollary of the proof of Theorem T) (cf. [1] p. 451)
Let X be an elliptic curve.
(i) When the Hasse-Witt matriz of X is not zero, then
By =~ L®L,® ... @®L,_, where '
{Ogy Ly, Ly, - -+, L,_} = {L; line bundles with L®F = 0y}
(ii) When the Hasse-Witt matriz of X is zero, then %% = F,_,.

(i) F*F,05 =~ ® 0y
Proof. Let E be an indecomposable vector bundle of rank r and of

degree d. We use the following results of Atiyah (cf. [1]).

WE)=d and hY(E)=0 when d is positive
W(E)=0 and A'(E)= —d when d is negative.
W(E)=hE)=0 when d=0 and E % F..
WE)=h(E)=1 when E = F,.
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When d = 0, there is a line bundle of degree 0 with £ = LQ F,.
It is easy to see that %% is a vector bundle of rank p — 1. Let
#B~E DE,® --- @ E, be the decomposition of #% into indecomposable
factors. Let 7, be the rank of F, and let d;, be the degree of F;. Then
we have > d;, = deg By = y(#%) = y(FO0x) — x(0x) = 0. Let L be a non
trivial line bundle of degree 0, then AL ® #%) #+ 0 (in fact equal to 1)
if and only if L®® =~ 05 by virtue of following exact sequence.

0=HX,L)— HX, L F,05) — HX,LQSQ%#Y) — H'X,L)=0.

This shows that d; < 0 for all 4 and so d; = 0 for all 2. Let L; be the
line bundle with E;, =~ L;® F,,, then L® ~ 0y. By virtue of Lemma
13, we have the following results. When 2%(#%) =1, thens =1, r=p—1
and L, =~ 0y. And when 1Y (%% =0, then s=p—1, r,=1 and
{0x,Ly,L,, ---,L,_} = {L; line bundles with L®F ~ Ox}. Let E be an
indecomposable vector bundle of rank r and of degree d. If d > 0, then
h(E)=0. If d <0, then ¥ ® L) = 0 for all line bundle L of degree
0, and so A(E Q@ #%) = 0. Thus the Frobenius map F*(1,E) is injective
when d = 0. When d =0 and F # F, then h'(E) = 0 and the Frobenius
map F*(1,FE) is injective. When E = F, and the Hasse-Witt matrix of
X is not zero, then h'(F ® #%) = 0 and the Frobenius map F*(1,E) is
injective. When F = F, and the Hasse-Witt matrix of X is zero, then
we have the following results by induction on r. R'(F*F,) = min {p, 7},
F*F, ~ é@X for all » with » < p and F*(1,F,) is the zero map if and
only if r<p — 1.

r =1. It is obvious.

p=1r>1 We have the following exact sequence

0—>F, ,—>F, Oy —>0.

Hence we have F*F, ~ é Ox and R'(F*F,) = r by the induction assump-
tion. But we have AY(F, ® %%) = K(F, ® F,_)) = min {r,p — 1} (for all
7, cf. [1] Lemma 17). Hence we have I'(F, ® #%) — h"(F*F,) + h'(F',) =1,
if » <p. This shows that when r» < p the Frobenius map F*(,F,) is
the zero map.

p <r. F, has F, as a subbundle and so A(F*F,) = p by the induec-
tion assumption. Hence we have
0 WF, Q@AY — h"(F*F,) + h°(F',) £ 0. This shows that h(F*F,) =1p
and the Frobenius map F*(1,F,) is injective.
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3. Let X be a curve. For any divisor D on X, we denote by 0(D)
the line bundle associated with D.

DEFINITION 9. For any function f € K, we denote by n(f) the integer
(or infinity) > .cxlvs(d f)/p] where [ 1 is the Gauss symbol, and v,
18 the valuation associated with .

