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RENDEZVOUS NUMBERS IN NORMED SPACES

BALINT FARKAS AND SZILARD GYORGY REVESZ

In previous papers, we used abstract potential theory, as developed by Fuglede and
Ohtsuka, to a systematic treatment of rendezvous numbers. We considered Chebyshev
constants and energies as two variable set functions, and introduced a modified notion
of rendezvous intervals which proved to be rather nicely behaved even for only lower
semicontinuous kernels or for not necessarily compact metric spaces.

Here we study the rendezvous and average numbers of possibly infinite dimensional
normed spaces. It turns out that very general existence and uniqueness results hold
for the modified rendezvous numbers in all Banach spaces. We also observe the
connections of these magical numbers to Chebyshev constants, Chebyshev radius and
entropy. Applying the developed notions with the available methods we calculate the
rendezvous numbers or rendezvous intervals of certain concrete Banach spaces. In
particular, a satisfactory description of the case of L, spaces is obtained for all p > 0.

1. INTRODUCTION

It was shown by Gross [13] that for a compact, connected metric space (X, d)
there exists a unique number r := r(X) € R such that for each finite point system
P = {z1,2;,...,2o} C X, n € N one finds a point z € X with the average distance to
P being exactly r, that is

(1) %Zd(x, ) =r.

This number r(X) is called the rendezvous number of the space X. Using this strict
definition, that is requiring the very existence of a point = with exact equality under (1),
it is well-known that both compactness and connectedness are crucial assumptions. How-
ever, one can relax the requirements by considering so-called weak rendezvous numbers,
meaning that there exist two points y,z € X with their average distances to the points
z; being less or equal than r and greater or equal than r, respectively, [22]. Clearly,
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for connected spaces this is equivalent to the existence of a strong rendezvous number.
Hence it is not surprising that one can prove the existence and uniqueness of such weak
rendezvous numbers under the hypothesis of compactness, see for example, [22]. How-
ever, dropping the compactness condition one can not expect uniqueness as, for example,
the case of C(K) spaces shows ([11, 16]). Furthermore, sticking to connected spaces
but relaxing compactness we cannot prove the existence of rendezvous numbers. For
example, the unit spheres of £, spaces have no rendezvous number (unless p = 2, +00)
([14, 15, 16, 24]).

In [6] we employed a systematic potential theoretic approach to rendezvous numbers
and introduced a modified definition of these numbers, considering also closure of the
occurring average distance sets in the construction. In the classical case of compact sets
and continuous kernels (for example, distances on compact spaces), closure is superfluous
as a continuous image of a compact set is also compact, hence closed. However, in the
more general case of non-compact sets, like unit spheres of infinite dimensional Banach
spaces, and also in case of more general, only lower semicontinuous kernels, this approach
is productive. In particular, with the new definition we have found very general existence
results, far beyond the setting of metric spaces. It turned out that abstract potential
theory on locally compact spaces with a lower semicontinuous kernel is an appropriate
framework for such investigations. In [6] it was also indicated that the local compactness
assumption on the space X is not necessary and the results go through to metric, but
not necessarily locally compact spaces as well.

We analysed further consequences of this approach in the context of metric spaces
in [7], extending and explaining a good deal of the previous knowledge. In the present
paper we continue the study of rendezvous - and average numbers in normed spaces.

Let us fix some notation and introduce the necessary concepts. In the abstract
potential theory developed by Fuglede [9] and Ohtsuka [17] the usual assumptions are the
following. X is a locally compact, Hausdorff space and k : X x X — R, U{+o0} is a lower
semicontinuous, symmetric, positive kernel function. Nevertheless, we shall consider
possibly infinite dimensional Banach spaces, so the local compactness assumption needs to
be relaxed. We shall accomplish this task on the cost of allowing special kernel functions
only, such as k(z,y) := ||z — y||, which is just the usual kernel appearing in connection
with rendezvous numbers.

DEFINITION 1: For arbitrary H,L C X the general n** Chebyshev constant of L
with respect to H is defined as

M,(H,L):= sup infl(ik(z,wk)) ,
k=1

Wy, Wn€H zel n

https://doi.org/10.1017/50004972700035255 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700035255

(3] Rendezvous numbers in normed spaces 425

and the n* general dual Chebyshev constant of L relative to H is

M,(H,L):= o 1rt1ufn€ sup (Zk(z w,))

The first part of the definition is due to Ohtsuka [18]. By standard considerations, just
as in the case of classical Chebyshev constants, one sees that M,(H, L) and M,(H, L)
converge to some M(H,L), M(H,L) € [0,+o0] (see, for example, [6, 8] or [18]). Fur-
thermore

sup Mn(H, L) = lim M,(H,L)  and inf M,(H,L) = lim M,(H,L) .

neN neN n—o0
The limits M(H, L), M(H,L) above are called the Chebyshev constant and the dual
Chebyshev constant of L with respect to H.

