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Infinitely Many Solutions for the Prescribed
Boundary Mean Curvature Problem in BY

Liping Wang and Chunyi Zhao

Abstract. 'We consider the prescribed boundary mean curvature problem in BN with the Euclidean

metric
—Au=0, u>0 in BN,
_ = #_ _
%+¥u:¥K(x)u2 I onSN—1)
where K(x) is positive and rotationally symmetric on SN~1, 2% = % We show that if K(x) has a

local maximum point, then this problem has infinitely many positive solutions that are not rotationally
symmetric on SN,

1 Introduction

Parallel to the prescribed scalar curvature problem, the prescribed boundary mean
curvature problem also plays an important role in conformal geometry. Given an
N-dimensional (N > 3) Riemannian manifold (M, g) with boundary, this problem
concerns if one can find a new metric ¢ in the conformal class of g, such that (M, §)
has zero scalar curvature and the boundary mean curvature becomes a prescribed
function. Denoting § = u*/N~?g, where u is a positive smooth function, the prob-
lem may be addressed by finding a positive solution u of the following equation:

4(N -1
—%Agu+Rgu:0 in M,
0 N-2 N-—-2- #
a—Z + Tng = TK(x)u2 1 on oM,
where 2% = 2%]:21) is the critical exponent of the Sobolev trace embedding. Here

A, is the Laplace—Beltrami operator, R, is the scalar curvature of M, H, is the mean
curvature of OM, v is the outward normal unit vector with respect to the metric g,
and K(x) is the prescribed function.

Due to the fact that the embedding H' (M) < 2 (OM) is not compact, the Euler—
Lagrange functional ] associated with our problem fails to satisfy the Palais—Smale
condition. That is, there exists a noncompact sequence along which the functional
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] is bounded and its gradient goes to zero. Therefore, it is not possible to apply the
standard variational methods to prove the existence of solutions. Notice that the
above problem is a natural analogue to the well-known scalar curvature problems on
closed manifolds.

Escobar [12, 14] and Marques [19, 20] studied this problem for the case where
K(x) is a constant. From the existence of solutions, they showed in this case that most
compact manifolds with boundary are conformally diffeomorphic to a manifold that
resembles the ball in two ways; namely, it has zero scalar curvature and its boundary
has constant mean curvature, although very few regions are really conformal to the
ball in higher dimensions. For other related results, we refer the reader to [2—4,7, 13,

, 17] and the references therein.

In this paper, we prescribe mean curvature on the boundary S¥~! of the unit ball
BY in RY (N > 3) with Euclidean metric gy. Precisely, we study the problem of
finding a conformal metric to gy whose scalar curvature vanishes in BY and where
the mean curvature of boundary SN~ is given by K(x). This problem is equivalent
to solving the following boundary problem:

~Au=0, u>0 in BV,

(1.1) ou N—2 N—-2~ _ .
A2 T Ru ! onSNL
ov 2 2

Note that Cherrier [8] studied the regularity for this equation. He showed that solu-
tions of (1.1) that are of class H' are also smooth.

The problem of determining which K (x) admits a solution to (1.1) has been stud-
ied extensively. It is easy to see that a necessary condition for solving the problem
is that K(x) must be positive somewhere. But there are also some obstructions for
the existence of solutions, which are said to be of topological type. For example, the
solution u must satisfy the following Kazdan—Warner condition (see [14]):

(1.2) / VK - xu* dx = 0.
SN—]

Some existence results have been obtained under assumptions involving the Lapla-
cian at the critical points of K. Sufficient conditions in dimensions 3 and 4 are given
in [11,15]. Furthermore in [1], the authors developed a Morse theoretical approach
to this problem in the 4-dimensional case providing some multiplicity results under
generic conditions on the function K.

Consider the case K(x) = 1+¢h(x) is a perturbation of 1 (or generally a perturba-
tion of some constant). In [6], by a perturbation method, Chang, Xu, and Yang ob-
tained positive solutions by looking for constrained minimizers; more precisely, they
proved that if at each critical point Q of h(x), Agv—1h(Q) = 0, then under additional
conditions, the above problem has a positive solution for ¢ sufficiently small. Fur-
thermore, Cao—Peng [5] constructed a two-peak solution whose maximum points
are located near two critical points of h as € — 0 under certain assumptions.

It is well known that the unit ball BY is conformal to the half-space RY. As in [5],
to consider this problem we transfer equation (1.1) to an equation in the half-space
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RY. We denote y = (y1,...,yn) = (¥, yn) € BY. By the standard stereographic
projection: IT: BN — RY,

4y’ 21—y — |y’|2))
(L+yn)2+]y 2 A+ )2+ /)2 )]

455 (T %)
i(x) = =

[(2 +x5)2 + \x'|2] T

Iy, yn) = (

we see that the function #i(x) satisfies

Au=0, u>0 in RY,
(1.3) o = K(xu?'~! on ORY,
u € DVA(RY),

where D'2(RY) denotes the completion of C5°(RY) under the norm [,v|Vul?, the
bounded function K = K o 1T, :

For the case where K(x) is a positive constant, say 1 for convenience, it is well
known from [18] that the only solution to (1.3) has the form

A }?)

Ueabd = (N=2) = [ (1+ Axy)? + A2[z — (P2

where both A > 0 and { € R¥~! are arbitrary. Obviously it is radially symmetric in
ORN with respect to ¢. Here we write x = (%, xy), £ € RN 71

In this paper, we consider the simplest general case, i.e., K(x) = K(|%|) =: K(r) is
a radially symmetric positive function in ORY. The Kazdan-Warner condition (1.2)
is correspondingly reduced to

/ K'(rru? dz = (VK(®) - %) u? dz = 0.
RN—1 RN—1

Hence by positiveness of u, K’(r) cannot have fixed sign in RN~!. Thus it is natural
to assume that K is not monotone.
The purpose of this paper is to answer the following two questions:

Q1 Does the existence of a local maximum of K guarantee the existence of solutions
to (1.3)?

Q2 Are there solutions to (1.3) that are non-radially symmetric in ORY?