LEMMA 10. Let g be the genus of the curve X. Then
(1) a(f) = oo if and only if feK?,
() n(f) =209 — D/pl, if n(f) < co.

Proof. djf =0 if and only if f e K?, and if d f = 0, then n(f) = <.
If df +0, the divisor D = > ,c.xv,(d f)x is a canonical divisor, and
so the degree of D is 2(9 — 1). Therefore we have

n(f) < [?(g—p“ﬁ] .

DEFINITION 11. We define n(X) by the following formula
n(X) = max {n(f); fe K and f¢K?}.
Note that n(X) < [2(9 — 1)/p], by virtue of Lemma 10.
LEMMA 12. Let D be a divisor on X, Then we have
H'X,0(—D)Q®@ %%) = {df; feK and (df) > pD}.

Proof. By virtue of Proposition 3, we have the following exact
sequence.

0—> 0(—D) ® By —> O(—D) ® Z% > 0(—D) ® Qy —> 0
Hence, we have the following cohomology exact sequence.

0 — HYX,0(~D)® %) —> H'X,0(—D) ® Z%) &, H'(X,0(—D) ® 2%)
Q
H'X,0(—pD) ® 2%)

Since, HX,0(—pD) ® 2%) = {we Q'K /k); (w) > pD}. The assersion is
obvious by virtue of Proposition 3.

Remark: By Lemma 12, it is easy to see that n(X) coincides with
the degree of a maximal line subbundle of H.

LEMMA 13. Let G be the group of linear equiualence classes of
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divisors on X, and let G, be the subgroup of elements De G such that
pD = 0. Then G, is a finite group of order p°, where o is the rank of
the Hasse-Witt matrix of X.

Proof. See Serre [9] Proposition 10 § 2.
PROPOSITION 14. Let X be a curve of genus g > 0. Then n(X) = 0.

Proof. When the Hasse-Witt matrix of X is not zero. G, =+ 0, by
virtue of Lemma 13. So there exists a non-zero element De G such
that pD = 0. Therefore, there exists a rational function f such that
feK? and (f) = pD. Hence (df) > pD. Thus n(X) = degD = 0.

When the Hasse-Witt matrix of X is zero, i.e., F*(1,0y) is the
zero map. We have

0 — HYX, 0x) — HX, F*0x) — HX, #%) — H'(X,05) — 0

and hence we have H'X,%%) =~ H'(X,04) + 0. Therefore n(X) = 0, by
virtue of Remark.

THEOREM 15. Let X be a curve of genus g > 0. Then

(i) for any line bundle L such that deg L > n(X), the Frobenius
map F*Q,L): H(X, L) — H\(X,F*L) is injective.

(i) 4f n(X) > 0, then there exists a line bundle M of degree n(X)
such that the Frobenius map F*(1,M) is not injective.

Proof. Let degL > n(X). Then HYX,L® #%) =0 by virtue of
Remark. Therefore the Frobenius map F*(1,L) is injective by virtue
Theorem 5.

(i) n(X) > 0. There exists a line bundle M of degree n(X) > 0,
with H(X, MQA%) # 0. Since h*(F*(M)) = 0, the Frobenius map F*(1, M)
is not injective by virtue of Theorem 5.

The following Proposition gives the relation between the number
n(X) and the rank of the Hasse-Witt matrix.

PROPOSITION 16. Let X be a curve of genus g > 0, and let h(X) be
the rank of the Hasse-Witt matrix of . Then we have

9—hX) = ®@—-DAX)+ 1
Proof. Let D be an effective divisor of degree d > 0, such that the
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Frobenius map F*(1,0(—D)) is injective. Then we have the following
exact commutative diagram.

0
!
H{(X,0(—D)) —> H(X,0y) —> 0
lF*(l, o(—D) F(1,0)
0 —> Kernel ¢ —> H(X, 0(—pD)) —» H(X,0x) —> 0
And we have
dim Image ¢ o F*(1, 0(— D)) = h'(O(—D)) — dim Kernel o = g + d — pd .