If X is a Hausdorff topological space, let us denote by 9(X) the set of positive,
regular Borel measures on X and by 9,(X) the subset of probability measures. The
notation D‘)Tf(X ) is used for probability measures with finite support. Given aset H C X,
for the subfamily of measures concentrated on H (or supported on H, in case H is
closed, see [9, pp. 144-146]) we use the analogous notations Dt(H), 9, (H) and IM* (H),
respectively. The potential of a measure y € 9U(X) is

- / k(z, ) du(y) -
X

In the classical potential theoretic literature various notions of energies appear. Already
Fuglede [10] and Ohtsuka [18] introduced the following two-variate versions of energies
(see also [6]).

DEFINITION 2: Let H,L C X be fixed, and x € 9M;(X) be arbitrary. First put

(2 Q(u, H) :=supU¥(z) , and also  Q(u,H) := igf{ U¥(z) .
z€H - z
Then the guasi-uniform energy and dual quasi-uniform energy of L with respect to H
are
(3) g(H,L):= if Q(u,L) and g(H,L):= sup Q(v,L).

BET (H) vemy (H) ~

We use the notation M(H) := M(H,H), M(H) := M(H,H), q(H) := g¢(H, H) and
q(H) := q(H, H) for the diagonal (classical) cases of the quantities given in Definitions 1
and 2.

REMARK 3. It is not surprising that in general the quantities M(H), q(H) et cetera, do

not posses any monotonicity properties as functions of the set H. The worst consequence

of this is the lack of good “inner regularity” properties, for example ¢(H) = én% g9(K)
@
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fails to hold (we use the abbreviation K € H to express that K is a compact subset of H).
However, fixing one variable the functions M(H, L), M(L, H), g(H,L) and ¢(L, H) are
increasing with respect to H and decreasing with respect to L, and the above mentioned
problem disappears. This particularly explains the relevance and importance of the above
two-variable definitions to our subject, see also [6].

DEFINITION 4: For arbitrary subsets H, L C X the n'* (ertended) rendezvous set
of L with respect to H is

(4) R,(H,L) := ﬂ Eon_v{p,.(z) = %Zk(z,wj) : T € L},
wy,...wn€H j=1
Ra(H) i= Ro(H,H) .
Correspondingly, one defines
(5) R(H,L):= | Ra(H, L), R(H) := R(H,H) .

n=1

Similarly, one defines the (extended) average set of L with respect to H as

(6) AHL) = ) W{U“(x) : :z:eL}, A(H) := A(H, H) .
peD, (H)

REMARK 5. Denoting the interval

) A(u, L) = [Q(u, L), Q(u, L)] =conv{U¥(z) : z€ L},

we see that Rn(H, L), R(H, L) and A(H, L) are all of the form [, A(u, H), with 4 ranging
over all averages of n Dirac measures at points of H, over ¥ (H) and over all of 9, (H),
respectively.

REMARK 6. Let us explain how the above notions relate to the usual definitions of
rendezvous numbers or average numbers. Suppose that (X, k) is a metric space and that
the set L is compact. Then there is no need for the closure in the above definitions, since
in this case the potential U* is continuous, so the set A(u, L), being the continuous image
of the compact set L, is compact. This means that a number r € Ry belongs to R(H, L)
if and only if for any finite system of (not necessarily distinct) points z,,...,z, € H one
finds points y, z € L satisfying

1o 1«
(8) ~ > k(y,z)<r  and EZk(z, ) >T.
j=1 i=1

This is the usual definition of weak rendezvous numbers in metric spaces (see [22]). In
the next step, we can assume that L is connected. In this case, (8) is further equivalent
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to the existence of a “rendezvous point” z € L with

n
(9) %Z k(z,z;)=r.

j=1
Of course in the above reasoning an arbitrary probability measure g can replace the
average of Dirac measures. To sum up, for compact and connected sets L of metric
spaces, R(L) (and A(L)) is a single point, and it is the classical rendezvous (or average)
number of L (results of Gross [13], Elton and Stadje [21]). For further discussion and
examples see [6].

From the above definitions it is easy to identify the lower and upper endpoints of
the rendezvous and the average intervals (see [6]).

PROPOSITION 7. For arbitrary subsets H,L C X we have

(10) R.(H,L) = [M,(H,L),M,(H,L)] , Ru(H)=[M.(H),Mn(H)],
(11) R(H,L)= [M(H,L),M(H,L)], R(H)= [M(H),M(H)] ,
(12) A(H,L) = [q(H,L),q(H,L)] , A(H) = [q(H),q(H)] .