To state the main result, we assume that K(r) satisfies the following condition:
K(x) is positive, bounded and there is a constant ry > 0, such that

(K)  K(r) = K(rg) — co|r — ro|™ + O(|r — r0|m+9) forr € (rg — 0,19+ 9),

where ¢ > 0,0 > 0,5 > 0 are some constants and the constant m satisfies m €
[2, N — 2). To make sure that such m exists, we consider the problem for N > 5.
Without loss of generality, we assume that K(rp) = 1.

Our main result is stated as follows.
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Theorem 1.1 Suppose that N > 5. If K(r) satisfies (K), then problem (1.3) has
infinitely many solutions, which are non-radial in ORY.

Remark 1.2 Combining the results in [15] and [11], we give sufficient conditions
for the existence of solutions for all N > 3.

Remark 1.3 The condition (K) is a local condition, while the condition in [1] is
global.

Remark 1.4 Theorem 1.1 exhibits a new phenomenon for the prescribed boundary
mean curvature problem. It suggests that if the critical points of K are not isolated,
new solutions to (1.3) may bifurcate.

We formulate the following conjecture in the general case.

Conjecture  If the set {x € ORY : K(x) = max,copy K(x)} is an (-dimensional
smooth manifold without boundary, where 1 < ¢ < N — 2, then problem (1.3) admits
infinitely many positive solutions.

Let us outline the main idea in the proof of Theorem 1.1. Let us fix a positive

N—2
integer k > ko, where kj is a large integer to be determined later. Set y = k¥—2=7 as
the scaling parameter.

Using the transformation u(y) — u‘¥ u(ﬁ), we note that (1.3) is equivalent to

Au=0 in Rf,
1.4 #
(14) @:K(m)uz -1 on ORY.
ov 1

In this paper, let

x; = (rcos 2(].; l)ﬂ-,rsin 2(].; 1)71-,0,...,0) , j=1,...,k
then the approximation solution we choose is
: - A i
Wealy) = ]Zl U = (N =2+ ]Zl[ ey
We will find the solution with the form W, 5 + ¢, furthermore ¢ has the following
symmetries:
(1.5) A1, y2, - yN=1,YN) = O(Y1, = Y2, s —YN=1, YN,
cos 27” —sin 27” 0
(L6) ¢ =9(Qy), Q=|_sinF cosF :
0 . I
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where I denotes the (N — 2) x (N — 2) identical matrix. In this paper we always
assume that

1 1
re /“0—77/”04‘*9}, Ly <ALL,
1 I

where 8 > 0 is a small number and L; > Ly > 0.
Theorem 1.1 is a direct consequence of the following theorem.

Theorem 1.5 Suppose N > 5. If K satisfies (K), then there is an integer ko > 0 such
that for any integer k > ko, problem (1.4) has a solution uy of the form

uk = er.Ak + ¢k7

where ¢y satisfies (1.5) and (1.6). Moreover, as k — 00,
1 1
|oklloc = 0, rc € | purg — E“Wo + E} , and Ly < Ap < L.

Remark 1.6 Changing back the solutions in Theorem 1.5, we see that the solutions
to (1.1) can blow up at an arbitrarily large number of points on S¥~!. On the other
hand, Escobar—Garcia [15] shows that when N > 4 and the function K at its critical
points vanishes up to order m with m > N — 2, there is actually at most one possible
blow-up point. Thus our existence result means that m < N — 2 is almost sharp.

We will use the finite reduction method introduced by Wei-Yan [21] to prove The-
orem 1.5, in which the authors use k, the number of bubbles of the solutions, as the
parameter in the construction of bubbles solutions for (1.4). The main difficulty in
constructing solution with k-bubbles is that we need to obtain a better control of the
error terms. Since the maximum norm will not be affected by the number of bubbles,
we will carry out the reduction procedure in a space with weighted maximum norm.

Our paper is organized as follows. In Section 2, we obtain some preliminary esti-
mates. In Section 3, we deal with the corresponding linearized and nonlinear prob-
lems. In Section 4, we come to the variational reduction procedure. In Section 5, the
proof of Theorem 1.5 is given. Finally we give the energy expansion of the approxi-
mation solution and list some useful estimates in Appendix A.

Throughout this paper, C is a generic constant independent of k and p.

2 Preliminary Estimates

In this section we will obtain some estimates for later use.
Under the assumption that the solution u = W5 + ¢, it is not difficult to check
that ¢ should satisfy the following equation:

(2.1) ~A¢ =0 in RY,
' 9% (2~ DK(ZYWZ 26 = —R(y) + N(¢) on dRY,
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where the error term R(y) and the nonlinear term N(¢) are defined by

OW; A 7l 2*—1
R(y) = —— — K( —) w ,
(}’) v o rnA

N = K( 'y') [(War+ @) = WET = 27— W]

In what follows, we use the following two important weighted norms

k

1 -1
loll = sup (3 ) 00l

yerV \Go1 (L4 [y = xj])>

k —1
1
Il = s (3 ) )

yEORY =1 (1+|y—xj\)N2

k -1
1
= sup ( P T> [h(y)l,
FERN-1 ]21:(1+yx]|)Nz 7t

where 0 < 7 < 2(N 5 isa fixed small constant.
We need the following two lemmas later.

Lemma 2.1 It holds that, for some small 0 < 0 < {"5(5%5 — 7),

Z

m

1y 2
IRl (=)
w

Proof Define

Q= {)7 coRY | 7=(7,7") e R** x RN 73, <|§:|, |§]|> > cos;:}.
j
We have
k k _
R = () (wi - our) vz () )
=1 j=1
=L+l

From the symmetry, we assume that y € €2;. Then Taylor’s theorem gives us

C 1 271
|]1|§(1+‘)7 )ZZ(1+|)/fx )N2 (Z(1+|yfx IN— 2) .
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Since |7 — ;| > |7 — %] and |7 — %;| > 3|%; — | for 7 € Q;, we obtain

1 1
L+ |y —2)? L+ ]y —5)N=2
1 1
<C
T =m)? Ay - DN (4 [y - &)
1 1
<C (0<a<N-2).

|Xj — %] (1 + [y — % )N«
Thus, forany 1 < a« < N — 2,

k

1 1 C k@
(2.2) (1+|}7_x1|)2j—zz (1+|}—,_,§j|)1\1—2 < (1+|}7_3€1‘)N—a(;> .