Hence we have A(X) = g + d — pd, i.e., g — B(X) < (p — 1)d. Since, for
any effective divisor D of degree n(X) + 1, the Frobenius map F*(1, @(— D))
is injective, we have

g —hX) =®—D0X)+1.

4. In this section we shall extend Theorem 15 from line bundles to
indecomposable vector bundles of arbitrary rank.

PROPOSITION 17. Let X be a curve of genus g > 0. Then for any
r, there exists an indecomposable vector bundle which has a splitting

(@B, QD -, 0, 0)
In order to prove Proposition 17, we need the following Lemmas.

LEMMA 18. Let E and E’ be vector bundle on X, and let(L,, L,, - - -, L,)
be a splitting of E, and suppose that ¢: E — E’ is a generically surjective
morphism. Then there exists a splitting (Li,L;, ---,L) of E’' which
satisfies the following condition; There exists a sequence 1 <t <1, <,
-+ o, <di, such that Hom (L,, L)) # 0 for all j, in particular deg L;, < deg L.

Proof of Lemma 18. It is easy.

LEMMA 19. Let X be a curve and let E' be an indecomposable
vector bundle which has o splitting (L,,L,, ---,L,). Let L be a line
bundle such that degL < degL; for all j. If an exact sequence

0—>E 25 E 25 L—50 does not split, then E 1is indecomposable.

Proof of Lemma 19. Tensoring the sequence with L we may assume
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that L = 05 and deg L; > 0 for all j. Suppose E is decomposable. Let
E=FE ®F, and let ; be the injection E, - EF (1=1,2). We may
assume that go+ == 0. By virtue of Lemma 18, there exists a splitting
(Li, Lg, +++, Ly) of E, such that deg L; = 0 for all . Therefore ¢o+ is
surjective. And we have the following exact commutative diagram.

0
0—E —> B, 0, — 50
b b
0—EF 558 -250,—50

A

"If'z,il "P’le
E/// E
0 0

where E” is the kernel of go+, is the injection induced by +, B’ is
the cokernel of ¢ and «’ is the homomorphism induced by «. By virtue of
Snake Lemma, the map o’ is an isomorphism. Since deg L; > 0 for all
7, the composition map goynoa’ oy’ = 0, by virtue of Lemma 18, since
7 is a surjection, goinoa’ = 0. Hence, the exists a map v;: B — E’
such that ao] = J,oa’. It is easy to show that 5 o+ = identity. There-
fore B/ = B @ E"'-E"” = 0, since E’ is indecomposable and E’” =~ E, # 0.
Hence E, = 0;. This shows that the exact sequence 0 —— E’ 2 E

AN Oy —> 0 splits. This is a contradiction. Therefore F is indecom-
posable.

Proof of Proposition 17. When g =1. 0% = 0Oy and F', has a split-
ting (Ox, Oy, ---,0%) (cf. [1]).

When g > 1. We prove this by induction on 7.

r=1. It is obvious.

r > 1. By induction assumption, there exists an indecomposable
vector F,_, which has a splitting (Q®v-2,0Q -3 ... 0%, 05). Since
H(X,F,_,®2%) = H(X,F,_)) + 0, the exists a non-spht exact sequence
0—-F, Q02 —F —-0y—0.

Applying Lemma 19 to this exact sequence, we see that E is indecom-
posable. It is easy to show that E has a splitting (2179, Q72 ... 0y).
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PROPOSITION 20. Let X be a curve of genus g = 2. Let E be an
indecomposable vector bundle of rank r on X and let (L, L, ---,L,) be
o maximal splitting of E. If d, = min{degL,,degL,,---,degL,}, then

degE < r(r — (g — 1) + rd, .
In order to prove Proposition 20, we need the following Lemmas.