The questions of existence and uniqueness of rendezvous or average numbers, are two
naturally posed problems, which were investigated in [6] in the potential theoretic frame-
work on locally compact spaces. In fact, non-emptyness of the rendezvous, respectively
the average intervals means that in the above formulation (10) the formal lower endpoints
of the intervals do not exceed the upper endpoints (we use the convention [a,b] = § if
a > b). While uniqueness is the same as that the respective interval reduces to one point.
We recall the following two results from [6].

THEOREM 8. Let X be a locally compact Hausdorff space, § # H C L C X
be arbitrary, and let k be any nonnegative, symmetric kernel on X. Then the intervals
R.(H,L), R(H,L) and A(H, L) are nonempty.

THEOREM 9. Let X be any locally compact Hausdorff topological space, k be any
lower semicontinuous, nonnegative, symmetric kernel function, and § # K € X compact.
Then A(K) consists of one single point. Furthermore, if k is continuous, then even R(K)
consists of only one point.

When the rendezvous or the average interval R(K) respectively A(K) consists of
one point only, this single point is denoted by r(K) or a(K), respectively.

Let us close this introduction with a few remarks to explain the idea of the present
approach. Investigating the polarisation constant problem, it was found in [1] that for
certain cases the Chebyshev constants of the unit spheres S? and S2 appear as polarisation
constants. The arising questions led to the systematic analysis of Chebyshev constants
and also transfinite diameters and minimal energies in the general potential theoretical
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framework [5]. Meanwhile, the second author took part in working out a general approach
which might be termed as appropriate averaging over S™, to estimate the polarisation
constant (19, 20]. However, it turned out that part of the results achieved through such
a potential theory flavoured approach, were already obtained by Garcia-Vizquez and
Villa [11], who used Gross’ Theorem on the existence of rendezvous numbers successfully
in the context. This suggested that perhaps there is a way to relate the two methods,
or even the underlying theories, that is, potential theory and rendezvous numbers. Our
paper stems from this observation.

2. RENDEZVOUS NUMBERS FOR NORMED SPACES

In the last decade many results were obtained regarding the numerical values of
rendezvous numbers of concrete spaces and sets, see for example, [2, 11, 16, 23, 24]. In
this context, the following terminology was introduced.

DEFINITION 10: Let (X, ||-||) be a normed space with closed unit ball Bx and unit
sphere Sx. Considering Sx with the norm-distance, the rendezvous numbers of the arising
metric space are called the rendezvous numbers of the normed space X. Accordingly, we
use the script notation

(13)  Ra(X):=Rn(Sx), R(X)=R(Sx) and A(X):=A(Sx).

It is clear that for finite dimensional normed spaces the above notion is a special case
of the general notion described in Section 1. However, for infinite dimensional normed
spaces the metric space Sy will not be locally compact, as is usually assumed in the
potential theoretic setup. There are two ways to tackle this, one being the extension
of the theory to not necessarily locally compact but metric spaces, as is done in [7].
There we assume that the topology arises from a metric, but relax on local compactness.
Conversely, in a number of cases it is possible to consider a different topology, in which the
metric is still lower semicontinuous, while Sy becomes locally compact, hence Fuglede-
type general potential theory applies. Note that in this case the topology is not the
metric topology, which deserves some care when working with the theory. In particular,
the average sets A(H, L), referring to regular Borel measures of the space, may be different
for different topologies. On the other hand, for a fixed kernel

R(H,L)= [M(H,L),M(H,L)]
is independent of any topology.

PROPOSITION 11. Let X be any abstract set, k > 0 be a symmetric function
from X x X toR,U{+00}, and @ # H C L C X be arbitrary subsets. Then R(H,L) # 0.

PROOF: The definition of rendezvous intervals, as well as the corresponding state-
ment in Proposition 7, are independent of the topology of the underlying space. There-
fore, we can just take the discrete topology of X, and note that the kernel k£ becomes
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continuous, hence lower semicontinuous, in this topology. Thus Theorem 8 applies and

R(H,L) #0. 0
In view of Proposition 11, we trivially obtain the following.

CORODLLARY 12. Let X be any normed space. Then the rendezvous set R(X)
is non-empty.

This seemingly contradicts to some assertions on nonexistence in the literature: the
reason is that we considered also the closure in the definition of the rendezvous and
average intervals. The above proposition shows that in the context taking the closure is
also helpful. Note that Baronti, Casini and Papini [2] have already considered the closed
version of the rendezvous sets, at least in normed spaces but they focused on the question
of “attaining” the rendezvous numbers. In such investigations the geometry of Banach
spaces plays an important role.