Take o = % + 555 — 7 € (1,N —2]in (2.2). Then

k

1 Z 1 < C (1) 2
U+ =R S W+ =KDV 2 7 (14 [y -z )T 27 \p

Similarly, for y € Q; and any 1 < o < N — 2, we have
k

I ==
U Akl A G A

Now we choose o = N2 (82 + o — 7). It is easy to verify that

(N—=22+4—-2(N—-2)7r—2N

a—1> >0,
2N

and

N—-2/N-=-2 m N-2 N

a < ( + )S = < N-=-2,
N 2 N -2 N 2

: 1
since 7 < AN=2)"

Note also that

Nma«o m m mT

m
=T - >4
(N—-22 2 (N—-22 N-272

since 7 < m Thus we can directly check that

k ¢
(Cormo=) -mras (™
= Ly = v (1+[7 — :)V 72 \

C 1\ 3to
I+ —x|) 2 7> H
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The same estimates obviously hold for (2.2). Thus, we have proved that

m

Il <c(5)”

Now, we estimate J,. For 7 € @ and j > 1, similarly |7 — %;| > 1[x; — %
indicates that, for 0 < o < N,

1
Uzt <
xj,A y (1+|y_x1‘)N a |x1—x|“
which implies that, for « = T_-k% —-7>1,
y - C 1w,y
23) 12( l -y < ().
' 1+ 7 —x]) > 2

For y € Q) and ||j| — uro| > du, where § > 0 is a fixed constant,

1
|71 = 1%l = [17] = pro| = [15a] = paro| > S0

As aresult, forany 0 < a < N,

2—1 171y ;1
(2.4) ‘UXI’A (K( #) 1)’ = TP R

c N
S —
(I+lp—mPN"277\p

- )
Tty T oEET NS
If € Q and ||y]| — pro| < Op, then
% m _C —_— .
(L) <1 <L —n|" < ({15 - Inl)) "+ 1] - un ")

C

Mer@ :

C
SFH?\—IileJr
and

|[7] = =] < ||| = pro| + | pro — |21]| < 26p.
Consequently it holds that, for any 0 < o < m,

7| — %™ 1
pr (L |y =&)Y
:L 1 7] — %™ 1
pe (1+ |y = )N=«  pm=a (1+|7 — &)~
_c l-lale _c 1
— « « a — N—a
pe (L4 ]y =2 )N=2 (1 + |y — %)) pe (1+ [y — %))
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and
C 1 C 1

_ < —
pmtt (1+ |7 — % )N = pe (1+ |y — x[)N-@

Thus we obtain, for ||| — uro| < dpand o = 5 + o, that

= ‘U£X1<K<|£) - 1)) = (1+ Iy'—xlcl)Nz”N"'2+r (i) o

Combining (2.3), (2.4), and (2.5), we find that

1y 3+
12l < (5)
I

The lemma is proved. u

Lemma 2.2 We have |[N(®)||.. < Cll¢]> "
Proof Obviously, it holds from Taylor’s theorem that

IN(¢)| < C|¢\2#_1 since N > 5> 4.

Using the inequality

k
Zajbj § <
j=1

we have that
(2.6)

# d 1 o
IN(9)] < Cllg|[2 " (Z )

U]y =)

. k 1 21
<l (Z )

N__m_
o (Ll =%z

B 1 d 1 "=
<ClolF'y] —(x )

N2 .
o A+ |p—x]) 2 F —1 (L+ ]y — %)) 7=

k
#
1
<CllofF! ——
" ;uw—x,-n“f—w”

N (=) 11
P q
a?) < b?) for—+- =1, a;,b; >0,
-1 1 P4

j=

J

since without loss of generality we may assume that y € ;. Then

The lemma is proved. u
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To solve (2.1), we consider the following intermediate nonlinear problem

—A¢gr =0
Py # |yl 2?2
o @ UK(;)WKA b

(3.1)

¢y satisfies (1.5) and (1.6),

for some numbers c;, where (u,v) = ff)Ri’ uv and

(UX3Z0) =0 i=1,...,k j=1,2,

in RY

+ 9

2 koo,
=R+ N(g) + Y ¢; > UL °Zij ondRY,

=1 =1

P OUyn (N —2)A*(y — %) X
T T T TN A A2+ A2 — &2 1
oU,, N—-2 1-Ap —AYp—x
Zi12 — i A _ Uxi_’A . yN |y X |

OA

2 (1+Ayn)2+ A2y — &

Let us remark that in general we should also include the translational derivatives
of W, in the right-hand side of (3.1). However due to the symmetry assumption
on ¢, this part of the kernel automatically disappears. This is the main reason for

imposing the symmetries (1.5) and (1.6).
Then the following proposition holds.

Proposition 3.1 There_is an integer ko > 0, such that for each k > ko, Lo < A < L,
|r — prg] < ﬁ, where 0 > 0 is a fixed small constant, (3.1) has a unique solution

¢ = ¢(r, \), satisfying

i=1,2.

RN
in R},

2 k
3] 22 272
& (2% - I)K(—lil)WﬂA b =h+ Elc]- El Ul y’Z; onORY,
i

1\ 4+ 1
lol.<c(=) ", lal=c(;
I I
In order to obtain Proposition 3.1, we first consider the corresponding linearized
problem
—A¢r =0
(3.2)

¢y satisfies (1.5) and (1.6),

(UZ32Zij,de) =0 i=1,...

https://doi.org/10.4153/CJM-2012-054-2 Published online by Cambridge University Press
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For any fixed y = (y1,...,yn) € RY, we denote by G(x, y) the Green’s function
of the problem

—AG(x,y) =06, forxe RY,
Glx,y) =0 for |x| — oo,

Z—S(x, y)=0 for xy = 0.

It is not difficult to check that

1 1 1
= +
o) = G eyt )

where wy is the volume of the unit ball in RN and y* is the symmetric point of y with
respect to ORY = {x: xy = 0}, i.e., ¥ = (7, —yn)-

Lemma 3.2 Assume that ¢y solves (3.2) for h = hy. If || k||« goes to zero as k goes to
infinity, so does || x|«

Proof We argue by contradiction. Suppose that there are k — +00, h = hy, Ay €
[Lo, L], 1 € [rop — ﬁ, Topt + N%;], and ¢ solving (3.2) for h = hj, A = Ay, r =14,
with |[Bg]|«x — 0, and ||¢k|[« > ¢’ > 0. We may assume that ||¢k||. = 1. For
simplicity, we drop the subscript k.