LEMMA 21. Let X be a curve of genus g. Let E (resp. E') be a
vector bundle of rank r (resp. ') on X and let (resp. (M,,M,, ---,M,))
be a splitting of E (resp. E’). Suppose that deg L, > deg M; + 2(g — 1),
for all i, j, then H(X,E Q E’) = 0.

Proof of Lemma 21. (L,® M ;) 1,7 is a splitting of E® E’. Since
deg 2y ® M, ® L, < 0, we have H'(X,L; ® M,;) = H'X, 2y ® M; ® L,) = 0.
Therefore we have H(X,E ® E’) = 0.

LEMMA 22. Let X be a curve of genus g. Let E be an indecom-
posable vector bundle of rank r on X and let (L,,L,,---,L,) be a split-
ting of E. Then for any m with 1 < m < r, we have

min {deg L,,deg L,, - - -, deg L,,_,}
< max {deg L,,,deg L, ,,, - -+, deg L,} + 2(g — 1) .

Proof of Lemma 22. It is obvious by virtue of Lemma 21.

LEMMA 23 (M. Nagata). Let X be a curve of genus g. Let E be
a vector bundle of rank 2 and let (L,,L,) be a maximal splitting of E.
Then

deg L, < degL, +g.

Proof of Lemma 23. See M. Nagata [7] or M. Maruyama [6]
Theorem 3. 13.

LEMMA 24. Let X be a curve of genus g. Let E be a vector bundle
of rank v on X and let (L, L, ---,L,) be a maximal splitting of E.
Then

deg L, < deg L, + (r — Dg .
Proof of Lemma 24. It is obvious by virtue of Lemma 23.

Proof of Proposition 20. We shall define a sequence of integers,
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1=14, <4, <, o+, <1 <% <% =r-+1, which satisfies the following
condition.
deg L; = min {deg L,,deg L,, --.,deg L, _,_ .} (m>0).
We define a one-to-one onto map
v:{1,2,.--,7t—{0,1,...,7 — 1},

such that ¢() =7r 4+ j§ — tp — iy + 1 where ¢, <j <i,_,. We shall
prove that

deg L; < dy + 2¢(j)(g — 1)

by induction on m such that 7, <7 <i,_,.

For m = 1. Since (L;,, L;,,,, - - -, L;) is a maximal splitting of a vector
bundle, we have deg L; < d, + (f — ¢)g, by virtue of Lemma 24. Since
o(j) =7 — 14 and g < 2(g — 1), we have

deg L; < dy + 20(j)(9 — 1) .

For m > 1. Since (L;,,L;, + 1,---,L;) is a maximal splitting of a
vector bundle, we have deg L; < degL;, + (j — i,)9 < deg L;, + 2(f — i,)
(g —1). Since ¢(i,_, — 1) = ¢(q) for all i,_, < ¢ < r, we have

deg Ly < dy + 20()(g — 1) < dy + 20(iy,_, — (g — 1),

for all ¢,_, < g £, by induction assumption. For any 1 < ¢ < ipoys
deg L, = deg L;,. Hence by virtue of Lemma 22, we have

deg Ly, < dy + 2¢(ip_, — D9 — 1D + 2(g — 1) .
Hence we have

deg Ly < dy + 200 — ipy + D(g — 1) + 2 — i)(g — 1)
=dy=20()(g — 1) .

Therefore, we have
deg B = 3, deg Ly < d, + > 20()(g — 1) = rdy + 7(r — D(g — 1) .
= j=1

THEOREM 25. Let X be a curve of genus g > 1. Then

(i) for any indecomposable wvector bundle of rank r such that
degE > r(r — 1) + (9 — 1) + rn(X), the Frobenius map F*Q,E) is injec-
tive.
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() if n(X) > 0, then for any r > 0, there exists an indecomposable
vector bundle K’ of rank r with deg B = r(r — 1)(g — 1) + ra(X) such
that the Frobenius map F*(1, E') is not injective

Proof. (i) Let (I, L,, ---,L,) be a maximal splitting of E. Then
deg L, > n(X), by virtue of Proposition 20. Hence the Frobenius map
F*(1,L;) is surjective for all j, and the Frobenius map F*(1,E) is sur-
jective. Therefore, the Frobenius map F*(1, E) is injective by virtue of
Corollary 8.