On the other hand, uniqueness, so nicely obtained for locally compact spaces, con-
tinuous kernels and compact sets, can not be concluded as already shown by a couple of
examples in the literature (see [14, 15, 16]).

3. AVERAGE NUMBERS FOR NORMED SPACES

For compact sets K and continuous kernels it is already known that A(K) = R(K),
and that there are counterexamples showing that in general compactness is needed (com-
pare [6, Section 6]). Nevertheless, the assertion remains valid in normed spaces, too.

THEOREM 13. Let X be any normed space. Then we have A(X) = R(X) # 0.

For not necessarily finite dimensional Banach spaces, we do not have the means
to restrict considerations to compactly supported measures only. Instead, we prove the
following result, whose easy consequence is the above theorem.

THEOREM 14. Let (Y,d) be a metric space. Assume that the kernel k is positive,
symmetric and bounded and that {k(-,y) 1Yy € Y} is uniformly equicontinuous on (Y, d).
Then we have A(Y) = R(Y) # 0.

LEMMA 15. Assume that the kernel k is positive, symmetric and bounded and
that {k(-,y) : y € Y} is uniformly equicontinuous on Y. Let u € IM,(Y) and € > 0 be
given arbitrarily. Then there exist m € N and points z; € Y (j = 1,...,m) such that

m
the potential U” of the measure v := (1/m)3 0., approximates U* within € uniformly
onY. =
To prove this lemma we need the following elementary result.
LEMMA 16. For any ¢ > 0 and any finitely supported probability measure v,
m

there exists a probability measure of the form p = (1/m)3_4,, having the same support
as v and satisfying (1 —e)v € p € (1 + €)v. =t
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PROOF: [Proof of Lemma 15] Without loss of generality we can assume that k < 1,
and hence U? < 1 for all probability measures o. By the assumptions we find an r > 0,
such that |k(z',y) — k(z",y)| < €/2, if d(z',z") < . As p is a regular Borel measure,
for any given > 0 there exists K € suppp C Y with u(K) > 1 — . Take now
vi = pr/f||lpxl] (with pg being the trace of p on K) so that vx € 9, (K). Note that

|U*(z) — U (z)] < sup k(z,y) - e — uxll <0,
y

and
U () = U (2)| < |U ()] - (1 = Nluxll) <7
Consider now the covering of the compact set K € Y by open balls B(y,r), with y € K.
By compactness there exist a finite sub-covering, that is, there exist n € N, y; € K,
n
B; := B(yj,r) (j =1,...,n) satisfying K ¢ UB;. Put D, := By, and for j =2,...,n
i=1

put
i1

DJ' = B]\ U B,', a; = I/K(Dj) ? 0.

i=1

n
Clearly )" a; = vg(K) = 1. Consider the finitely supported measure
j=1

g = Zajé,,j € DJtl(K)

ij=1

Then we have

[U** (z) - U’ ()| =

> [, Hors) = K dvto

n
<Y a; sup |k(z,y) - k(z,u;)| < /2.
j=1 y€D;CB;

Finally, the application of Lemma 16 to o yields an approximating measure
m

v := (1/m) Y 6;; with m € N and points z; € K (j = 1,...,m) so that (1 —n)o < v
=1

J=
< (1 + n)o, and thus

|U®(z) - U*(z)| < n|U°(z)| < n -
Collecting all the above, we find
|Ut(z) - U*(z)| < 3n+€/2<¢,

if n < g/6. 0
PROOF: [Proof of Theorem 14] It is obvious that A(Y’) C R(Y), hence it suffices to
show the converse inclusion. Let u € 91,(Y’) be arbitrary and consider A(y,Y) = [a,b],
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(where a = Q(p,Y), b= Q(u,Y)). Let us take € := 1/n and look at the measure v := v,
provided by Lemma 15 to g and €. Since the potential functions are uniformly close to
each other on Y, their infima and suprema are also within £: that is,

Q. Y) - QW Y)| <&, |Qw,Y) - Qv Y)| <&

In other words,

n n
and thus o
[ A(wn,Y) C [2,0] = A(, Y).
n=1

It follows that
R(Y)= (] A@®Y)CA(Y)

vem# (v)
for all p € 9, (Y'), hence

RY)c [ AwY)=A(Y)
sEM(Y)

and the theorem is proved. 0

REMARK 17. The assumptions of Theorem 14 are satisfied, for instance, when (X, d)
is a metrisable topological vector space and k(z,y) = f (d(z, y)), where f is a continuous
function (see Section 4 below).

LEMMA 18. Let X be a (not necessarily locally compact) Hausdorff topological
vector space, k a lower semicontinuous, nonnegative, symmetric and convex kernel func-
tion on X x X, and p € M, (X). Then the potential function U* is convex.