First, we estimate ¢; (¢ = 1,2). Multiplying (3.2) by Z; ; and integrating, we see
that ; satisfies

2 k
(3.3) ZZ<U}§:XZZ,‘J,ZL[> Cj =

=1 i=1
0 .
/ zwiﬁ —@2f -1 K(m) W22z — | hziy
) ORY '

H ORY

Using Green’s formulas, we have

/ 2,20 _ oy (M)wfﬁzlgb hZy

ORN v ORN ORN
0z
=/ 6| ot - @ 1)1<<'y‘ W22 = |z
ORN v ORN
=L+
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The equation of Z, ; indicates that, in ORN,

e e

Note that, because of Lemmas A.3 and A.4,

/ ¢Zl.zU§X2
ARN\Q, '
2 —1 1
<clgl. uZy —
IR\ i= 1(1+|)’*xt|)2 e

£ 1 1
< C||o|« N m
> ||¢H ;/ﬂ, (1+‘)7_x1|)N _ = |\ — 471

(1+]7 — &)~

k

1 1
<Cllgll. Y. ——— /Q (earene L O

and

22
/ ¢ZI,ZW,1A
IRY\Q,

*_
(bZl,éWr%A :

k
_ 1
<C||¢H*§/ U aW7, I e

= [y —x)mv=

k

1 1
<C =o(1
<Ol Y. e | Ty =l

i % — % ?

N+2

since >

NL-{— e 22 > 1 for N > 5. Then we have

(G4 L =02"—1) ¢zlvéujfyg2(1 — K(M)) dy
o} H

+o{/ﬂl 671, | U2 _3ZUx,A+(Z )M} dy-}

+o(D)][¢]].
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Direct computations show that

[ ez (1-x(2))of
Q 2

k _
1 dy

I
o L+ [y —x))2 7

9l i .
<C— = o 7l = pn UL 3
B )5l — ol <

S+T

k

+ d)?
+Clgl. LUy

_ _ N_
171 —pro| 2N o (L[ —x))2 77

< CII¢H* / ) |[7] — pro|™dy _
17| —pro| <p—2

u (1+|)7_,z1|)N+%*ﬁ*ﬁ”

= o(D)][]]-

Similar estimates can be obtained for the second term of (3.4). Thus we get that

1] = o(D)][¢]]+
In addition, it holds that, using the estimates in the proof of Lemma A.3,

1 k 1

I scuhn**/ SR _—
woo (LH[7 =0 DN2 & (14 |y — )5 vt

1
< C|h
<Ol [ o

k
1 1
+Clnl.. Y | 1 -
; ey (L[ = 2DV (14 7 — zi]) 5w

< Cl[All -
On the other hand, for any i # 1, it is easy to check that
Uiz, 20| <C / UZ U
ORY
By Lemma A.3, we may have that
(3.5)

/ U2 U, ndy </ ! !
X x1,A = — - - - =
ARY oA ory (L4 7 — %N (1+ [y — % [)N 2

< C / |: 1 + 1 }
TR XN Sy LA+ [ —mDY (L |V
C

- s - &

|N—2'
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In addition, it is easy to get from the symmetry that, for j # ¢,
(3.6) (U322, Ziy) = 0.

Now we find that the coefficient matrix of the system (3.3) with respect to (¢, c;) is
nondegenerate. Therefore,

lce] < o(D)|@]l« + Cllhl[x = o(1).
We claim that
(3.7) ||¢|‘L“(@ﬂ|yfx,\§R) = o(1) foranyi=1,... k.

Indeed, by elliptic regularity we can get a qAS such that ¢(y — x;) — (;AS in Clzoc(@) and

~Ap=0 in RY,
% @~ 1DU =0 ondRY,
<U(§/\7220]7¢> =0 .] = 1727

The nondegeneracy of Uy  [9, Lemma 2.1] implies that ¢7 = 0, which concludes the
claim (3.7).
We next rewrite (3.2) as

P(y) = /t)R G(y, Z)ZCJZ AZ(Z)Z,](Z)dz
2]\ 12—
+ /aRQT G(y,2) [(2# 1)K( P ) WT?A 2(2)(2) + h(z)} &

where z = (2,0) € RN~ x {0}.
Direct computations show that

k
[ 6ra Y vz, e
oRY -1

1
<C dz
Z/RN |J’—Z|N 214z =x N
k k

1 1
T R0 —

i=1 (1+|)’_xi|)2 — 1+‘y—x1|)2 N—2

where we have used Lemma A 4.
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Also

1

G( ,z)h(z)dz“ <Clh / 4z
| [0 e [ Y =

(1+\zfxl|) R

k

1
<clhll.. S —

oAy —x))i

: N m
since 3 — x5 + 7 < N — 2and

e k(E Wz (]
RN H

s WA (2)dz

<0(1)Z/

Br() Z\N 2

k
1 i 1 _
+ Hd)”* |N 2Wr2A Z(Z) E : ] ﬂ_i«‘,sz

QRQ’\QBR(X,') ly —z

k

1
So(l)z N__m

i—1 (1 + |y —xi|)2 N=2

k
C 1 1
R — E dz
R(TI\T*Z)ZI\)‘;A ”d’”* pr Li |)’ _ZlN—z N Mot ltr

(1+]z—x|)>" 7=

< (0(1)+ oz 19 ) Xk:

R =27 i (1 Iy*xl)z vt
Now, choosing R large, we obtain that
9]l < Cl[A]lsx +0(1) = o(1),

a contradiction. |

From Lemma 3.2, using the same argument as in the proof of [10, Proposi-
tion 4.1], we can prove the following result.

Proposition 3.3 There exists ky > 0 and a constant C > 0, independent of k, such
that for all k > ko and all h € L>°(RN™1), problem (3.2) has a unique solution ¢ :=
Li(h). Besides,

LMl < CllAlles,  lee] < CllAl]x-
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We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1 Let us recall that y = kv—-7 and denote
— . 1\ 2%0
E= {6 CRY): g satisfies (1.5) and (16), []o]l. < (=) ",
L

/ U¥ 22 ¢ =0foranyi=1,... .k j= 1,2},
(()Ri] 19 ’

where 77 > 0 is a fixed large constant. Then (2.1) is equivalent to
¢ = A(9) := L(N(9)) + L(R).