(ii) When n(X) > 0, there exists a line bundle M of degree n(X), such
that the Frobenius map F*(1, M) is not injective. There exists an indecom-
posable vector bundle F, which has a splitting (', Q18¢-2 ... 0L Oy).
Put B/ = F,® M. Then E’ is an indecomposable vector bundle of rank
r, and of degree 7(r — 1)(¢ — 1) + rn(X), which has M as a quotient line
pbundle. And HYX,E’) = HY(X,E'®) = 0. Therefore, the Frobenius map
F*(1, E’) is not injective, by virtue of Corollary 6.

5. In this section we shall give an example of a curve with positive
n(X) although the Hasse-Witt matrix of X is non-singular. We also
give other examples of a curve X with positive n(X).

ExXxAMPLE 1. Let k& be an algebraically closed field of characteristic
3. Let X C P2 be the curve defined by the homogeneous equation

XX, + X3X, + X5X,=0.

One verifies easily that X is non-singular. Being a plane curve of degree
4, it has genus 3. (This example was given in [5]). The Hasse-Witt
matrix of X is identically zero. (cf. [5]).

PROPOSITION 26. If X is the curve in Example 1, then n(X) = 1.

Proof. By Definition 11, n(X) < 1. Let f = (X, — X,/ X)) ¢ K = K(X).
We have (f)., = (0,0,1) + 3(1,0,0). This shows that fe K. It is easy
to show that v,(d f) = —3, if x=1(0,0,1) or x =(1,0,0), and »,(d f) = 3,
if =0 —a,—1,1) 1=1,2,3 where «; are the distinct roots of the
equation &®* =« + 1, and v, (df) =0, if =+ (1,0,0). This shows that
n(f) =21, and n(X) = 1.

EXAMPLE 2. Let k& be an algebraically closed field of characteristic
3. Let X C P? be the curve defined by the homogeneous equation
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Xi— X3 X, — X X;=0.

One verifies easily that X is non-singular. Being a plane curve of degree
4, it has genus 3. (This example was given in [2]). The Hasse-Witt
matrix of X is identically zero. (cf. [2]).

PropPoSITION 27. If X is the curve in Example 2, theh n(X) = 1.

Proof. We prove this in the same way as in Proposition 26. We have
nX) <1l Put f=(X,/X)eK, then n(f) =1. Therefore we have
n(X) = 1.

ExXAMPLE 3. Let k£ be an algebraically closed field of characteristic
p = 3. Let X C PZ be the curve defined by the homogeneous equation

Xp* = XXX + X2t — Xp)

One verifies easily that X is non-singular. Being a plane curve of degree
p + 1, it has genus (1/2)p(p — 1).

ProPOSITION 28. If X 4s the curve in Example 3, then n(X) =p
—2>0.

Proof. We have n(X) < p — 2. Put f = (X,/X))eK, then we have
nX)=p-—2.

PROPOSITION 29. If X is the curve in Example 3, then the Hasse-
Witt matrix is non-singular, i.e., the Frobenius endomorphism of H'(X, Ox)
18 injective.