PROOF: Take any z,y,z € X with z = az + (1 — a)y, where 0 € a € 1. We then

have
04e) = [ Kz w)dutw) < [ (ab(e0) + (- a)bly, w) dutw)
=aU¥(z) + (1 - a)U*(y) ,
and that was to be proved. . 0

LEMMA 19. Let X be a (not necessarily locally compact) Hausdorff topological
vector space, k a lower semicontinuous, nonnegative, symmetric and convex kernel func-
tionon X x X, H C X a bounded set, and OH be its boundary. Then for any u € 9,(X)

the potential function U* satisfies sup U¥ = sup U*.
H 8H
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Proor: We are to show sup U* £ sup U¥, the other direction being obvious. Let
H 8H
now z € H be arbitrary: we show that U#(z) € supU¥#. Draw any straight line ¢
H

through z. Since H is bounded, both closed half—liges of ¢, starting from z, contain
boundary points of H; that is, if these points are y,2 € ¢, then z € [y, 2] with y,2
€ 8H. According to Lemma 18, the potential is convex, which immediately yields U*(x)
< max(U¥(y), U*(2)) < sup U*. 0

CorROLLARY 20. If X is a normed space, then ¢(Sx,Sx) = q(Sx,Bx) and
M(Sx,Sx) = M(Sx, Bx).
REMARK 21. Note that for the other endpoints of the average intervals generally we
may have strict inequality: ¢(Sx,Bx) < ¢(Sx,Sx). As wili be seen in Theorem 23,
for any 1 < p < +0o R(£,) = 21/ > 1. However, for any measure up € 9M;(Sx), it
is clear that 0 € By satisfies U#(0) = fo 1du = 1, hence ¢(Sx,Bx) < 1. In fact,
q(Sx,Bx) = 1 is true, since for any two points z,y € By, the corresponding measure
vi= (62 +8,)/2 always provides, by the triangle inequality, Q(v, Bx) > ||z — y||/2, which
can be as large as half the diameter.

REMARK 22. It is straightforward to show that
[M(H),M(H)] = R(H) C [diam(H)/2,diam(H)]

(see, for example, [13]). Indeed, M(H) < diam(H) is trivial, while the lower estimate
diam(H)/2 < M(H) is essentially contained in the previous remark.

4. RENDEZVOUS NUMBERS FOR L, SPACES

We already know that the rendezvous interval of a Banach space is not empty. Here
we identify the rendezvous, hence the average intervals of the L, spaces.

Let (2, M, 1) be a measure space. To complement the whole scale 1 < p < +00, we
consider L, := L,(2, M, 1) when 0 < p < 1 as well. In this case L, will not be a Banach
space, but if endowed with the metric

(1) d(f,g) = /n If — gPdu,

it is a complete, metrisable, topological vector space (of course we have to identify func-
tions coinciding on u-null sets). First we calculate the rendezvous number with respect
to the symmetric function ||f — g|| := d(f,¢)"/? instead of the metric d, this fits well
together with the case p > 1. Of course, now Sy, denotes the “unit sphere” with respect
to || - || for all 0 < p < +o0.

THEOREM 23. Let 0 < p < +o0o be arbitrary and consider L,(2, M, ) over
either R or C. If L, is infinite dimensional, we have a(Sy,) = r(S,) = 2'/.
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Proor: The following applies for both the complex- and real-valued cases, hence
we do not mention the underlying number field any more. Further we write briefly L,
instead of L,(Q, M, ). We already know that R(SLP) is nonempty (see Proposition
11) and is a compact interval (indeed, in case p > 1 it is a subset of the interval [1, 2],
see Remark 22). Moreover, we have R(S; ) = [M (St,), M(SL,)], and by Theorem 13,
Theorem 14 and Remark 17 we have A(Sy,) = R(SL,). Therefore we need only to show
that M(Sg,) > 2'/7 and that M(S.,) < 2'/7.

Since L, is infinite dimensional, there exist w; € Si,, j € N such that the sets
Aj = {z: z € Q, wj(z) # 0} are pairwise disjoint. For any function g € L, let us
introduce the notation |lgf|; := |Ix4;9l-
PART 1. M(Sy,) > 2'/?. With the functions w; and for any f € Sy, we have

n n 00 1/p n el 1/p
S - wyll = Z(Z If - wmz) - Z(uf . ufuz)
i=1 =1 \k=1

j=1 k=1,k#j

(15) =S " (lhw; - FIE+1 - |I512)'7 .
i=1

Now we distinguish between the cases p < 1 and p > 1. First let p < 1, then using
Ifll; <1 and f € Sy, we can continue (15)