We will first prove that A is a contraction mapping from E to E.
In fact, by Lemmas 2.1 and 2.2 we have

[6[l+ < ClIR[l«s + ClIN()]l

o m N
o) o () T
I %

1\ 3+ x 71\ (3to)x?s
<) (e ()
2 2

IN

Thus A maps E to E itself.
On the other hand, it obviously holds that

[A(¢1) — A(@2) ||« = [[LIN(¢1)) — LIN(¢2)) ||+ < ClIN(d1) — N(¢2) |-

Since 2F — 2 < 1, we have that |[N”(£)| < C|¢|*~2. Thus for any y € IRY,

CIN(¢1) — N()| < C(|1[* 2 + 6o 2|y — b0

k #
#_ #_ 1 2—1
< CUnZ 2+ 622 on = bl (3 —)
j=1 (1+] 2

y— &)
2 (1)(g+a)ﬁ” I Ek: 1
< Cnpv=2 (= o = b2 e
I ' S|y g
k
1 1
< 7”(;51 - ¢2||* Ni2_ _m )

where relation (2.6) has been used. Thus A is a contraction mapping.
It follows from the contraction mapping theorem that there is a unique ¢ € E
such that ¢ = A(¢). [ |
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4 Variational Reduction

After problem (3.1) has been solved, we find a solution to problem (2.1) and hence
to the original problem (1.4) if (r, A) is such that ¢j(r, A) = 0, j = 1, 2. This problem
is in fact variational.

Let F(r, A) = I(W, + ¢), where ¢ is the function obtained in Proposition 3.1 and

1 1 #
I(u) = E/ |Duf* - 7/ K(m) .
RY 27 Jory Iz

+

Proposition 4.1 Assume that (r, A) is a critical point of F(r, A). Then c; = 0 for any
i=1,2.

Proof By (3.5) and (3.6), we first get that

-1 i1 JORY =1 =1 =1 7 ORY
2 k 2
Sy [ vz o( DY Y )
=1 =1 JORY j=1 =1 (A 1% _xfl
k 2
—o> [ vz oY)
i=1 JOR =1
:;@[/ vz, o(4)"] +rotma,
ORY

In addition, since

0z;, A%y — %
< |7 — %l < CU, .
oA (1+AyN)2-i—A2\y—x|2 "
0Z;

2\ < CU, .\,
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it holds that

(4.1) ’Zk:/d vy Ugi

RI\

—\—zLRN

a(U %

L. Wang and C. Zhao

’])¢‘<CZ/ U2_1|¢|

1

<clel. | Z<1+|y_x )NZ

(147 —x|)7 7

2+T

4y
<cllgll. Z/ —r

N—2—m)

1+ |y_x1|)

1\ 5to
< Ck(f) .
i

The same estimate holds for El o (mN v _221 J %‘f

Finally we note that

T ey v

+ j=1  i=1

0= 8A /de Z € Z U’E#XZZU (

+ j=1  i=1

a‘/vrA a(b )

N T

a‘/vrA a(b

")

T oA

Therefore, it is easy for us to get that ¢; = 0 (j = 1,2) from the nondegeneracy of

their coefficient matrix.

Proposition 4.2 We have

F(r, A) = I(W,a) + o( mkm)

B, B,
Amum + Am—zum (MrO

:k(A+

- |x1|))

k
Bs 1
- +O< +
; AN—le1 _ Xj|N_2 ’um+a

1 2+6
o = xl*7) ),

where B; > 0,1 = 1,2, 3, are some constants and & > 0 is a small constant.

https://doi.org/10.4153/CJM-2012-054-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-054-2

Solutions for the Prescribed Boundary Mean Curvature Problem in BN 945

Proof Since DI(W, )¢ = 0, thereist € (0, 1) such that

Fr A) = I(Wy0) + 5D (Wos +10) (6,0)

_ 1 , 2 -1 1yl =22
_I(W,‘,A)+2/M|D¢>| —2/6RTK(M)(W v16)” o

(W) — Z#Z_I/BRK(ZU [(Wor10) 7 — w2 2] @

N —R
+/8M( (6) —R) ¢

=10+ 0( [ (F ¢ N9l + Rl ).

Moreover, it is easy to check that

[ @il
ORY
<@l | Z 1 : a7
+1] 1 |y_x]|)N2+2 N 2+7' (1+|}7_X-l|)%_ﬁ+7'
m+2(r dy 1\ mt2o
Z/ y 2m N—2—m S Ck(7> )
]RN (1 + ‘y .|)N+l N 2+27'7 N3 7
as well as [, |R||6] < Ck( i) " Similarly, we have
k 1 2*
a [ e <ol [ ( )
ORY ORY ;(1+\y‘—xi|)7‘m”

k
# d)/
< Cllgl? Z/ S
(=1

(1+|yfx;|) N-z

< clloll? Z/ TEaTET

mN—1) +2#

< Ckllo|? < Ck(%) e

From Proposition A.1, we conclude the proof. ]

Proposition 4.3 We have

8F(T’, A) o Blm B3(N—2) 1 i 2
EIN _k(_AerlM ZAN Ux, — x;[N= 2+O<#m+(r+ﬂm|ur0_|x1” ) :
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Proof First we note from (4.1) and Proposition 3.1 that

OF(r, A) M a¢>>

@3) —5% oA T oA

= DIW, +6)

2 k
— DI(W,p + qs)(a‘g;“) 3N (Ui iz, %’:>

WfA —m—o

= DIW,s +9)( 5524 )+ Olku™"")

_ 9 |yl 2F—1 71 OWea

= g0 = [ () [0 ot w5
+O(kp™""7),

because the orthogonality of ¢ implies
OW, _ OW, 0 [ OW,p _
e VYIRS R T0A /m o (on) =0