Proof. U; = {(X,,X,,X); X, 0} i=1,2 are affine open subsets of
P.. Then XC U, UU, Let f=2Xp"— XX, (Xp'+ XP'—-XpYe
kX, X, X,]. Now let ae H(X,0z). Since {X N U,, X N U,} is an affine
open covering of X, we can realize « as a function 2 on X N U, N U,.
This function extends to a function 2 on U, N U, i.e., to an element
of the ring k[X,/X,, X,/X,,X,/X,]. The set of coboundaries is

X, X X, X
he— hys h k[ °,—l],hek[ 0, ]}
{1 el PR X T,

h is a linear combination of monomials X}/ X{X{7. Now if i=p + 1,
we can write
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X4 Xy Xy Xt
= od 1) .
O Sl 5 SR () S S I

I

If i<jorj<0, then Xi/X{Xi7 is a coboundary. Let ¢ be the natural
map k[X,/X,, X,X;, X, X,] - H(K,Ox). Then we can choose ¢(X:/X X)),
o(X3 X, XD, o(X3/X2X,), - -, (X7 X, XE), o(XP/X2XE™), - - -, o(XP/XP7X)
as a basis of H'(X,0y). Let a,; = (Xp-2+-1/Xi-iXp-t-i+-1)  for all 4,7
and ¢ = 0 or 1. To complete the proof we need the following Lemma.

LEMMA 30. Under the same notation as above,

(i) let V,, be a vector subspace of H\(X, Oy) which is spanned by
Qg Aegrs =+ * s Qeigery Where jled) = min{t — 1,p — ¢+ ¢ — 2}, for all ¢ such
that p +e—2=1=1. Then V,, is stable under the Frobenius endo-
morphism.

(ii) F*(1,04|V,; is an injection.
(i) S V.= H(X,0y.

Proof. Let 1/2(p — 1) = j = 1, then we have

Xg(p—2j+s+l) . Xg)(p—-Zj+s—-1)(X1X2)p
= Xp@-2te (X — X, X,)P
= XP ¥ (X — X X)W X (X — X Xp)priret
Xpr2rt e (XG — X X )P (X X)P-2r e (Xpt — Xprh)pmaieent
(mod 1)

i( 1™ (2.7 —7}2 + 1>Xp 2j+2m+e— I(XX)p m(Xp 1 Xg—l)p—2j+s—1
m=0

( 1 ) +j-§1(_1)j+m (2.7.7_+5I;1!_ 1) Xg]+2m+e—l(X1X2)p—m—j(Xf>—l . Xg—l)p—-Zji-s—l
m=1

= i: (=D <2j —_7;, * 1)X%’—ZHZm“'l(Xle)p'm(Xf’_l — Xp1yp-titent

+.7'—€+1 (.7'_""1(_1)]‘-)—11 (zj ‘/".——: 1‘/1‘ 1))X20m+5—2(X1X2)P—’m—]'+1
X (Xf_l — Xé}—l)p—2j+s
e j+n € + 1 pte—1 -7 D __ p—1\p—2j+e—1
v (F D) xpe X — X
(mod ) .

In the sequel, let p >4 and 0 <7 — 1< j(et). Then we have
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(Xg—2j+2m+z—l(X1X2)p—m(X%)—l _ Xg)—l)p-21+z-—l)
¢ (Xi-7r1xp-i-s+e)p

(2) = (=1)t-7 (p - %j +e— 1)9)( Xp-2+imse=t )

— 7 X11:—j+mX%z-i—j+m+:—1
= (—DH(” AN 1) iy -
X2m+¢-2(XX )p—m—j+l(Xp—1 . Xp—l)p—2j+t _
(3) SD( : (2Xg_/+1XgJ-‘ll-j+c) : ) =0.

By virtue of formulas (1), (2) and (38), we have
F*(l; @x)(a.zjq) - F*(l, mx)(a;u)
j-1 ;— — 27 —
=S (¥ et ey (P e ey,

m=0 7

F @~ (P Y,

J—e+1 2 y 1
Since j(e?) + 1 < (1/2)(p — 1) and @,s544.1 = 0, formula (4) shows that (i)
is true.

4= P o . .
(ii) Since a,;_, + Z_}:(—l)m(zj n:,_l- 1) =0, it is easy to verify
that F'*(1,04) |V, is injective
(iii) It is obvious.
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