SO = will = 3= AIE + lhw; - £12)”
i=1

> Z(l —1LAIZ + |l B - ||f||§|)l/p = Z(l -NfE+ (- IIfH?))l/p

j=1 =1

1/p
—olp n\p s qip, (1)
2 }: - 15l) e > 2en 2=

using again f € Sy, and the convexity of the function z ~ z'/? in the last step. Second,
let p > 1, then we can write

SIF =il = S0~ IAIE + s - £12)°
i=1

j=1

>3 (1- g + - nsy)

i=1

(16) = (1A - (L= ) + 20 - riE)?)

i=1

>3- (20-11)) " =2 (1= 117l) > 2% =),

]:

a

-
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where 1/p + 1/q and using again f € Si, and Holder’s inequality in the last step.
We see that in both cases for the given n-point distribution (concentrated on the w;s,
j =1,...,n) the corresponding potential is minorised by the right hand sides divided by
n, hence we find M,(SL,) > 2'/P + 0,(1) (as n — o) and M(S.,) > 2'/7 follows. (Note
that, for example, [11] calculates even the exact value of R(£}(C)), but here the task is
a little bit different.)

PART 2. H(SLP) < 2Y/7. Let n € N and consider the same functions w;, j € N as in the
first part. Then for any point f € S, and for any given parameter » > 0 we have, by
(15), forp 2 1
n n . l/P
(17) SoUf - will < Y (1+ (@ +1515)°)
i=1 =1
< Y a+re Y 1+ (1+n2)

7 AAl>n Jsllfllj€n

1
< F(l +2°)MP L n2tP(1 4 1),

and forp<1
n n ) 1/p
S —wll < (1+ @+ A1)
i=1 i=1
1/p
(18) < Y 3P 3 (1+a+)P< 37 (1 4Py
Flfl>n #lfll<n "p

Choosing, for example, 7 := n~!/??, we obtain the estimate U*(f) < 2'/7 + 0,(1) (as
n — +oo, Vf € §p,) for the measure v := (1/n) 3 dy,. It follows that for the given
j=1

n-point distribution v we have
Ma(SL,) < Q(v,SL,) = 217 4 0,(1) = 27 (n = o),

and so even M(S,,) < 2'/7. 0
Note that for p > 1 already Lin [16] showed that R(£,) C {2/} for “strict” ren-

dezvous numbers (actually by a similar argument). So this and the non-emptyness of the
rendezvous interval (Corollary 12) give the above result for £, (1 < p < +00).

COROLLARY 24. (Wolf, Lin) Let M be an infinite dimensional Hilbert space over
any of the number fields R or C. Then we have A(H) = R(H) = {V/2}.

REMARK 25. In the above proof we actually used the same point distribution in both
parts of the proof, therefore we have proved the existence of e-quasi-invariant measures.
We say that there exist e-quasi-invariant measures see [7, Definition 5.9] for the kernel
k on S, if for all £ > 0 there is v € 9, (S) satisfying Q(v, S) — Q(v, S) < €. Generally, if
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S is compact, by weak*-compactness we obtain the existence of a true invariant measure
p € 9, (S), that is, whose potential U¥ is constant on S. Of course, for § = S, this
is not the case. But as we saw above there exist e-quasi-invariant measures, and by [7,
Proposition 5.11] it is already enough to conclude that the average interval reduces to
one point.

THEOREM 26. Let0 < p <1 be arbitrary and L,(2, M, ) be the vector space

of p-integrable functions endowed with the metric d defined in (14). For the rendezvous
interval of the unit ball Sy, of L, we have A(S,) = R(S.,) = {2}.

PRrOOF: By Remark 22 we know H(SL,,) < 2. So we only need to estimate the
lower endpoint of R(S.,) from below. This can be done analogously to (15) and (16) by
considering the functions w; and sets A; used in the proof of Theorem 23. Let us further
use the abbreviation ||| fill; := [ 4 | f{P dp. For an arbitrary f € S;, we can write

3 d(f,wy) = Z(Z s - w,-mk) _ Z(mf —ulls+ Y mfmk)
j=1 j=1 “k=1

j=1 “k= j=1 k=1,k#j

=D (1= F W5 + iy = £1l;)
ij=1

> (= A+ 1 =N =2 (1 = £1l;) > 2(n - 1) .
j=1 Jj=1
Therefore M,(SL,) > 2 — 1/n, hence M(S.,) > 2. 0

It was already pointed out by Lin in [16] that lim, o r(St;.) =217 if 1 < p < 400.
The following result, inspired by an analogous argument of Garcia-Vazquez and Villa
[11], explains this phenomenon in view of Theorem 23 above.