Next we will deal with the second term in the right side of (4.3). It holds that

4 2 —1 211 WA
Wi -W — =
/aRA (u)[( t9) STy

Q" —1) K(") fl‘zag‘kAmo(/ Wf}‘2|¢|2+|¢|2#>.
ORY

ORY

For a = Ngrz_’zm, we know that in §2;,
> < >
_ N—2 = — o [\N—2— _
p (1+\y %)) (1+]y xl) My X|“
which leads to
22 c
rnA < Zn 3
(1+ 7 —=)*
¢ C
Z L < N__m - o
P (1+|y—x1\)2 I (4 g

As a result, we find that

#_ d}7
[ Wi < clole Z / e

(1 +[y— %)

d)? —m—20
<cllgl? Z / iy SO

&% (1+ |y —x) =T
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A similar estimate also holds for |, SRN |¢|2#, which is given by (4.2). Furthermore,
from the orthogonality of ¢, we have that

71y -2 0Wer
J K ggte
_ ‘)’| - aWr,A £ #_ 8Ux,.,A
fk(5) (i zm;UifaA)(f’
o [ ) e e

k
‘)7| 2F2 OW, A ¥ 9 U, A
= = W o U is

¢ QlK( M> s A ; A THA ¢

+ ORN {K(|Z> N 1} Uﬁsz agj{/\ ®.

Thus we can check that

k
|7l 22 OWip 2y OUy A
() (v
/Ql 7 oA ; T
=C /(U“ZU A+ZU£A1)|¢
C(l) 2(1\ 2>+2+0§C(l)m+a’
H 1
and, using Lemma A.3,

/am {K(T) B 1} Sy 8[(‘;X7A¢‘

1 ||| — pro|™
écnqén*—/ Ll = pro
B =y <z (L [ = 52N & Z (1+‘y—x|)z gt

IN

+Cloll ,
[17]=pro| >pN=2 1+ |)/ - x1|)N Z (1+ |y 7xz|) Y TNt
C
< .
- Mm+(7
Thus we complete the proof using Proposition A.2. u
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5 Proof of Theorem 1.5

L. Wang and C. Zhao

Since
j— 1
\xj—x1|:2|x1|sin¥, =2,...,k
we have
Z|x —x1|N2_(2|x|)NZZ(sn )NZ
15(
2 1 1
- + if ki
(2|x1|)N_2 Z (sin (]—1)7T)N_2 (2|x1|)N—2 1I K 1S even,
if k is odd.

(2|x1|)N 2 Z (sm LSIES

But
sin <
(j=Dm
k

(j—m
0<c < k

So, there is a constant By > 0, such that

B4kN_2

+o(

2

k

).

‘x1|N72

2 ey =

Thus, we obtain

|x1‘N72

Bl BZ 2
F(r, A) = k(A * S R 10 =)
B3By kN2 1
B AN—2;N-2 O( MHH—U + 7‘/1/7”0 - f'|3 +
and
OF(r,A)
ON
Bim B3By(N — 2)kN—2 1 1 5
k<_Am+1um AN—1,N—2 + O( e + 7"”’-0 — r
Let Ay be the solution of
Blm B3B4(N — 2) .
_Am+1 AN_lré\lfz ’
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that is
A — (B3B4(N—2)) N
T Bymr) 2 '

Define

1 1 1 1
D:{(r,A):re [uro——é,,uro-f——é],f\e [Ao_sgvAO"'&g}}’
[ 1 p2 I

where § > 0 is a small constant.

The existence of a critical point of F(r, A) in D can be proved just as in [21, Prop.
3.3, Prop. 3.4]. We omit the details.

It remains to prove that the solution we found for v, = W, +¢ is positive. Testing
the equation for v, (1.4) against v, = min{v,, 0} itself, it holds that

p AR,
/Rf il = /BRN K(f> 2

+

Moreover the trace theorem tells us that

7l —\2 (/ —2)22#
K <C \Y
/am (u)(vﬂ) B Rﬂj| a

Combining the above two inequalities, we get that

(5.1) / K(M> (v;)f >C or v, =0 on ORN.
ORY M

On the other hand, we know that |V;| < ||, since W,y > 0. Thus, by (4.2) it

holds that
My <c [ <o(1)7
K| = < < — =o0(1).
/BM () <c [ <c() o(1)

On account of (5.1) again it must hold that v, = 0 on dRY, which implies that

v, > 0on BRIJ:’ . Therefore v, must be positive, because it is harmonic in Rf .

A Appendix

In this appendix, we assume that

2G—Dm . 2(]—1)7r’0) i=1,...,k

xj = (rcos rsin
! k ’ k

where 0 is the zero vector in R¥~2, and r € [rou — ﬁ, rop + ﬁ] for some small
6 > 0.
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A.1 Energy Expansion of the Approximate Solution

In this section, we will calculate I(W, 4 ).
Let us recall that

p= kv,
I(u) = ;/M |Duf* — 21‘*/911@1(('/);') uf?,
Ugatn = (N=2) 7[5 AN ﬁMly‘@lz} -
W) = (N =)' i[ L — =

Proposition A.1 We have

By
Am‘um

B
IW, ) =k|A+ + 2 (ury —r)?
) Am Zlum

k
B3 1 1 2+6
~ 2w, s O i) |

where A, B; (i = 1,2, 3) are some positive constants depending only on N, r = |x;| and
G > 0is a small constant.

Proof First let us calculate [, [DW,5|*. It is easy to get that, for j = 1,...,k,
" dz
Al AN == Uz, = N—2N71/ _—.
A s Um0 [ e
By using the symmetry, we claim that
k

(A2) > / U2 3 Uxia

L [

1,7=1 +

i#]

j=2
_x zk: Csn 40 zk: In Alx; — x|
- L AN 2|x1_x]|N 2 L AN l|x1_xJ|N 1 ’
j=2 j=2
where
dz

Cox = (N — 2V /

rv-1 (1+[22)7
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In fact, denote that d; = |; — X, then Taylor’s expansion tells us that, in B4, (£;) C
bl

ORY = RN~! and for large d,

l N—2

1+A2|)7—x]-|2)

(o)™ ol )
1+ A2|% — x;]2 AN=2{g) — x|N-!

(A3) (

= v —pr + O ) O =)
AN72|3€1 _xj|N72 AN72|)Z1 _ xj|N71 AN|x1 _ )Z]’|N .

Thus,

2”1 (N —2)N-! dz
Uga Uxjn = AN—2[3 - IN—2 PPN
Ba, (%) %1 — % Ryt (14 |2]2)%

2
InAlx%, — %;
+O< n _|x1 _x]| )
ANz, — x|V

In By, (%), since |y — %] > @ and |y — %| > [y — %j|, it is easy to know that
2

N N—1 1

(rep=zp) < (mer—ss)  (rmy—zp)

L+ A2y —x 2/ — 1+A72\x1_,z].|2 1+ A2y — x|
therefore we have

# lnA|3Z1732|
UZ*IU,A:O( List i )
-/Bd,(x]) S ANz — 5[V
2

InRY=!\ By, (%) U By, (%), it holds that
2 2

/ UZ*—lU O( 1 )
A YxjA = — — .
RN’I\ij (f])Uij (f,) X1 J AN 1|X1 . X]|N 1
2 2

From (A.1) and (A.2), we finally obtain that

(A4) / |DW, |2
RN

k k
— vy, :k( U2 + vy, )
— |l A+ zk: Cin +0 Zk: 11‘1A|921 7)Ej|
= N p= AN*2|X1 *fj|N72 = AN*1|951 *QE]-|N*1 .

https://doi.org/10.4153/CJM-2012-054-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2012-054-2

952 L. Wang and C. Zhao

Let

A
Qi =d7: 7=0"7") e R x RN3 = RV N > s L
j {)/ y=,7") e R* x +,<}7,| |xj|>_cosk

Then, from Taylor’s expansion we obtain that
(A5) / (”UWAZ
ORY K
k/ ( Iyl) Wy
o H
k[/ K(M)U2A+2#/ ‘J’| ZszlU
o K

co( [ ue(ua)) w0 [ (30))]

i=2 =2

First, let us estimate the remainders. Note that for 7 € €y, it holds that |y — %;| >
|7 — 1| and |7 — %;| > 1|% — %;|. Thus we know, for any 0 < a < N — 2, that

d C d 1
U,',AS _ _ _ — )
; i (1+|y—x1|)N—2—“;|xi—x1|”

and it is not difficult to check, for any o > 1, that

k k
1 1 k@ 1
Y e ol ()=o)
; |X1 - x]|0( ; r®sin® w 7] N2
If we select the constant o with —W;z) <a= —m;;” . NT_Z < Lz_l (N > 5), then

(A.6)
2a
/ U2 —2< ZUX” ) <C (E) /Ql (1+ |)7_x11|)2+2(N—2—a) - O(ﬁ)

In addition, we may also choose « independently such that

(N —2)? _m+o (N—2P) N-2
N YT T awon < 2 0 WY

and then acquire that
k

/Ql (Z Uxi,A> ’ = o(ﬁ) .

i=2
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Next we will calculate the second term in (A.5). It is easy to show as in (A.2) that

- k
(A7) / K( M) S UF U
0

H i=2
k

k -
:/ ZUjh;lUxh“/ (K('i') ~1) Y UZR Uk
o

W) i=2

k
C 1
:Z N—2 = N2+O( )
— AN— |X1 _xi| — Mera

Finally, the first term in (A.5) can be written as

(A.8) )
[ k(v

|)7| 2* kN71
B K(*)le +O(7)
/{Y'Im(;|<u5}mﬂl w A AZN=Z;N-1

Co

o 2* - myr2*
-/ v, -2 171 = prol U
{17—pro| <us ey K J {171 —prol Spé Ny

# kN_l
o [ 151~ ol 02 ) +O( gy
( {1171 —prol <uoHOQ A AN=2 N
o (o)) _ my 2t _ 1 kN_l
=Ay — o - |[7] = pro|"Uy, ady + O(w) + O(m)
(o)) _ _ o _ 1 kN_l
=Ay— — [l7 — %1| — pro|"U, dy+O(—+7).
Mm ORY 0,A ‘um+9 HJN*I
But,
1
m

- - # -
/ 17 — | — puro|"UZ A d7
K™ JORN\B 15| (0)
2

_|m

7

dy C
s¢ / ) - < -
ORY\B e | (0) N P (1+A2[p[HN=1 = pN-!
2

On the other hand, if y € B (0), y = (51,7%), ¥ = (#2,...,¥Nn-1), then
|%1| — 71 > |%1]/2 > 0. So, as |%;| becomes large,

. 7 - 71
— X1| = [X1| — +O(f) = |X1| — +O( = )
7 — x| =l%]—n %] — 7 %[ — 7 %]
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As a result, Taylor’s expansion says, for m > 2, that

=% |2 m
17 =51 = uno " =[] = 7+ O( L) —

=% |2
= 7+l 25 ]+ o L) ]

%1

+ lm(rrz — )|y |" 2 [,uro — |&| + O(@) } ’
2 %1

2+E>

+ O( |y1|m—2—3

2
g — |x1|+O<|y | )
%1

7P
+O| |pro— |%|+ 0O ,
%]

where & = min{m — 2, 1}; while for m = 2,

2 m
y— x| —uro| = ||%1] — 71 — pro
17 =1 = nol " = [51] = 71+ O(LEL)

2
= n " g2 sl + 0 o)

1 = |m—2 = |)7*|2 2
+Em(m—1)|y1| uro — |%1| + O .

%

Thus, using

/ "2y dj =0
B (1+A2‘y|2)1\] 1 ’

151 x

whether m > 2 or m = 2, we obtain that, sincem < N — 2,

1 I
a9 o [yl

1
= [ =l — o Ug+ o )

\Xl\

) s m(m—1) o .
= f/ 711U ady + 7/ 71172 (o — |xa|)*Ug ady
1" S ory ’ 2pm ORY ’

1 e 1
+O(M7|MTO—T| U+w)

Cin

1 - 1
= + (prg — |x1|)2+O(—\ur0 —r|2+”+77> ,
Amum Am 2 m Mm NN 1

where 6 is chosen to be a small positive constant,

_ mdf
C —(N=2 N—1 / ‘y1|
IN ( ) BNt (1 + |}7‘2)N—1’
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and

m(m — 1)(N — 2)N~! "
Con = ey
2 g1 (1+[7]?)