THEOREM 27. Let X be a normed space and X,, an increasing sequence of sub-

[o.+]
spaces such that |J X, is dense in X. Suppose that (X,, || - ||») is a normed space and

n=1

Pn € R(S(x, |I»))- Assume that

lim sup |1-|lz[l.] =0.

n—00 £e X,NSx

Then any accumulation point p of the sequence p, belongs to R(Sx).

PROOF: Let p be an accumulation point of the sequence p,. Assume without loss
of generality that p, — p. Let € > 0 be given. Then for sufficiently large n > ny(e) we
have [pn —€,pn +€] C [p— 26, p + 2¢]. :

By definition p, € R,,(X,) for all m € N. Let m € N be fixed, and z,,...,z,, € Sx
be arbitrary. g‘ake any y; € X, N Sx with [ly; — ;|| < €. Such y; exists in view of the

denseness of |J X, in X. By assumption, we have “|z|| - ||z||,.| < g|2|| for all sufficiently

n=1
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large n > n; 2 np and all z € X,,. In particular, |1 — [Jy;]|.| < €. By definition of the
rendezvous interval Ry, (X,), we find 2, € Six,, 1) Satisfying

(19) Z” —zp|| €[pn—€pn+elCp—2ep+2].
”yJ”n n
According to the above, for all n > n; we have
Zn l1zn 1
S -
el = [ ol el = 1= 2
and
R
YVi— 1o Y Y -1
s = o, = 1= ] -t = Dt =1 <

Using these two inequalities in (19) we obtain

Z“yJ

—|| €[p—4e,p+4e].
e ’

For n > n, we also know

€2,

2ol = o = 2l <o o - 2
. — —— — + e — e. - —
Jos Tzallll ~ 1% 7 ) S €T 1% T ]

therefore we can write

=3 - L3 - o
=3 |lvi— 2| € lo-6e o+ 6e] and — 3|l — 22
m 2l = oyl €l = Gep el and D3 e -

€lp—Te,p+ 7€) .

This shows p € R,,(Sx), which being valid for all m, gives p € R(Sx). 0
This theorem immediately gives the following corollary.

COROLLARY 28. Let X be a normed space and X, an increasing sequence of

o0
finite dimensional subspaces such that {J X, is dense in X. Let p be an accumulation

n=1
point of the sequence 7(Sx,) (r(Sx,) exists uniquely by the compactness of Sx,). Then
p € R(X).

5. CHEBYSHEV CENTRES, ENTROPY AND RENDEZVOUS NUMBERS

DEFINITION 29: Let K C X be a compact, convex subset of some normed space X,
with d being the metric induced by the norm. Then the Chebyshev centre ¢ := ¢(K) € K
and the Chebyshev out-radius p := p(K) of the set K are the centre and the radius,
respectively, of the closed ball B := B(c, p) of minimal radius with ¢ € K c B(c, p).
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Clearly, for any compact K such a minimal ball always exists, and for convex sets
it is even unique. Note that it is important in the definition that ¢ be chosen within K;
for discussion see [3, 4, 12].

Quoting private communication from Esther and George Szekeres, in [4] Cleary,
Morris and Yost present the following beautiful result with a nice, direct elementary
proof. Here we present our even shorter version relying on the potential theoretical
background developed.

THEOREM 30. (E. and G. Szekeres) Let K C X be a compact, convex subset of
some normed space X, with d being the metric induced by the norm. Then the Chebyshev
radius and the rendezvous number of the set K equal: r(K) = p(K).

PRrOOF: Existence and uniqueness of R(K) = {r(K)} and also the equality
R(K) = A(K) are already known from Theorems 8 and 9. Further, if ¢ is a Cheby-
shev centre of K, then to all points z € K we have ||z — ¢|| < p. Hence for any
probability measure p € 9 (K) also the potential satisfies U*(c) < p(K). It follows that
Q(u, K) < p for all u € M (K), hence also r(K) = g(K) < p(K).

Conversely, for € > 0 let y; € K be arbitrary points (j = 1,...,n) satisfying

—_— n
Q(v,K) < M(K) + ¢ with v := (1/n) 3 é,.. As K is convex, it contains the convex
n j=1
combination y := (1/n)Y_y; € K of the given points. Thus by the convexity of the norm
=1

for arbitrary z € K the estimate
1« —
ly ==l < =3 lly; =2l = U”(2) SH(K) +e
j=1

holds. Hence B(y, M(K) + €) covers K and p(K) < M(K) + ¢, which implies also

p(K) < M(K) = g(K) = r(K). 0

Recall that for a positive number ¢t > 0 and a set H C X of a metric space X with
metric d the ¢t-covering number N(t, H) is defined as

N(t, H) = min{n €N : 3yjeH(j=1,...,n) such that H C UB(yj,t)} )
Jj=1

If there is no finite set of balls of radius ¢ which can cover the set H, then we say that
N(t,H) = +oo. Similarly, if H,L C X, then

N(,H,L) := min{n €N : 3yje H(j=1,...,n) such that L C U B(yj,t)}
=1

with min§ = +o0o being in effect again. The next observation is almost obvious.
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PROPOSITION 31. Lett > 0and H L C X. We have M,(H,L) > t for all
n < N(t,H,L). In particular, if N(t, H, L) = 400, then t < M(H, L) = sup R(H, L).

PRroOOF: Since n < N(t,H, L), for any system of points y; € H (j = 1,...,n),

there exists some point z € L so that d(z,y;) > ¢ for all j = 1,...,n. Therefore,
n —

sup 3 d(z,y;) > nt holds for all systems of n points, hence M,(H,L) > t, and (10)

zelL j=1

concludes the proof. ]

Recall that a set H C X is called totally bounded, if N(t, H) < +oo for all £ > 0. In
Banach spaces this is the same as the conditional compactness of H, that is, that H € X
is compact set. The proposition shows that for subsets H which are not totally bounded,
there is always a positive lower bound of M (H, H). The above proposition, however easy,
provides an essential help in describing some rendezvous numbers. For instance, there is
an elegant interpretation of the following result.

THEOREM 32. Let K be a compact Hausdorff topological space without isolated
points, and consider C(K) the Banach space of real- or complex-valued continuous func-
tions over K. Then we have M(Sc(x)) = 2.

PRrOOF: Denote by S the unit sphere of C(K). We show that N(¢,S,S) = +oo for
0 < t < 2, then by Proposition 31 M(S) > t hence M(S) > 2 will follow. Then, by
Remark 22, we must actually have M(S) = 2.

Solet0 <t <2and fi,... fn € S. Furtherlet z; € K be one of the maximum points
of |f;], that is, | f;(z;)| = 1 and take £ > 0 small such that t+¢ < 2. By continuity, there
exist neighbourhoods G; of z; with Ifj(:cj) - fj(y)l <e (VyeGj),forallj=1,...,m.
Take y; € G; distinct points (z; is not an isolated point!). By Tietze’s Theorem there

exists a continuous function g € S, such that g(y;) = —f;(z;), for all j =1,...,m. But
then S can not be covered by the balls B(f;,t), because this particular g is not covered.
Thus we conclude N(t, S, S) = +oo. 0

The above result is already present in Garcia-Vazquez, Villa {11] and Lin [16], where
the authors determine the rendezvous interval of C(K). Their proofs follow the same line,
we included it for the sake of illustration of the role of entropy.

The real-valued case in the following theorem is due to Wolf {24], see also Lin [16].

THEOREM 33. Let ¢y denote the Banach space of real or complex valued null-
sequences. Then we have
(20) A(co) = R(c) = [L,0],

wherec =3/2 0oro=1/3+ 2(ﬁ)/7r in the case of R respectively C-valued sequences.

PROOF: In the real case Wolf showed that r(Sg ) = o ([24, Proposition 1), while
the corresponding equality in the complex case is due to Garcia-Vazquez and Villa. So
by Corollary 28 we see that o € R(cp). Applying the same idea as in [11, Theorem 5],
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we can split the space as ¢g = K x ¢, where K is either the complex or the real scalar
field. Consider the measure 4 = A ® dp, where A is the normalised Haar measure on Sk
and dp is the Dirac measure on ¢ at the constant 0 sequence. Clearly p is supported in
Se,- In case of real-valued sequences, Wolf essentially showed Q(u,Sc,) < o (see proof
of Proposition 1 in [24]). Moreover, one can repeat the arguments from [11] to see that
Q(u, Se,) < o in the complex case, too. So in both cases we have ¢(S,,) < 0 = o(K) and
as by Theorem 13 we know M(S.,) = q(S,,), we find M(S,,) < 0. Because o € R(co),
the only possibility is M(S,,) = 0.

To calculate the lower endpoint of the rendezvous interval, let now m € N be fixed
and T1,...,Zm € S, be arbitrary. For € > 0 take np € N be so large that |z;(n)| < ¢
whenever n > np for all j = 1,...,m. Now let 2 be the element of ¢y being almost
completely 0 but 1 at the ngth coordinate. Then

1 m
—2 lle -2l <1+e,
J=1

$0 Mm(S,,) < 1, and therefore M(S,,) < 1. But then by Remark 22 we have M(S.) = 1.
We have calculated the lower and upper endpoints of the rendezvous {and the average)
intervals to arrive at the assertion. 1
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