Thus, from (A.5)—(A.9) we conclude

(A.10) /RN] (|£|)W &

Cin Con Csn

— #
=k Am‘um Am 2 m(’uro ‘x1|) +2 ZAN 2|X1 xj ‘N 2

AN —

1 . 1
0(7‘Mr0 _ r|2+g + (7)m+0'> .
1% 1%

The proposition now follows from (A.4) and (A.10) by setting A = (% — %)AN,

B] = Czl,i\l 5 Bz Zz,i\, 5 and 33 CSN |

Proposition A.2 We have

OUW,n) _ 1 Z Bs(N - 2)
AN

oA - Am+l 1|x1 _xj‘N 2
1 1 )
+ O(um+o‘ + ﬁ‘p’ro - r| ):| bl
where B; (i = 1, 3) are the same positive constants as in Proposition A.1.

Proof The proof of this proposition is similar to that of Proposition A.1. So we just
sketch it.
It is not difficult to get

k

OI(W;.a) 1 0 2¥—1 10 |J7| 2F
All) ————> =k| = — U Uep — —— K= |W?|.
( ) oA zZaA IRN aA AT o8 A Q ( /J,) nd

=2 2 + 1
Note that
aij,A‘ _(N=2)1 - Ny — x5 |
N lomy — 2N 1+ A2y —x P ohem

hence

0 R 9 " (N —2)"7
A.12 Ui\, = — it — =
( ) oA /am’ ad TEAT O /OR{)’ b N |% — % |N—2

9 21 (N—2)>
+ 2l U (U o —) :
oA ORY A A AN % — % [N-2
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In By, (%;), recalling (A.3) and using

0

_)
o <N—2)

(Uxi“\ - AN7

N=2, _ N
7% — & N2
we have that

0 21
oA A

( Uxi.ﬁ\ -

XJ)

:O(—N 7 = 4| ) +0
A~z v

(N—2)"7

=) O
AT % — N2
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In A% — x| )

AN |z — x|V

As in the proof of Proposition A.1, it is also easy to check that

0 21 (N
U ( U,
OA /de.(x,) A AT
0 .
A A (Uxm -

8RIX\B£ ()Z,')UB& (%1)
2 2

Thus from (A.12) we get that

2)" % InAl% — %] )

ANz — x,|N-1

(N—-2)7

1
AT )% — x1|N*2> AN|x; — & [N

d ”_1 G s, (N—2)F In A% — x|
x,A YXia T ax x1,A N—2 + O( Nl= - Nfl)
A Jomy ON Jory ™7 AT |y — %y |N2 AN[x; — % |
(N —2)Csy

_AN71|JZI. — % |N-2

InAlx — %] )
AN|x; — 5 IN-1)

+o(

As for the terms in the right side of (A.11), direct computations show that

|)’| U2 _lle,

o L, <
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The last equality is due to the fact that, because of the condition on the function K,
9 |7 2F—1
= (k(2) —1)uzi'y,
EIN Ql( L x1,A xi,A
al
= +
IMNNJan{ | 171 | <=} Joun{ | 151—un| zu1-}
() oMy
7 ANz — 5 [N -2 ANz — % [N
By similar estimates as in (A.8) and (A.9), we have that

0

v¥u
xL A VXA

17|

_ k(2 UZ”
aA Q ( m ) x1,A
8 17 4 kNil
s LR
OA J Q151 —urol<psyrey N M P
0 o* Co o y
~ oA BT Iyl ol "UZ
OA Jg—proi<psynen T W ON 51— <psy o, )
1 kal
+O( o W)
(o)) 8 _ o B 1 kN_l
= — pro|"UZ \d +o(7+7)
@ OA /RA_1 17| = prol x, ALY e T N
o O B ~ me2t 1o 1 N1
= TR Jo, [P EL = e Uopdy O(w i W) '
mCin 1 1 5
- Al ym (,LL”“'” + u?'/“b — 7] ) .

The remaining estimates of this proposition are similar to the previous one. We omit
the details. ]

A.2 Basic Estimates

For each fixed i and j, i # j, consider the following function

1 1
L+ ly —x;D (L+ |y — )7

gij(y) =

where « > 0 and 5 > 0 are two constants.
Then we have the following lemma whose proof can be found in [21, Appendix B].

Lemma A.3 For any constant 0 < o < min(«, (), there is a constant C > 0, such

that
1 1

+
Ixi — xj|7 L(L+ [y —xi))otP= - (1 + [y — xj])oF—<

gij(y) <
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Lemma A.4 For any constant 0 < o < N — 2, there is a constant C > 0, such that
forany y € RY,

/ 1 1 & < C

Z ’
ory [y — 2N (L |27 = (14 [y[)
where z = (2,0) = RN=1 x {0} € ORY.

The result is well known. Readers may refer to [21, Appendix B] to find almost
the same proof.

Lemma A.5 Suppose that N > 5. Then for any y € RY, we have that

1
2 -2 =
A —Z|N 2 ( )Z 7N'iz+7_dz§

Ry |y (1+|z—x]\) 2

k
C
Z 7L+T'

i=1 1+|y7xl|) : N=2

Proof Note that for any 3 > ¥ g,z_*z’” and fixed ¢, as k — oo

Z|x —xz|/3 B Zﬁzﬂ

|1 Z\ﬂ'
i#l i#l SHI
Ck/i __mfB
FZO(M N=7) B>1,
CK <~ 1 _ | ckInk
STZ;TS =0 F ) =,
Ck 5 N—2—m
S=0w PTFEY) p<l
W
In €, we have |z — xj| = |2 — %j| > |z — x¢| and |z — xj| > |xj — x| for any j # £.

Thus for any Ng,z__zm < a < N —2,itholds

<
Z(1+|Z—x N2 (1+|Z—xz|)N - ‘*;M—M“

Thus in 2y we have

i C
Wrz_A 2( ) < 2— 20 )
’ (1+ |z —x)"" %>

k

1 C
<
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As a result, we find for z € ), that

# 1 C
272
<>§; — < —

(1-|-|z—x]|)2 e (1+|z—x) 2 7= e

It gives that, for a = NN 5+, since 8RN = U Q,,

1 272 1 i}
[ i ey ==

(1-|-|z—x]|)2 e

k
C

1+|)/_x1|)z N—2 ( )

\ A
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; . n

(1+|)/—x1|)2 Nt
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